nass-simscape/org/hac_lac.org
2020-02-25 18:21:17 +01:00

633 lines
20 KiB
Org Mode

#+TITLE: HAC-LAC applied on the Simscape Model
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ./index.html
#+HTML_LINK_UP: ./index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="./js/readtheorg.js"></script>
#+HTML_MATHJAX: align: center tagside: right font: TeX
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results raw replace :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports both
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
:END:
* Undamped System
<<sec:undamped_system>>
** Introduction :ignore:
** Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
#+begin_src matlab :tangle no
simulinkproject('../');
#+end_src
#+begin_src matlab
open('nass_model.slx')
#+end_src
** Identification of the plant
*** Initialize the Simulation
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
#+begin_src matlab
initializeNanoHexapod('actuator', 'piezo');
initializeSample('mass', 50);
#+end_src
No disturbances.
#+begin_src matlab
initializeDisturbances('enable', false);
#+end_src
We set the references to zero.
#+begin_src matlab
initializeReferences();
#+end_src
And all the controllers are set to 0.
#+begin_src matlab
initializeController('type', 'open-loop');
#+end_src
*** Identification
First, we identify the dynamics of the system using the =linearize= function.
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1; % Metrology Outputs
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
#+end_src
#+begin_src matlab
load('mat/stages.mat', 'nano_hexapod');
G_cart = minreal(G*inv(nano_hexapod.J'));
G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
#+end_src
#+begin_src matlab
G_legs = minreal(inv(nano_hexapod.J)*G);
G_legs.OutputName = {'e1', 'e2', 'e3', 'e4', 'e5', 'e6'};
#+end_src
*** Display TF
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_cart(i, i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart(i, i), freqs, 'Hz'))), 'DisplayName', [G_cart.InputName{i}, ' to ', G_cart.OutputName{i}]);
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend('location', 'southwest');
linkaxes([ax1,ax2],'x');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/plant_G_cart.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:plant_G_cart
#+CAPTION: Transfer Function from forces applied by the nano-hexapod to position error ([[./figs/plant_G_cart.png][png]], [[./figs/plant_G_cart.pdf][pdf]])
[[file:figs/plant_G_cart.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_legs(['e', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_legs(['e', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
*** Obtained Plants for Active Damping
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/nass_active_damping_iff_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:nass_active_damping_iff_plant
#+CAPTION: =G_iff=: IFF Plant ([[./figs/nass_active_damping_iff_plant.png][png]], [[./figs/nass_active_damping_iff_plant.pdf][pdf]])
[[file:figs/nass_active_damping_iff_plant.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/nass_active_damping_dvf_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:nass_active_damping_dvf_plant
#+CAPTION: =G_dvf=: Plant for Direct Velocity Feedback ([[./figs/nass_active_damping_dvf_plant.png][png]], [[./figs/nass_active_damping_dvf_plant.pdf][pdf]])
[[file:figs/nass_active_damping_ine_plant.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/nass_active_damping_inertial_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:nass_active_damping_inertial_plant
#+CAPTION: Inertial Feedback Plant ([[./figs/nass_active_damping_inertial_plant.png][png]], [[./figs/nass_active_damping_inertial_plant.pdf][pdf]])
[[file:figs/nass_active_damping_inertial_plant.png]]
** Tomography Experiment
*** Simulation
We initialize elements for the tomography experiment.
#+begin_src matlab
prepareTomographyExperiment();
#+end_src
We change the simulation stop time.
#+begin_src matlab
load('mat/conf_simulink.mat');
set_param(conf_simulink, 'StopTime', '3');
#+end_src
And we simulate the system.
#+begin_src matlab
sim('nass_model');
#+end_src
Finally, we save the simulation results for further analysis
#+begin_src matlab
save('./active_damping/mat/tomo_exp.mat', 'En', 'Eg', '-append');
#+end_src
*** Results
We load the results of tomography experiments.
#+begin_src matlab
load('./active_damping/mat/tomo_exp.mat', 'En');
t = linspace(0, 3, length(En(:,1)));
#+end_src
#+begin_src matlab :exports none
figure;
hold on;
plot(t, En(:,1), 'DisplayName', '$\epsilon_{x}$')
plot(t, En(:,2), 'DisplayName', '$\epsilon_{y}$')
plot(t, En(:,3), 'DisplayName', '$\epsilon_{z}$')
hold off;
legend();
xlabel('Time [s]'); ylabel('Position Error [m]');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/nass_act_damp_undamped_sim_tomo_trans.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:nass_act_damp_undamped_sim_tomo_trans
#+CAPTION: Position Error during tomography experiment - Translations ([[./figs/nass_act_damp_undamped_sim_tomo_trans.png][png]], [[./figs/nass_act_damp_undamped_sim_tomo_trans.pdf][pdf]])
[[file:figs/nass_act_damp_undamped_sim_tomo_trans.png]]
#+begin_src matlab :exports none
figure;
hold on;
plot(t, En(:,4), 'DisplayName', '$\epsilon_{\theta_x}$')
plot(t, En(:,5), 'DisplayName', '$\epsilon_{\theta_y}$')
plot(t, En(:,6), 'DisplayName', '$\epsilon_{\theta_z}$')
hold off;
xlim([0.5,inf]);
legend();
xlabel('Time [s]'); ylabel('Position Error [rad]');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/nass_act_damp_undamped_sim_tomo_rot.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:nass_act_damp_undamped_sim_tomo_rot
#+CAPTION: Position Error during tomography experiment - Rotations ([[./figs/nass_act_damp_undamped_sim_tomo_rot.png][png]], [[./figs/nass_act_damp_undamped_sim_tomo_rot.pdf][pdf]])
[[file:figs/nass_act_damp_undamped_sim_tomo_rot.png]]
** Verification of the transfer function from nano hexapod to metrology
*** Initialize the Simulation
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
#+begin_src matlab
initializeNanoHexapod('actuator', 'piezo');
initializeSample('mass', 50);
#+end_src
No disturbances.
#+begin_src matlab
initializeDisturbances('enable', false);
#+end_src
We set the references to zero.
#+begin_src matlab
initializeReferences();
#+end_src
And all the controllers are set to 0.
#+begin_src matlab
initializeController('type', 'open-loop');
#+end_src
*** Identification
First, we identify the dynamics of the system using the =linearize= function.
#+begin_src matlab
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nass_model';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1; % Metrology Outputs
%% Run the linearization
G = linearize(mdl, io, options);
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
#+end_src
#+begin_src matlab
load('mat/stages.mat', 'nano_hexapod');
G_cart = minreal(G*inv(nano_hexapod.J'));
G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
#+end_src
#+begin_src matlab
G_legs = minreal(inv(nano_hexapod.J)*G);
G_legs.OutputName = {'e1', 'e2', 'e3', 'e4', 'e5', 'e6'};
#+end_src
# And we save them for further analysis.
# #+begin_src matlab
# save('./hac_lac/mat/undamped_plant.mat', 'G');
# #+end_src
*** Display TF
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_cart(i, i), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart(i, i), freqs, 'Hz'))), 'DisplayName', [G_cart.InputName{i}, ' to ', G_cart.OutputName{i}]);
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
legend();
linkaxes([ax1,ax2],'x');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/plant_G_cart.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:plant_G_cart
#+CAPTION: Transfer Function from forces applied by the nano-hexapod to position error ([[./figs/plant_G_cart.png][png]], [[./figs/plant_G_cart.pdf][pdf]])
[[file:figs/plant_G_cart.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_legs(['e', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_legs(['e', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
*** Obtained Plants for Active Damping
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/nass_active_damping_iff_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:nass_active_damping_iff_plant
#+CAPTION: =G_iff=: IFF Plant ([[./figs/nass_active_damping_iff_plant.png][png]], [[./figs/nass_active_damping_iff_plant.pdf][pdf]])
[[file:figs/nass_active_damping_iff_plant.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/nass_active_damping_dvf_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:nass_active_damping_dvf_plant
#+CAPTION: =G_dvf=: Plant for Direct Velocity Feedback ([[./figs/nass_active_damping_dvf_plant.png][png]], [[./figs/nass_active_damping_dvf_plant.pdf][pdf]])
[[file:figs/nass_active_damping_ine_plant.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
ax1 = subplot(2, 1, 1);
hold on;
for i = 1:6
plot(freqs, abs(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [$\frac{m/s}{N}$]'); set(gca, 'XTickLabel',[]);
ax2 = subplot(2, 1, 2);
hold on;
for i = 1:6
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ine(['Vnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
linkaxes([ax1,ax2],'x');
#+end_src
#+HEADER: :tangle no :exports results :results none :noweb yes
#+begin_src matlab :var filepath="figs/nass_active_damping_inertial_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:nass_active_damping_inertial_plant
#+CAPTION: Inertial Feedback Plant ([[./figs/nass_active_damping_inertial_plant.png][png]], [[./figs/nass_active_damping_inertial_plant.pdf][pdf]])
[[file:figs/nass_active_damping_inertial_plant.png]]