nass-simscape/org/noise_budgeting.org

8.0 KiB

Noise Budgeting

Maximum Noise of the Relative Motion Sensors

Initialization

  open('nass_model.slx');
  initializeGround();
  initializeGranite();
  initializeTy();
  initializeRy();
  initializeRz();
  initializeMicroHexapod();
  initializeAxisc();
  initializeMirror();

  initializeSimscapeConfiguration();
  initializeDisturbances('enable', false);
  initializeLoggingConfiguration('log', 'none');

  initializeController('type', 'hac-dvf');

We set the stiffness of the payload fixation:

  Kp = 1e8; % [N/m]
  initializeNanoHexapod('k', 1e5, 'c', 2e2);
 
  Ms = 50;
  initializeSample('mass', Ms, 'freq', sqrt(Kp/Ms)/2/pi*ones(6,1));
  initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms);

Control System

  Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6);
  h = 2.0;
  Kl = 2e7 * eye(6) * ...
       1/h*(s/(2*pi*100/h) + 1)/(s/(2*pi*100*h) + 1) * ...
       1/h*(s/(2*pi*200/h) + 1)/(s/(2*pi*200*h) + 1) * ...
       (s/2/pi/10 + 1)/(s/2/pi/10) * ...
       1/(1 + s/2/pi/300);
  load('mat/stages.mat', 'nano_hexapod');
  K = Kl*nano_hexapod.kinematics.J*diag([1, 1, 1, 1, 1, 0]);
  %% Run the linearization
  G = linearize(mdl, io);
  G.InputName  = {'ndL1', 'ndL2', 'ndL3', 'ndL4', 'ndL5', 'ndL6'};
  G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};

Maximum induced vibration's ASD

Required maximum induced ASD of the sample's vibration due to the relative motion sensor noise. \[ \bm{\Gamma}_x(\omega) = \begin{bmatrix} \Gamma_x(\omega) & \Gamma_y(\omega) & \Gamma_{R_x}(\omega) & \Gamma_{R_y}(\omega) \end{bmatrix} \]

  Gamma_x = [(1e-9)/(1 + s/2/pi/100); % Dx
             (1e-9)/(1 + s/2/pi/100); % Dy
             (1e-9)/(1 + s/2/pi/100); % Dz
             (2e-8)/(1 + s/2/pi/100); % Rx
             (2e-8)/(1 + s/2/pi/100)]; % Ry
  freqs = logspace(0, 3, 1000);

Corresponding RMS value in [nm rms, nrad rms]

Specifications
Dx [nm] 12.1
Dy [nm] 12.1
Dz [nm] 12.1
Rx [nrad] 241.8
Ry [nrad] 241.8

Computation of the maximum relative motion sensor noise

Let's note $G$ the transfer function from the 6 sensor noise $n$ to the 5dof pose error $x$. We have: \[ x_i = \sum_{j=1}^6 G_{ij}(s) n_j, \quad i = 1 \dots 5 \] In terms of ASD: \[ \Gamma_{x_i}(\omega) = \sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2 \cdot {\Gamma_{n_j}}^2(\omega)}, \quad i = 1 \dots 5 \]

Let's suppose that the ASD of all the sensor noise are equal: \[ \Gamma_{n_j} = \Gamma_{n}, \quad j = 1 \dots 6 \]

We then have an upper bound of the sensor noise for each of the considered motion errors: \[ \Gamma_{n_i, \text{max}}(\omega) = \frac{\Gamma_{x_i}(\omega)}{\sqrt{\sum_{j=1}^6 |G_{ij}(j\omega)|^2}}, \quad i = 1 \dots 5 \]

  Gamma_ndL = zeros(5, length(freqs));
  for in = 1:5
    Gamma_ndL(in, :) = abs(squeeze(freqresp(Gamma_x(in), freqs, 'Hz')))./sqrt(sum(abs(squeeze(freqresp(G(in, :), freqs, 'Hz'))).^2))';
  end

/tdehaeze/nass-simscape/media/commit/f9c8a7b5fbaf649986a822eb7aaac5c52dc6ccfd/org/figs/noise_budget_ndL_max_asd.png

Maximum estimated ASD of the relative motion sensor noise

If the noise ASD of the relative motion sensor is bellow the maximum specified ASD for all the considered motion: \[ \Gamma_n < \Gamma_{n_i, \text{max}}, \quad i = 1 \dots 5 \] Then, the motion error due to sensor noise should be bellow the one specified.

  Gamma_ndL_max = min(Gamma_ndL(1:5, :));

Let's take a sensor with a white noise up to 1kHz that is bellow the specified one:

  Gamma_ndL_ex = abs(squeeze(freqresp(min(Gamma_ndL_max)/(1 + s/2/pi/1e3), freqs, 'Hz')));

/tdehaeze/nass-simscape/media/commit/f9c8a7b5fbaf649986a822eb7aaac5c52dc6ccfd/org/figs/relative_motion_sensor_noise_ASD_example.png

Requirement maximum ASD of the sensor noise + example of a sensor validating the requirements

The corresponding RMS value of the sensor noise taken as an example is [nm RMS]:

  1e9*sqrt(trapz(freqs, Gamma_ndL_max.^2))
519.29

Verification of the induced motion error

Verify that by taking the sensor noise, we have to wanted displacement error From the sensor noise PSD $\Gamma_n(\omega)$, we can estimate the obtained displacement PSD $\Gamma_x(\omega)$: \[ \Gamma_{x,i}(\omega) = \sqrt{ \sum_{j=1}^{6} |G_{ij}|^2(j\omega) \cdot \Gamma_{n,j}^2(\omega) }, \quad i = 1 \dots 5 \]

  Gamma_xest = zeros(5, length(freqs));

  for in = 1:5
      Gamma_xest(in, :) = sqrt(sum(abs(squeeze(freqresp(G(in, :), freqs, 'Hz'))).^2.*Gamma_ndL_max.^2));
  end
Results Specifications
Dx [nm] 8.9 12.1
Dy [nm] 9.3 12.1
Dz [nm] 10.2 12.1
Rx [nrad] 110.2 241.8
Ry [nrad] 107.8 241.8