868 lines
27 KiB
Org Mode
868 lines
27 KiB
Org Mode
#+TITLE: Control in the Frame of the Legs applied on the Simscape Model
|
|
:DRAWER:
|
|
#+STARTUP: overview
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
#+PROPERTY: header-args:matlab+ :tangle no
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
* Introduction :ignore:
|
|
In this document, we apply some decentralized control to the NASS and see what level of performance can be obtained.
|
|
|
|
* Decentralized Control
|
|
** Matlab Init :noexport:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('nass_model.slx');
|
|
#+end_src
|
|
|
|
** Control Schematic
|
|
The control architecture is shown in Figure [[fig:decentralized_reference_tracking_L]].
|
|
|
|
The signals are:
|
|
- $\bm{r}_\mathcal{X}$: wanted position of the sample with respect to the granite
|
|
- $\bm{r}_{\mathcal{X}_n}$: wanted position of the sample with respect to the nano-hexapod
|
|
- $\bm{r}_\mathcal{L}$: wanted length of each of the nano-hexapod's legs
|
|
- $\bm{\tau}$: forces applied in each actuator
|
|
- $\bm{\mathcal{L}}$: measured displacement of each leg
|
|
- $\bm{\mathcal{X}}$: measured position of the sample with respect to the granite
|
|
|
|
#+begin_src latex :file decentralized_reference_tracking_L.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={2.0cm}{2.0cm}] (P) {};
|
|
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
|
|
\coordinate[] (outputX) at ($(P.south east)!0.7!(P.north east)$);
|
|
\coordinate[] (outputL) at ($(P.south east)!0.3!(P.north east)$);
|
|
|
|
\node[block, left= of inputF] (K) {$\bm{K}_\mathcal{L}$};
|
|
\node[addb={+}{}{}{}{-}, left= of K] (subr) {};
|
|
\node[block, align=center, left= of subr] (J) {Inverse\\Kinematics};
|
|
|
|
\node[block, align=center, left= of J] (Ex) {Compute\\Pos. Error};
|
|
|
|
% Connections and labels
|
|
\draw[->] (outputL) -- ++(1, 0) node[above left]{$\bm{\mathcal{L}}$};
|
|
\draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, -1) -| (subr.south);
|
|
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_\mathcal{L}$};
|
|
\draw[->] (K.east) -- (inputF) node[above left]{$\bm{\tau}$};
|
|
|
|
\draw[->] (outputX) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{X}}$};
|
|
\draw[->] ($(outputX) + (1.4, 0)$)node[branch]{} -- ++(0, -2.5) -| (Ex.south);
|
|
|
|
\draw[->] (Ex.east) -- (J.west) node[above left]{$\bm{r}_{\mathcal{X}_n}$};
|
|
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{\mathcal{L}}$};
|
|
\draw[<-] (Ex.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decentralized_reference_tracking_L
|
|
#+caption: Decentralized control for reference tracking
|
|
#+RESULTS:
|
|
[[file:figs/decentralized_reference_tracking_L.png]]
|
|
|
|
** Initialize the Simscape Model
|
|
We initialize all the stages with the default parameters.
|
|
#+begin_src matlab
|
|
initializeGround();
|
|
initializeGranite();
|
|
initializeTy();
|
|
initializeRy();
|
|
initializeRz();
|
|
initializeMicroHexapod();
|
|
initializeAxisc();
|
|
initializeMirror();
|
|
#+end_src
|
|
|
|
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
|
|
#+begin_src matlab
|
|
initializeNanoHexapod('actuator', 'piezo');
|
|
initializeSample('mass', 1);
|
|
#+end_src
|
|
|
|
We set the references that corresponds to a tomography experiment.
|
|
#+begin_src matlab
|
|
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
initializeDisturbances();
|
|
#+end_src
|
|
|
|
Open Loop.
|
|
#+begin_src matlab
|
|
initializeController('type', 'ref-track-L');
|
|
Kl = tf(zeros(6));
|
|
#+end_src
|
|
|
|
And we put some gravity.
|
|
#+begin_src matlab
|
|
initializeSimscapeConfiguration('gravity', true);
|
|
#+end_src
|
|
|
|
We log the signals.
|
|
#+begin_src matlab
|
|
initializeLoggingConfiguration('log', 'all');
|
|
#+end_src
|
|
|
|
** Identification of the plant
|
|
Let's identify the transfer function from $\bm{\tau}$ to $\bm{\mathcal{L}}$.
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'nass_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/Controller/Reference-Tracking-L/Sum'], 1, 'openoutput'); io_i = io_i + 1; % Leg length error
|
|
|
|
%% Run the linearization
|
|
G = linearize(mdl, io, 0);
|
|
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
|
G.OutputName = {'El1', 'El2', 'El3', 'El4', 'El5', 'El6'};
|
|
#+end_src
|
|
|
|
** Plant Analysis
|
|
The diagonal and off-diagonal terms of the plant are shown in Figure [[fig:decentralized_control_plant_L]].
|
|
|
|
We can see that:
|
|
- the diagonal terms have similar dynamics
|
|
- the plant is decoupled at low frequency
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Diagonal elements of the Plant');
|
|
|
|
ax2 = subplot(2, 2, 3);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/\\tau_%i$', i, i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'northwest');
|
|
|
|
ax3 = subplot(2, 2, 2);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Off-Diagonal elements of the Plant');
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/decentralized_control_plant_L.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:decentralized_control_plant_L
|
|
#+caption: Transfer Functions from forces applied in each actuator $\tau_i$ to the relative motion of each leg $d\mathcal{L}_i$ ([[./figs/decentralized_control_plant_L.png][png]], [[./figs/decentralized_control_plant_L.pdf][pdf]])
|
|
[[file:figs/decentralized_control_plant_L.png]]
|
|
|
|
** Controller Design
|
|
The controller consists of:
|
|
- A pure integrator
|
|
- An integrator up to little before the crossover
|
|
- A lead around the crossover
|
|
- A low pass filter with a cut-off frequency 3 times the crossover to increase the gain margin
|
|
|
|
The obtained loop gains corresponding to the diagonal elements are shown in Figure [[fig:decentralized_control_L_loop_gain]].
|
|
|
|
#+begin_src matlab
|
|
wc = 2*pi*20;
|
|
h = 1.5;
|
|
|
|
Kl = diag(1./diag(abs(freqresp(G, wc)))) * ...
|
|
wc/s * ... % Pure Integrator
|
|
((s/wc*2 + 1)/(s/wc*2)) * ... % Integrator up to wc/2
|
|
1/h * (1 + s/wc*h)/(1 + s/wc/h) * ... % Lead
|
|
1/(1 + s/3/wc) * ... % Low pass Filter
|
|
1/(1 + s/3/wc);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Kl(i, i)*G(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*G(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/decentralized_control_L_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:decentralized_control_L_loop_gain
|
|
#+caption: Obtained Loop Gain ([[./figs/decentralized_control_L_loop_gain.png][png]], [[./figs/decentralized_control_L_loop_gain.pdf][pdf]])
|
|
[[file:figs/decentralized_control_L_loop_gain.png]]
|
|
|
|
#+begin_src matlab :exports none :tangle no
|
|
isstable(feedback(G*Kl, eye(6), -1))
|
|
#+end_src
|
|
|
|
We add a minus sign to the controller as it is not included in the Simscape model.
|
|
#+begin_src matlab
|
|
Kl = -Kl;
|
|
#+end_src
|
|
|
|
** Simulation
|
|
#+begin_src matlab
|
|
initializeController('type', 'ref-track-L');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
load('mat/conf_simulink.mat');
|
|
set_param(conf_simulink, 'StopTime', '2');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
sim('nass_model');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
decentralized_L = simout;
|
|
save('./mat/tomo_exp_decentalized.mat', 'decentralized_L', '-append');
|
|
#+end_src
|
|
|
|
** Results
|
|
The reference path and the position of the mobile platform are shown in Figure [[fig:decentralized_L_position_errors]].
|
|
|
|
#+begin_src matlab
|
|
load('./mat/experiment_tomography.mat', 'tomo_align_dist');
|
|
load('./mat/tomo_exp_decentalized.mat', 'decentralized_L');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
ax1 = subplot(2, 3, 1);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 1))
|
|
plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 1))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dx [m]');
|
|
|
|
ax2 = subplot(2, 3, 2);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 2))
|
|
plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 2))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dy [m]');
|
|
|
|
ax3 = subplot(2, 3, 3);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 3))
|
|
plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 3))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dz [m]');
|
|
|
|
ax4 = subplot(2, 3, 4);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 4))
|
|
plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 4))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rx [rad]');
|
|
|
|
ax5 = subplot(2, 3, 5);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 5))
|
|
plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 5))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Ry [rad]');
|
|
|
|
ax6 = subplot(2, 3, 6);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 6), 'DisplayName', '$\mu$-Station')
|
|
plot(decentralized_L.Em.En.Time, decentralized_L.Em.En.Data(:, 6), 'DisplayName', 'HAC-DVF')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rz [rad]');
|
|
legend();
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
|
|
xlim([0.5, inf]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/decentralized_L_position_errors.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:decentralized_L_position_errors
|
|
#+caption: Position Errors when using the Decentralized Control Architecture ([[./figs/decentralized_L_position_errors.png][png]], [[./figs/decentralized_L_position_errors.pdf][pdf]])
|
|
[[file:figs/decentralized_L_position_errors.png]]
|
|
|
|
* HAC-LAC (IFF) Decentralized Control
|
|
** Introduction :ignore:
|
|
We here add an Active Damping Loop (Integral Force Feedback) prior to using the Decentralized control architecture using $\bm{\mathcal{L}}$.
|
|
|
|
** Control Schematic
|
|
The control architecture is shown in Figure [[fig:decentralized_reference_tracking_L]].
|
|
|
|
The signals are:
|
|
- $\bm{r}_\mathcal{X}$: wanted position of the sample with respect to the granite
|
|
- $\bm{r}_{\mathcal{X}_n}$: wanted position of the sample with respect to the nano-hexapod
|
|
- $\bm{r}_\mathcal{L}$: wanted length of each of the nano-hexapod's legs
|
|
- $\bm{\tau}$: forces applied in each actuator
|
|
- $\bm{\mathcal{L}}$: measured displacement of each leg
|
|
- $\bm{\mathcal{X}}$: measured position of the sample with respect to the granite
|
|
|
|
#+begin_src latex :file decentralized_reference_tracking_iff_L.pdf
|
|
\begin{tikzpicture}
|
|
% Blocs
|
|
\node[block={3.0cm}{3.0cm}] (P) {};
|
|
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
|
|
\coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$);
|
|
\coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
|
|
\coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$);
|
|
|
|
\node[block, above= of P] (Kiff) {$\bm{K}_\text{IFF}$};
|
|
\node[addb, left= of inputF] (addF) {};
|
|
\node[block, left= of addF] (K) {$\bm{K}_\mathcal{L}$};
|
|
\node[addb={+}{}{}{}{-}, left= of K] (subr) {};
|
|
\node[block, align=center, left= of subr] (J) {Inverse\\Kinematics};
|
|
|
|
\node[block, align=center, left= of J] (Ex) {Compute\\Pos. Error};
|
|
|
|
% Connections and labels
|
|
\draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
|
|
\draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
|
|
\draw[->] (Kiff.west) -| (addF.north);
|
|
\draw[->] (addF.east) -- (inputF) node[above left]{$\bm{\tau}$};
|
|
|
|
\draw[->] (outputL) -- ++(1, 0) node[above left]{$\bm{\mathcal{L}}$};
|
|
\draw[->] ($(outputL) + (0.6, 0)$)node[branch]{} -- ++(0, -1) -| (subr.south);
|
|
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_\mathcal{L}$};
|
|
\draw[->] (K.east) -- (addF.west);
|
|
|
|
\draw[->] (outputX) -- ++(1.8, 0) node[above left]{$\bm{\mathcal{X}}$};
|
|
\draw[->] ($(outputX) + (1.4, 0)$)node[branch]{} -- ++(0, -2.5) -| (Ex.south);
|
|
|
|
\draw[->] (Ex.east) -- (J.west) node[above left]{$\bm{r}_{\mathcal{X}_n}$};
|
|
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{\mathcal{L}}$};
|
|
\draw[<-] (Ex.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:decentralized_reference_tracking_L
|
|
#+caption: Decentralized control for reference tracking
|
|
#+RESULTS:
|
|
[[file:figs/decentralized_reference_tracking_L.png]]
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
open('nass_model.slx');
|
|
#+end_src
|
|
|
|
** Initialize the Simscape Model
|
|
We initialize all the stages with the default parameters.
|
|
#+begin_src matlab
|
|
initializeGround();
|
|
initializeGranite();
|
|
initializeTy();
|
|
initializeRy();
|
|
initializeRz();
|
|
initializeMicroHexapod();
|
|
initializeAxisc();
|
|
initializeMirror();
|
|
#+end_src
|
|
|
|
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
|
|
#+begin_src matlab
|
|
initializeNanoHexapod('actuator', 'piezo');
|
|
initializeSample('mass', 1);
|
|
#+end_src
|
|
|
|
We set the references that corresponds to a tomography experiment.
|
|
#+begin_src matlab
|
|
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
initializeDisturbances();
|
|
#+end_src
|
|
|
|
Open Loop.
|
|
#+begin_src matlab
|
|
initializeController('type', 'ref-track-L');
|
|
Kl = tf(zeros(6));
|
|
#+end_src
|
|
|
|
And we put some gravity.
|
|
#+begin_src matlab
|
|
initializeSimscapeConfiguration('gravity', true);
|
|
#+end_src
|
|
|
|
We log the signals.
|
|
#+begin_src matlab
|
|
initializeLoggingConfiguration('log', 'all');
|
|
#+end_src
|
|
|
|
** Initialization
|
|
#+begin_src matlab
|
|
initializeController('type', 'ref-track-iff-L');
|
|
K_iff = tf(zeros(6));
|
|
Kl = tf(zeros(6));
|
|
#+end_src
|
|
|
|
** Identification for IFF
|
|
#+begin_src matlab
|
|
%% Name of the Simulink File
|
|
mdl = 'nass_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1; % Force Sensors
|
|
|
|
%% Run the linearization
|
|
G_iff = linearize(mdl, io, 0);
|
|
G_iff.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
|
G_iff.OutputName = {'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'};
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(G_iff(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$\\tau_{m_%i}/\\tau_%i$', i, i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'southwest');
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
** Integral Force Feedback Controller
|
|
#+begin_src matlab
|
|
w0 = 2*pi*50;
|
|
K_iff = -5000/s * (s/w0)/(1 + s/w0) * eye(6);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(K_iff(i,i)*G_iff(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(K_iff(i,i)*G_iff(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$L_{\\tau,%i}$', i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'southwest');
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
K_iff = -K_iff;
|
|
#+end_src
|
|
|
|
** Identification of the damped plant
|
|
#+begin_src matlab
|
|
%% Name of the Simulink DehaezeFile
|
|
mdl = 'nass_model';
|
|
|
|
%% Input/Output definition
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs
|
|
io(io_i) = linio([mdl, '/Controller/Reference-Tracking-IFF-L/Sum'], 1, 'openoutput'); io_i = io_i + 1; % Leg length error
|
|
|
|
%% Run the linearization
|
|
Gd = linearize(mdl, io, 0);
|
|
Gd.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
|
Gd.OutputName = {'El1', 'El2', 'El3', 'El4', 'El5', 'El6'};
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(G( i, i), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(Gd(i, i), freqs, 'Hz'))), '--');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Diagonal elements of the Plant');
|
|
|
|
ax2 = subplot(2, 2, 3);
|
|
hold on;
|
|
for i = 1:6
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G( i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/\\tau_%i$', i, i));
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(i, i), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'northeast');
|
|
|
|
ax3 = subplot(2, 2, 2);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
plot(freqs, abs(squeeze(freqresp(Gd(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(Gd(1, 1), freqs, 'Hz'))), '--');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Off-Diagonal elements of the Plant');
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Gd(1, 1), freqs, 'Hz'))), '--');
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
#+end_src
|
|
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(1, 4, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 2, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(G(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Diagonal elements of the Plant');
|
|
|
|
ax2 = subplot(2, 2, 3);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/\\tau_%i$', i, i));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
legend('location', 'northwest');
|
|
|
|
ax3 = subplot(2, 2, 2);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, abs(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, abs(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
|
title('Off-Diagonal elements of the Plant');
|
|
|
|
ax4 = subplot(2, 2, 4);
|
|
hold on;
|
|
for i = 1:5
|
|
for j = i+1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
|
end
|
|
end
|
|
set(gca,'ColorOrderIndex',1);
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(G(1, 1), freqs, 'Hz'))));
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4],'x');
|
|
#+end_src
|
|
|
|
** Controller Design
|
|
#+begin_src matlab
|
|
wc = 2*pi*300;
|
|
h = 3;
|
|
|
|
Kl = diag(1./diag(abs(freqresp(Gd, wc)))) * ...
|
|
((s/(2*pi*20) + 1)/(s/(2*pi*20))) * ... % Pure Integrator
|
|
((s/(2*pi*50) + 1)/(s/(2*pi*50))) * ... % Integrator up to wc/2
|
|
1/h * (1 + s/wc*h)/(1 + s/wc/h) * ...
|
|
1/(1 + s/(2*wc)) * ...
|
|
1/(1 + s/(3*wc));
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, abs(squeeze(freqresp(Kl(i, i)*Gd(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
hold on;
|
|
for i = 1:6
|
|
plot(freqs, 180/pi*angle(squeeze(freqresp(Kl(i, i)*Gd(i, i), freqs, 'Hz'))));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
|
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
|
ylim([-180, 180]);
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
isstable(feedback(Gd*Kl, eye(6), -1))
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
Kl = -Kl;
|
|
#+end_src
|
|
|
|
|
|
** Simulation
|
|
#+begin_src matlab
|
|
initializeController('type', 'ref-track-iff-L');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
load('mat/conf_simulink.mat');
|
|
set_param(conf_simulink, 'StopTime', '2');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
sim('nass_model');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
decentralized_iff_L = simout;
|
|
save('./mat/tomo_exp_decentalized.mat', 'decentralized_iff_L', '-append');
|
|
#+end_src
|
|
|
|
** Results
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
ax1 = subplot(2, 3, 1);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 1))
|
|
plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 1))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dx [m]');
|
|
|
|
ax2 = subplot(2, 3, 2);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 2))
|
|
plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 2))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dy [m]');
|
|
|
|
ax3 = subplot(2, 3, 3);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 3))
|
|
plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 3))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Dz [m]');
|
|
|
|
ax4 = subplot(2, 3, 4);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 4))
|
|
plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 4))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rx [rad]');
|
|
|
|
ax5 = subplot(2, 3, 5);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 5))
|
|
plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 5))
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Ry [rad]');
|
|
|
|
ax6 = subplot(2, 3, 6);
|
|
hold on;
|
|
plot(tomo_align_dist.Em.En.Time, tomo_align_dist.Em.En.Data(:, 6), 'DisplayName', '$\mu$-Station')
|
|
plot(decentralized_iff_L.Em.En.Time, decentralized_iff_L.Em.En.Data(:, 6), 'DisplayName', 'IFF + Decentralized')
|
|
hold off;
|
|
xlabel('Time [s]');
|
|
ylabel('Rz [rad]');
|
|
legend();
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
|
|
xlim([0.5, inf]);
|
|
#+end_src
|
|
* Conclusion
|