1232 lines
50 KiB
Org Mode
1232 lines
50 KiB
Org Mode
#+TITLE: Determination of the optimal nano-hexapod's stiffness for reducing the effect of disturbances
|
|
:DRAWER:
|
|
#+STARTUP: overview
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
#+PROPERTY: header-args:matlab+ :tangle ../matlab/optimal_stiffness.m
|
|
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
|
|
#+PROPERTY: header-args:shell :eval no-export
|
|
|
|
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}")
|
|
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
|
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
|
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
|
#+PROPERTY: header-args:latex+ :results file raw replace
|
|
#+PROPERTY: header-args:latex+ :buffer no
|
|
#+PROPERTY: header-args:latex+ :eval no-export
|
|
#+PROPERTY: header-args:latex+ :exports results
|
|
#+PROPERTY: header-args:latex+ :mkdirp yes
|
|
#+PROPERTY: header-args:latex+ :output-dir figs
|
|
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
|
:END:
|
|
|
|
* Introduction :ignore:
|
|
In this document is studied how the stiffness of the nano-hexapod will impact the effect of disturbances on the position error of the sample.
|
|
|
|
It is divided in the following sections:
|
|
- Section [[sec:psd_disturbances]]: the disturbances are listed and their Power Spectral Densities (PSD) are shown
|
|
- Section [[sec:effect_disturbances]]: the transfer functions from disturbances to the position error of the sample are computed for a wide range of nano-hexapod stiffnesses
|
|
- Section [[sec:granite_stiffness]]:
|
|
- Section [[sec:open_loop_budget_error]]: from both the PSD of the disturbances and the transfer function from disturbances to sample's position errors, we compute the resulting PSD and Cumulative Amplitude Spectrum (CAS)
|
|
- Section [[sec:closed_loop_budget_error]]: from a simplistic model is computed the required control bandwidth to reduce the position error to acceptable values
|
|
|
|
* Disturbances
|
|
<<sec:psd_disturbances>>
|
|
** Introduction :ignore:
|
|
The main disturbances considered here are:
|
|
- $D_w$: Ground displacement in the $x$, $y$ and $z$ directions
|
|
- $F_{ty}$: Forces applied by the Translation stage in the $x$ and $z$ directions
|
|
- $F_{rz}$: Forces applied by the Spindle in the $z$ direction
|
|
- $F_d$: Direct forces applied at the center of mass of the Payload
|
|
|
|
The level of these disturbances has been identified form experiments which are detailed in [[file:disturbances.org][this]] document.
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
** Plots :ignore:
|
|
The measured Amplitude Spectral Densities (ASD) of these forces are shown in Figures [[fig:opt_stiff_dist_gm]] and [[fig:opt_stiff_dist_fty_frz]].
|
|
|
|
In this study, the expected frequency content of the direct forces applied to the payload is not considered.
|
|
|
|
#+begin_src matlab :exports none
|
|
load('./mat/dist_psd.mat', 'dist_f');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(dist_f.f, sqrt(dist_f.psd_gm));
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('$\Gamma_{D_w}$ $\left[\frac{m}{\sqrt{Hz}}\right]$')
|
|
xlim([1, 500]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_dist_gm.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_dist_gm
|
|
#+caption: Amplitude Spectral Density of the Ground Displacement ([[./figs/opt_stiff_dist_gm.png][png]], [[./figs/opt_stiff_dist_gm.pdf][pdf]])
|
|
[[file:figs/opt_stiff_dist_gm.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(dist_f.f, sqrt(dist_f.psd_ty), 'DisplayName', '$F_{T_y}$');
|
|
plot(dist_f.f, sqrt(dist_f.psd_rz), 'DisplayName', '$F_{R_z}$');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{F}{\sqrt{Hz}}\right]$')
|
|
legend('Location', 'southwest');
|
|
xlim([1, 500]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_dist_fty_frz.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_dist_fty_frz
|
|
#+caption: Amplitude Spectral Density of the "parasitic" forces comming from the Translation stage and the spindle ([[./figs/opt_stiff_dist_fty_frz.png][png]], [[./figs/opt_stiff_dist_fty_frz.pdf][pdf]])
|
|
[[file:figs/opt_stiff_dist_fty_frz.png]]
|
|
|
|
* Effect of disturbances on the position error
|
|
<<sec:effect_disturbances>>
|
|
** Introduction :ignore:
|
|
In this section, we use the Simscape model to identify the transfer function from disturbances to the position error of the sample.
|
|
We do that for a wide range of nano-hexapod stiffnesses and we compare the obtained results.
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
load('mat/conf_simulink.mat');
|
|
open('nass_model.slx')
|
|
#+end_src
|
|
|
|
** Initialization
|
|
We initialize all the stages with the default parameters.
|
|
#+begin_src matlab
|
|
initializeGround();
|
|
initializeGranite();
|
|
initializeTy();
|
|
initializeRy();
|
|
initializeRz();
|
|
initializeMicroHexapod();
|
|
initializeAxisc();
|
|
initializeMirror();
|
|
#+end_src
|
|
|
|
We use a sample mass of 10kg.
|
|
#+begin_src matlab
|
|
initializeSample('mass', 10);
|
|
#+end_src
|
|
|
|
We include gravity, and we use no controller.
|
|
#+begin_src matlab
|
|
initializeSimscapeConfiguration('gravity', true);
|
|
initializeController();
|
|
initializeDisturbances('enable', false);
|
|
initializeLoggingConfiguration('log', 'none');
|
|
#+end_src
|
|
|
|
** Identification
|
|
The considered inputs are:
|
|
- =Dwx=: Ground displacement in the $x$ direction
|
|
- =Dwy=: Ground displacement in the $y$ direction
|
|
- =Dwz=: Ground displacement in the $z$ direction
|
|
- =Fty_x=: Forces applied by the Translation stage in the $x$ direction
|
|
- =Fty_z=: Forces applied by the Translation stage in the $z$ direction
|
|
- =Frz_z=: Forces applied by the Spindle in the $z$ direction
|
|
- =Fd=: Direct forces applied at the center of mass of the Payload
|
|
|
|
The outputs are =Ex=, =Ey=, =Ez=, =Erx=, =Ery=, =Erz= which are the 3 positions and 3 orientations errors of the sample.
|
|
|
|
We initialize the set of the nano-hexapod stiffnesses, and for each of them, we identify the dynamics from defined inputs to defined outputs.
|
|
#+begin_src matlab
|
|
Ks = logspace(3,9,7); % [N/m]
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
%% Name of the Simulink File
|
|
mdl = 'nass_model';
|
|
|
|
%% Micro-Hexapod
|
|
clear io; io_i = 1;
|
|
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwx'); io_i = io_i + 1; % X Ground motion
|
|
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwy'); io_i = io_i + 1; % Y Ground motion
|
|
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwz'); io_i = io_i + 1; % Z Ground motion
|
|
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fty_x'); io_i = io_i + 1; % Parasitic force Ty - X
|
|
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fty_z'); io_i = io_i + 1; % Parasitic force Ty - Z
|
|
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Frz_z'); io_i = io_i + 1; % Parasitic force Rz - Z
|
|
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fd'); io_i = io_i + 1; % Direct forces
|
|
|
|
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'openoutput', [], 'En'); io_i = io_i + 1; % Position Error
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
Gd = {zeros(length(Ks), 1)};
|
|
|
|
for i = 1:length(Ks)
|
|
initializeNanoHexapod('k', Ks(i));
|
|
|
|
% Run the linearization
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
|
|
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
|
Gd(i) = {minreal(G)};
|
|
end
|
|
#+end_src
|
|
|
|
** Sensitivity to Stages vibration (Filtering)
|
|
The sensitivity the stage vibrations are displayed:
|
|
- Figure [[fig:opt_stiff_sensitivity_Frz]]: sensitivity to vertical spindle vibrations
|
|
- Figure [[fig:opt_stiff_sensitivity_Fty_z]]: sensitivity to vertical translation stage vibrations
|
|
- Figure [[fig:opt_stiff_sensitivity_Fty_x]]: sensitivity to horizontal (x) translation stage vibrations
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Effect of $F_{rz}$ on $E_z$ [m/N]'); xlabel('Frequency [Hz]');
|
|
legend('location', 'southwest');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_sensitivity_Frz.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_sensitivity_Frz
|
|
#+caption: Sensitivity to Spindle vertical motion error ($F_{rz}$) to the vertical error position of the sample ($E_z$) ([[./figs/opt_stiff_sensitivity_Frz.png][png]], [[./figs/opt_stiff_sensitivity_Frz.pdf][pdf]])
|
|
[[file:figs/opt_stiff_sensitivity_Frz.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Fty_z'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Effect of $F_{ty}$ on $E_z$ [m/N]'); xlabel('Frequency [Hz]');
|
|
legend('location', 'southwest');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_sensitivity_Fty_z.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_sensitivity_Fty_z
|
|
#+caption: Sensitivity to Translation stage vertical motion error ($F_{ty,z}$) to the vertical error position of the sample ($E_z$) ([[./figs/opt_stiff_sensitivity_Fty_z.png][png]], [[./figs/opt_stiff_sensitivity_Fty_z.pdf][pdf]])
|
|
[[file:figs/opt_stiff_sensitivity_Fty_z.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ex', 'Fty_x'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Effect of $F_{ty}$ on $E_x$ [m/N]'); xlabel('Frequency [Hz]');
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_sensitivity_Fty_x.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_sensitivity_Fty_x
|
|
#+caption: Sensitivity to Translation stage $x$ motion error ($F_{ty,x}$) to the error position of the sample in the $x$ direction ($E_x$) ([[./figs/opt_stiff_sensitivity_Fty_x.png][png]], [[./figs/opt_stiff_sensitivity_Fty_x.pdf][pdf]])
|
|
[[file:figs/opt_stiff_sensitivity_Fty_x.png]]
|
|
|
|
** Effect of Ground motion (Transmissibility).
|
|
The effect of Ground motion on the position error of the sample is shown in Figure [[fig:opt_stiff_sensitivity_Dw]].
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(1, 2, 1);
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ey', 'Dwy'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('$E_y/D_{wy}$ [m/m]'); xlabel('Frequency [Hz]');
|
|
|
|
ax2 = subplot(1, 2, 2);
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('$E_z/D_{wz}$ [m/m]'); xlabel('Frequency [Hz]');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_sensitivity_Dw.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_sensitivity_Dw
|
|
#+caption: Sensitivity to Ground motion ($D_{w}$) to the position error of the sample ($E_y$ and $E_z$) ([[./figs/opt_stiff_sensitivity_Dw.png][png]], [[./figs/opt_stiff_sensitivity_Dw.pdf][pdf]])
|
|
[[file:figs/opt_stiff_sensitivity_Dw.png]]
|
|
|
|
** Direct Forces (Compliance).
|
|
The effect of direct forces/torques applied on the sample (cable forces for instance) on the position error of the sample is shown in Figure [[fig:opt_stiff_sensitivity_Fd]].
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(1, 2, 1);
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ery', 'Mdy'), freqs, 'Hz'))), '-');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('$E_{ry}/M_{d,y}\ \left[\frac{rad}{N m}\right]$'); xlabel('Frequency [Hz]');
|
|
|
|
ax2 = subplot(1, 2, 2);
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Fdz'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('$E_{z}/F_{d,z}$ [m/N]'); xlabel('Frequency [Hz]');
|
|
legend('location', 'northeast');
|
|
|
|
linkaxes([ax1 ax2], 'xy')
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_sensitivity_Fd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_sensitivity_Fd
|
|
#+caption: Sensitivity to Direct forces and torques applied to the sample ($F_d$, $M_d$) to the position error of the sample ([[./figs/opt_stiff_sensitivity_Fd.png][png]], [[./figs/opt_stiff_sensitivity_Fd.pdf][pdf]])
|
|
[[file:figs/opt_stiff_sensitivity_Fd.png]]
|
|
|
|
** Save :noexport:
|
|
#+begin_src matlab
|
|
save('./mat/opt_stiffness_disturbances.mat', 'Ks', 'Gd')
|
|
#+end_src
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
Reducing the nano-hexapod stiffness generally lowers the sensitivity to stages vibration but increases the sensitivity to ground motion and direct forces.
|
|
|
|
In order to conclude on the optimal stiffness that will yield the smallest sample vibration, one has to include the level of disturbances. This is done in Section [[sec:open_loop_budget_error]].
|
|
#+end_important
|
|
|
|
* Effect of granite stiffness
|
|
<<sec:granite_stiffness>>
|
|
** Introduction :ignore:
|
|
In this section, we wish to see if a soft granite suspension could help in reducing the effect of disturbances on the position error of the sample.
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
** Analytical Analysis
|
|
*** Simple mass-spring-damper model
|
|
Let's consider the system shown in Figure [[fig:2dof_system_granite_stiffness]] consisting of two stacked mass-spring-damper systems.
|
|
The bottom one represents the granite, and the top one all the positioning stages.
|
|
We want the smallest stage "deformation" $d = x^\prime - x$ due to ground motion $w$.
|
|
|
|
#+begin_src latex :file 2dof_system_granite_stiffness.pdf
|
|
\begin{tikzpicture}
|
|
% ====================
|
|
% Parameters
|
|
% ====================
|
|
\def\massw{2.2} % Width of the masses
|
|
\def\massh{0.8} % Height of the masses
|
|
\def\spaceh{1.2} % Height of the springs/dampers
|
|
\def\dispw{0.3} % Width of the dashed line for the displacement
|
|
\def\disph{0.5} % Height of the arrow for the displacements
|
|
\def\bracs{0.05} % Brace spacing vertically
|
|
\def\brach{-10pt} % Brace shift horizontaly
|
|
% ====================
|
|
|
|
|
|
% ====================
|
|
% Ground
|
|
% ====================
|
|
\draw (-0.5*\massw, 0) -- (0.5*\massw, 0);
|
|
\draw[dashed] (0.5*\massw, 0) -- ++(\dispw, 0) coordinate(dlow);
|
|
\draw[->] (0.5*\massw+0.5*\dispw, 0) -- ++(0, \disph) node[right]{$w$};
|
|
|
|
% ====================
|
|
% Micro Station
|
|
% ====================
|
|
\begin{scope}[shift={(0, 0)}]
|
|
% Mass
|
|
\draw[fill=white] (-0.5*\massw, \spaceh) rectangle (0.5*\massw, \spaceh+\massh) node[pos=0.5]{$m$};
|
|
|
|
% Spring, Damper, and Actuator
|
|
\draw[spring] (-0.3*\massw, 0) -- (-0.3*\massw, \spaceh) node[midway, left=0.1]{$k$};
|
|
\draw[damper] ( 0.3*\massw, 0) -- ( 0.3*\massw, \spaceh) node[midway, left=0.2]{$c$};
|
|
|
|
% Displacements
|
|
\draw[dashed] (0.5*\massw, \spaceh) -- ++(\dispw, 0);
|
|
\draw[->] (0.5*\massw+0.5*\dispw, \spaceh) -- ++(0, \disph) node[right]{$x$};
|
|
|
|
% Legend
|
|
\draw[decorate, decoration={brace, amplitude=8pt}, xshift=\brach] %
|
|
(-0.5*\massw, \bracs) -- (-0.5*\massw, \spaceh+\massh-\bracs) %
|
|
node[midway,rotate=90,anchor=south,yshift=10pt,align=center]{Granite};
|
|
\end{scope}
|
|
|
|
% ====================
|
|
% Nano Station
|
|
% ====================
|
|
\begin{scope}[shift={(0, \spaceh+\massh)}]
|
|
% Mass
|
|
\draw[fill=white] (-0.5*\massw, \spaceh) rectangle (0.5*\massw, \spaceh+\massh) node[pos=0.5]{$m^\prime$};
|
|
|
|
% Spring, Damper, and Actuator
|
|
\draw[spring] (-0.3*\massw, 0) -- (-0.3*\massw, \spaceh) node[midway, left=0.1]{$k^\prime$};
|
|
\draw[damper] ( 0.3*\massw, 0) -- ( 0.3*\massw, \spaceh) node[midway, left=0.2]{$c^\prime$};
|
|
|
|
% Displacements
|
|
\draw[dashed] (0.5*\massw, \spaceh) -- ++(\dispw, 0) coordinate(dhigh);
|
|
\draw[->] (0.5*\massw+0.5*\dispw, \spaceh) -- ++(0, \disph) node[right]{$x^\prime$};
|
|
|
|
% Legend
|
|
\draw[decorate, decoration={brace, amplitude=8pt}, xshift=\brach] %
|
|
(-0.5*\massw, \bracs) -- (-0.5*\massw, \spaceh+\massh-\bracs) %
|
|
node[midway,rotate=90,anchor=south,yshift=10pt,align=center]{Positioning\\Stages};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:2dof_system_granite_stiffness
|
|
#+caption: Mass Spring Damper system consisting of a granite and a positioning stage
|
|
#+RESULTS:
|
|
[[file:figs/2dof_system_granite_stiffness.png]]
|
|
|
|
If we write the equation of motion of the system in Figure [[fig:2dof_system_granite_stiffness]], we obtain:
|
|
\begin{align}
|
|
m^\prime s^2 x^\prime &= (c^\prime s + k^\prime) (x - x^\prime) \\
|
|
ms^2 x &= (c^\prime s + k^\prime) (x^\prime - x) + (cs + k) (w - x)
|
|
\end{align}
|
|
|
|
If we note $d = x^\prime - x$, we obtain:
|
|
\begin{equation}
|
|
\frac{d}{w} = \frac{-m^\prime s^2 (cs + k)}{ (m^\prime s^2 + c^\prime s + k^\prime) (ms^2 + cs + k) + m^\prime s^2(c^\prime s + k^\prime)}
|
|
\end{equation}
|
|
|
|
*** General Case
|
|
Let's now considering a general positioning stage defined by:
|
|
- $G^\prime(s) = \frac{F}{x}$: its mechanical "impedance"
|
|
- $D^\prime(s) = \frac{d}{x}$: its "deformation" transfer function
|
|
|
|
#+begin_src latex :file general_system_granite_stiffness.pdf
|
|
\begin{tikzpicture}
|
|
\def\massw{2.2} % Width of the masses
|
|
\def\massh{0.8} % Height of the masses
|
|
\def\spaceh{1.2} % Height of the springs/dampers
|
|
\def\dispw{0.3} % Width of the dashed line for the displacement
|
|
\def\disph{0.5} % Height of the arrow for the displacements
|
|
\def\bracs{0.05} % Brace spacing vertically
|
|
\def\brach{-10pt} % Brace shift horizontaly
|
|
|
|
% Mass
|
|
\draw[fill=white] (-0.5*\massw, \spaceh) rectangle node[left=6pt]{$m$} (0.5*\massw, \spaceh+\massh);
|
|
|
|
% Spring, Damper, and Actuator
|
|
\draw[spring] (-0.3*\massw, 0) -- (-0.3*\massw, \spaceh) node[midway, left=0.1]{$k$};
|
|
\draw[damper] ( 0.3*\massw, 0) -- ( 0.3*\massw, \spaceh) node[midway, left=0.2]{$c$};
|
|
|
|
% Ground
|
|
\draw (-0.5*\massw, 0) -- (0.5*\massw, 0);
|
|
% Groud Motion
|
|
\draw[dashed] (0.5*\massw, 0) -- ++(\dispw, 0);
|
|
\draw[->] (0.5*\massw+0.5*\dispw, 0) -- ++(0, \disph) node[right]{$w$};
|
|
|
|
% Displacements
|
|
\draw[dashed] (0.5*\massw, \spaceh+\massh) -- ++(2*\dispw, 0) coordinate(dhigh);
|
|
\draw[->] (0.5*\massw+1.5*\dispw, \spaceh+\massh) -- ++(0, \disph) node[right]{$x$};
|
|
|
|
% Legend
|
|
\draw[decorate, decoration={brace, amplitude=8pt}, xshift=\brach] %
|
|
(-0.5*\massw, \bracs) -- (-0.5*\massw, \spaceh+\massh-\bracs) %
|
|
node[midway,rotate=90,anchor=south,yshift=10pt,align=center]{Granite};
|
|
|
|
\begin{scope}[shift={(0, \spaceh+\massh)}]
|
|
\node[piezo={2.2}{1.5}{6}, anchor=south] (piezo) at (0, 0){};
|
|
\draw[->] (0,0)node[branch]{} -- ++(0, -0.6)node[above right]{$F$}
|
|
|
|
\draw[<->] (1.1+0.5*\dispw,0) -- node[midway, right]{$d$} ++(0,1.5);
|
|
|
|
\draw[decorate, decoration={brace, amplitude=8pt}, xshift=\brach] %
|
|
($(piezo.south west) + (-10pt, 0)$) -- ($(piezo.north west) + (-10pt, 0)$) %
|
|
node[midway,rotate=90,anchor=south,yshift=10pt,align=center]{Positioning\\Stages};
|
|
\end{scope}
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:general_system_granite_stiffness
|
|
#+caption: Mass Spring Damper representing the granite and a general representation of positioning stages
|
|
#+RESULTS:
|
|
[[file:figs/general_system_granite_stiffness.png]]
|
|
|
|
The equation of motion are:
|
|
\begin{align}
|
|
ms^2 x &= (cs + k) (x - w) - F \\
|
|
F &= G^\prime(s) x \\
|
|
d &= D^\prime(s) x
|
|
\end{align}
|
|
where:
|
|
- $F$ is the force applied by the position stages on the granite mass
|
|
|
|
#+begin_important
|
|
We can express $d$ as a function of $w$:
|
|
\begin{equation}
|
|
\frac{d}{w} = \frac{D^\prime(s) (cs + k)}{ms^2 + cs + k + G^\prime(s)}
|
|
\end{equation}
|
|
|
|
This is the transfer function that we would like to minimize.
|
|
#+end_important
|
|
|
|
Let's verify this formula for a simple mass/spring/damper positioning stage.
|
|
In that case, we have:
|
|
\begin{align*}
|
|
D^\prime(s) &= \frac{d}{x} = \frac{- m^\prime s^2}{m^\prime s^2 + c^\prime s + k^\prime} \\
|
|
G^\prime(s) &= \frac{F}{x} = \frac{m^\prime s^2(c^\prime s + k)}{m^\prime s^2 + c^\prime s + k^\prime}
|
|
\end{align*}
|
|
|
|
And finally:
|
|
\begin{equation}
|
|
\frac{d}{w} = \frac{-m^\prime s^2 (cs + k)}{ (m^\prime s^2 + c^\prime s + k^\prime) (ms^2 + cs + k) + m^\prime s^2(c^\prime s + k^\prime)}
|
|
\end{equation}
|
|
which is the same as the previously derived equation.
|
|
|
|
** Soft Granite
|
|
Let's initialize a soft granite and see how the sensitivity to disturbances will change.
|
|
#+begin_src matlab
|
|
initializeGranite('K', 5e5*ones(3,1), 'C', 5e3*ones(3,1));
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
Gdr = {zeros(length(Ks), 1)};
|
|
|
|
for i = 1:length(Ks)
|
|
initializeNanoHexapod('k', Ks(i));
|
|
|
|
G = linearize(mdl, io);
|
|
G.InputName = {'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
|
|
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
|
Gdr(i) = {minreal(G)};
|
|
end
|
|
#+end_src
|
|
|
|
** Effect of the Granite transfer function
|
|
From Figure [[fig:opt_stiff_soft_granite_Dw]], we can see that having a "soft" granite suspension greatly lowers the sensitivity to ground motion.
|
|
The sensitivity is indeed lowered starting from the resonance of the granite on its soft suspension (few Hz here).
|
|
|
|
From Figures [[fig:opt_stiff_soft_granite_Frz]] and [[fig:opt_stiff_soft_granite_Fd]], we see that the change of granite suspension does not change a lot the sensitivity to both direct forces and stage vibrations.
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(Gdr{i}('Ez', 'Dwz'), freqs, 'Hz'))), '--', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
|
legend('location', 'southwest');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_soft_granite_Dw.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_soft_granite_Dw
|
|
#+caption: Change of sensibility to Ground motion when using a stiff Granite (solid curves) and a soft Granite (dashed curves) ([[./figs/opt_stiff_soft_granite_Dw.png][png]], [[./figs/opt_stiff_soft_granite_Dw.pdf][pdf]])
|
|
[[file:figs/opt_stiff_soft_granite_Dw.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(Gdr{i}('Ez', 'Frz_z'), freqs, 'Hz'))), '--', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
|
legend('location', 'southwest');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_soft_granite_Frz.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_soft_granite_Frz
|
|
#+caption: Change of sensibility to Spindle vibrations when using a stiff Granite (solid curves) and a soft Granite (dashed curves) ([[./figs/opt_stiff_soft_granite_Frz.png][png]], [[./figs/opt_stiff_soft_granite_Frz.pdf][pdf]])
|
|
[[file:figs/opt_stiff_soft_granite_Frz.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = logspace(0, 3, 1000);
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(Gd{i}( 'Ez', 'Fdz'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
set(gca,'ColorOrderIndex',i);
|
|
plot(freqs, abs(squeeze(freqresp(Gdr{i}('Ez', 'Fdz'), freqs, 'Hz'))), '--', ...
|
|
'HandleVisibility', 'off');
|
|
end
|
|
hold off;
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
ylabel('$E_{z}/F_{d,z}$ [m/N]'); xlabel('Frequency [Hz]');
|
|
|
|
legend('location', 'northeast');
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_soft_granite_Fd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_soft_granite_Fd
|
|
#+caption: Change of sensibility to direct forces when using a stiff Granite (solid curves) and a soft Granite (dashed curves) ([[./figs/opt_stiff_soft_granite_Fd.png][png]], [[./figs/opt_stiff_soft_granite_Fd.pdf][pdf]])
|
|
[[file:figs/opt_stiff_soft_granite_Fd.png]]
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
Having a soft granite suspension greatly decreases the sensitivity the ground motion.
|
|
Also, it does not affect much the sensitivity to stage vibration and direct forces.
|
|
Thus the level of sample vibration can be reduced by using a soft granite suspension if it is found that ground motion is the limiting factor.
|
|
#+end_important
|
|
|
|
* Open Loop Budget Error
|
|
<<sec:open_loop_budget_error>>
|
|
** Introduction :ignore:
|
|
Now that the frequency content of disturbances have been estimated (Section [[sec:psd_disturbances]]) and the transfer functions from disturbances to the position error of the sample have been identified (Section [[sec:effect_disturbances]]), we can compute the level of sample vibration due to the disturbances.
|
|
|
|
We then can conclude and the nano-hexapod stiffness that will lower the sample position error.
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
** Noise Budgeting - Theory
|
|
Let's consider Figure [[fig:psd_change_tf]] there $G_d(s)$ is the transfer function from a signal $d$ (the perturbation) to a signal $y$ (the sample's position error).
|
|
|
|
#+begin_src latex :file psd_change_tf.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (G) at (0, 0) {$G_d(s)$};
|
|
|
|
\draw[<-] (G.west) -- ++(-1, 0) node[above right]{$d$};
|
|
\draw[->] (G.east) -- ++( 1, 0) node[above left ]{$y$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:psd_change_tf
|
|
#+caption: Signal $d$ going through and LTI transfer function $G_d(s)$ to give a signal $y$
|
|
#+RESULTS:
|
|
[[file:figs/psd_change_tf.png]]
|
|
|
|
We can compute the Power Spectral Density (PSD) of signal $y$ from the PSD of $d$ and the norm of $G_d(s)$:
|
|
\begin{equation}
|
|
S_{y}(\omega) = \left|G_d(j\omega)\right|^2 S_{d}(\omega) \label{eq:psd_transfer_function}
|
|
\end{equation}
|
|
|
|
If we now consider multiple disturbances $d_1, \dots, d_n$ as shown in Figure [[fig:psd_change_tf_multiple_pert]], we have that:
|
|
\begin{equation}
|
|
S_{y}(\omega) = \left|G_{d_1}(j\omega)\right|^2 S_{d_1}(\omega) + \dots + \left|G_{d_n}(j\omega)\right|^2 S_{d_n}(\omega) \label{eq:sum_psd}
|
|
\end{equation}
|
|
|
|
Sometimes, we prefer to compute the *Amplitude* Spectral Density (ASD) which is related to the PSD by:
|
|
\[ \Gamma_y(\omega) = \sqrt{S_y(\omega)} \]
|
|
|
|
#+begin_src latex :file psd_change_tf_multiple_pert.pdf
|
|
\begin{tikzpicture}
|
|
\node[block] (Gm) at (0, 0) {$\dots$};
|
|
\draw[<-] (Gm.west) -- ++(-1, 0);
|
|
|
|
\node[block, above=0.5 of Gm] (G1) {$G_{d_1}(s)$};
|
|
\draw[<-] (G1.west) -- ++(-1, 0) node[above right]{$d_1$};
|
|
|
|
\node[block, below=0.5 of Gm] (Gn) {$G_{d_n}(s)$};
|
|
\draw[<-] (Gn.west) -- ++(-1, 0) node[above right]{$d_n$};
|
|
|
|
\node[addb, right= of Gm] (add) {};
|
|
|
|
\draw[->] (G1.east) -| (add.north);
|
|
\draw[->] (Gm.east) -- (add.west);
|
|
\draw[->] (Gn.east) -| (add.south);
|
|
|
|
\draw[->] (add) -- ++( 1, 0) node[above left]{$y$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:psd_change_tf_multiple_pert
|
|
#+caption: Block diagram showing and output $y$ resulting from the addition of multiple perturbations $d_i$
|
|
#+RESULTS:
|
|
[[file:figs/psd_change_tf_multiple_pert.png]]
|
|
|
|
The Cumulative Power Spectrum (CPS) is here defined as:
|
|
\begin{equation}
|
|
\Phi_y(\omega) = \int_\omega^\infty S_y(\nu) d\nu
|
|
\end{equation}
|
|
|
|
And the Cumulative Amplitude Spectrum (CAS):
|
|
\begin{equation}
|
|
\Psi(\omega) = \sqrt{\Phi(\omega)} = \sqrt{\int_\omega^\infty S_y(\nu) d\nu}
|
|
\end{equation}
|
|
|
|
The CAS evaluation for all frequency corresponds to the rms value of the considered quantity:
|
|
\[ y_{\text{rms}} = \Psi(\omega = 0) = \sqrt{\int_0^\infty S_y(\nu) d\nu} \]
|
|
|
|
** Power Spectral Densities
|
|
We compute the effect of perturbations on the motion error thanks to Eq. eqref:eq:psd_transfer_function.
|
|
|
|
The result is shown in:
|
|
- Figure [[fig:opt_stiff_psd_dz_gm]]: PSD of the vertical sample's motion error due to vertical ground motion
|
|
- Figure [[fig:opt_stiff_psd_dz_rz]]: PSD of the vertical sample's motion error due to vertical vibrations of the Spindle
|
|
|
|
#+begin_src matlab :exports none
|
|
load('./mat/dist_psd.mat', 'dist_f');
|
|
load('./mat/opt_stiffness_disturbances.mat', 'Ks', 'Gd')
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, sqrt(dist_f.psd_gm).*abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m}{\sqrt{Hz}}\right]$')
|
|
legend('location', 'southwest');
|
|
xlim([1, 500]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_psd_dz_gm.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_psd_dz_gm
|
|
#+caption: Amplitude Spectral Density of the Sample vertical position error due to Ground motion for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_psd_dz_gm.png][png]], [[./figs/opt_stiff_psd_dz_gm.pdf][pdf]])
|
|
[[file:figs/opt_stiff_psd_dz_gm.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, sqrt(dist_f.psd_rz).*abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m}{\sqrt{Hz}}\right]$')
|
|
legend('Location', 'southwest');
|
|
xlim([2, 500]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_psd_dz_rz.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_psd_dz_rz
|
|
#+caption: Amplitude Spectral Density of the Sample vertical position error due to Vertical vibration of the Spindle for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_psd_dz_rz.png][png]], [[./figs/opt_stiff_psd_dz_rz.pdf][pdf]])
|
|
[[file:figs/opt_stiff_psd_dz_rz.png]]
|
|
|
|
We compute the effect of all perturbations on the vertical position error using Eq. eqref:eq:sum_psd and the resulting PSD is shown in Figure [[fig:opt_stiff_psd_dz_tot]].
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
psd_tot = zeros(length(freqs), length(Ks));
|
|
|
|
for i = 1:length(Ks)
|
|
psd_tot(:,i) = dist_f.psd_gm.*abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz' ), freqs, 'Hz'))).^2 + ...
|
|
dist_f.psd_ty.*abs(squeeze(freqresp(Gd{i}('Ez', 'Fty_z'), freqs, 'Hz'))).^2 + ...
|
|
dist_f.psd_rz.*abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))).^2;
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, sqrt(psd_tot(:,i)), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m}{\sqrt{Hz}}\right]$')
|
|
legend('location', 'southwest')
|
|
xlim([1, 500]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_psd_dz_tot.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_psd_dz_tot
|
|
#+caption: Amplitude Spectral Density of the Sample vertical position error due to all considered perturbations for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_psd_dz_tot.png][png]], [[./figs/opt_stiff_psd_dz_tot.pdf][pdf]])
|
|
[[file:figs/opt_stiff_psd_dz_tot.png]]
|
|
|
|
** Cumulative Amplitude Spectrum
|
|
Similarly, the Cumulative Amplitude Spectrum of the sample vibrations are shown:
|
|
- Figure [[fig:opt_stiff_cas_dz_gm]]: due to vertical ground motion
|
|
- Figure [[fig:opt_stiff_cas_dz_rz]]: due to vertical vibrations of the Spindle
|
|
- Figure [[fig:opt_stiff_cas_dz_tot]]: due to all considered perturbations
|
|
|
|
The black dashed line corresponds to the performance objective of a sample vibration equal to $10\ nm [rms]$.
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(dist_f.psd_gm.*abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'), freqs, 'Hz'))).^2)))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('CAS $E_y$ $[m]$')
|
|
legend('Location', 'northeast');
|
|
xlim([1, 500]); ylim([1e-10 1e-6]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_cas_dz_gm.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_cas_dz_gm
|
|
#+caption: Cumulative Amplitude Spectrum of the Sample vertical position error due to Ground motion for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_cas_dz_gm.png][png]], [[./figs/opt_stiff_cas_dz_gm.pdf][pdf]])
|
|
[[file:figs/opt_stiff_cas_dz_gm.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(dist_f.psd_rz.*abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))).^2)))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('CAS $[m]$')
|
|
legend('Location', 'southwest');
|
|
xlim([1, 500]); ylim([1e-10 1e-6]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_cas_dz_rz.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_cas_dz_rz
|
|
#+caption: Cumulative Amplitude Spectrum of the Sample vertical position error due to Vertical vibration of the Spindle for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_cas_dz_rz.png][png]], [[./figs/opt_stiff_cas_dz_rz.pdf][pdf]])
|
|
[[file:figs/opt_stiff_cas_dz_rz.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
|
|
figure;
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(psd_tot(:,i))))), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
|
|
end
|
|
plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('CAS $E_z$ $[m]$')
|
|
legend('Location', 'northeast');
|
|
xlim([1, 500]); ylim([1e-10 1e-6]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_cas_dz_tot.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_cas_dz_tot
|
|
#+caption: Cumulative Amplitude Spectrum of the Sample vertical position error due to all considered perturbations for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_cas_dz_tot.png][png]], [[./figs/opt_stiff_cas_dz_tot.pdf][pdf]])
|
|
[[file:figs/opt_stiff_cas_dz_tot.png]]
|
|
|
|
** Save :noexport:
|
|
#+begin_src matlab :exports none
|
|
save('./mat/opt_stiff_ol_psd_tot.mat', 'psd_tot');
|
|
#+end_src
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
From Figure [[fig:opt_stiff_cas_dz_tot]], we can see that a soft nano-hexapod $k<10^6\ [N/m]$ significantly reduces the effect of perturbations from 20Hz to 300Hz.
|
|
#+end_important
|
|
|
|
* Closed Loop Budget Error
|
|
<<sec:closed_loop_budget_error>>
|
|
** Introduction :ignore:
|
|
From the total open-loop power spectral density of the sample's motion error, we can estimate what is the required control bandwidth for the sample's motion error to be reduced down to $10nm$.
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no
|
|
simulinkproject('../');
|
|
#+end_src
|
|
|
|
** Approximation of the effect of feedback on the motion error
|
|
Let's consider Figure [[fig:effect_feedback_disturbance_diagram]] where a controller $K$ is used to reduce the effect of the disturbance $d$ on the position error $y$.
|
|
|
|
#+begin_src latex :file effect_feedback_disturbance_diagram.pdf
|
|
\begin{tikzpicture}
|
|
\node[addb={+}{}{}{}{-}] (addfb) at (0, 0){};
|
|
\node[block, right=0.6 of addfb] (K){$K$};
|
|
\node[block, right=0.6 of K] (G){$G$};
|
|
\node[addb={+}{}{}{}{}, right=0.6 of G] (adddy){};
|
|
\node[block, above=0.6 of adddy] (Gd){$G_d$};
|
|
|
|
\draw[<-] (addfb.west) -- ++(-0.6, 0) node[above right]{$r$};
|
|
\draw[->] (addfb.east) -- (K.west);
|
|
\draw[->] (K.east) -- (G.west) node[above left]{$u$};
|
|
\draw[->] (G.east) -- (adddy.west);
|
|
\draw[->] (adddy.east) -- ++(1, 0) node[above left]{$y$};
|
|
\draw[->] ($(adddy.east)+(0.6, 0)$) node[branch]{} -- ++(0, -1) -| (addfb.south);
|
|
\draw[<-] (Gd.north) -- ++(0, 0.6) node[below right]{$d$};
|
|
\draw[->] (Gd.south) -- (adddy.north);
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:effect_feedback_disturbance_diagram
|
|
#+caption: Feedback System
|
|
#+RESULTS:
|
|
[[file:figs/effect_feedback_disturbance_diagram.png]]
|
|
|
|
The reduction of the impact of $d$ on $y$ thanks to feedback is described by the following equation:
|
|
\begin{equation}
|
|
\frac{y}{d} = \frac{G_d}{1 + KG}
|
|
\end{equation}
|
|
The transfer functions corresponding to $G_d$ are those identified in Section [[sec:effect_disturbances]].
|
|
|
|
|
|
As a first approximation, we can consider that the controller $K$ is designed in such a way that the loop gain $KG$ is a pure integrator:
|
|
\[ L_1(s) = K_1(s) G(s) = \frac{\omega_c}{s} \]
|
|
where $\omega_c$ is the crossover frequency.
|
|
|
|
|
|
We may then consider another controller in such a way that the loop gain corresponds to a double integrator with a lead centered with the crossover frequency $\omega_c$:
|
|
\[ L_2(s) = K_2(s) G(s) = \left( \frac{\omega_c}{s} \right)^2 \cdot \frac{1 + \frac{s}{\omega_c/2}}{1 + \frac{s}{2\omega_c}} \]
|
|
|
|
|
|
In the next section, we see how the power spectral density of $y$ is reduced as a function of the control bandwidth $\omega_c$.
|
|
This will help to determine what is the approximate control bandwidth required such that the rms value of $y$ is below $10nm$.
|
|
|
|
** Reduction thanks to feedback - Required bandwidth
|
|
#+begin_src matlab :exports none
|
|
load('./mat/dist_psd.mat', 'dist_f');
|
|
load('./mat/opt_stiffness_disturbances.mat', 'Ks', 'Gd')
|
|
load('./mat/opt_stiff_ol_psd_tot.mat', 'psd_tot');
|
|
#+end_src
|
|
|
|
Let's first see how does the Cumulative Amplitude Spectrum of the sample's motion error is modified by the control.
|
|
|
|
In Figure [[fig:opt_stiff_cas_closed_loop]] is shown the Cumulative Amplitude Spectrum of the sample's motion error in Open-Loop and in Closed Loop for several control bandwidth (from 1Hz to 200Hz) and 4 different nano-hexapod stiffnesses.
|
|
The controller used in this simulation is $K_1$. The loop gain is then a pure integrator.
|
|
|
|
In Figure [[fig:opt_stiff_req_bandwidth_K1_K2]] is shown the expected RMS value of the sample's position error as a function of the control bandwidth, both for $K_1$ (left plot) and $K_2$ (right plot).
|
|
As expected, it is shown that $K_2$ performs better than $K_1$.
|
|
This Figure tells us how much control bandwidth is required to attain a certain level of performance, and that for all the considered nano-hexapod stiffnesses.
|
|
|
|
The obtained required bandwidth (approximate upper and lower bounds) to obtained a sample's motion error less than 10nm rms are gathered in Table [[tab:approx_required_wc_10nm]].
|
|
|
|
#+begin_src matlab :exports none
|
|
wc = [1, 5, 10, 20, 50, 100, 200];
|
|
|
|
S1 = {zeros(length(wc), 1)};
|
|
S2 = {zeros(length(wc), 1)};
|
|
|
|
for j = 1:length(wc)
|
|
L = (2*pi*wc(j))/s; % Simple integrator
|
|
S1{j} = 1/(1 + L);
|
|
L = ((2*pi*wc(j))/s)^2*(1 + s/(2*pi*wc(j)/2))/(1 + s/(2*pi*wc(j)*2));
|
|
S2{j} = 1/(1 + L);
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2,2,1);
|
|
hold on;
|
|
i = 1;
|
|
for j = 1:length(wc)
|
|
set(gca,'ColorOrderIndex',j);
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(abs(squeeze(freqresp(S1{j}, freqs, 'Hz'))).^2.*psd_tot(:,i))))), '-');
|
|
end
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(psd_tot(:,i))))), 'k-');
|
|
plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
ylabel('CAS $E_y$ $[m]$')
|
|
title(sprintf('$k = %.0g$ [N/m]', Ks(i)))
|
|
|
|
ax2 = subplot(2,2,2);
|
|
hold on;
|
|
i = 3;
|
|
for j = 1:length(wc)
|
|
set(gca,'ColorOrderIndex',j);
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(abs(squeeze(freqresp(S1{j}, freqs, 'Hz'))).^2.*psd_tot(:,i))))), '-');
|
|
end
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(psd_tot(:,i))))), 'k-');
|
|
plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
title(sprintf('$k = %.0g$ [N/m]', Ks(i)))
|
|
|
|
ax3 = subplot(2,2,3);
|
|
hold on;
|
|
i = 5;
|
|
for j = 1:length(wc)
|
|
set(gca,'ColorOrderIndex',j);
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(abs(squeeze(freqresp(S1{j}, freqs, 'Hz'))).^2.*psd_tot(:,i))))), '-');
|
|
end
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(psd_tot(:,i))))), 'k-');
|
|
plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('CAS $E_y$ $[m]$')
|
|
title(sprintf('$k = %.0g$ [N/m]', Ks(i)))
|
|
|
|
ax4 = subplot(2,2,4);
|
|
hold on;
|
|
i = 7;
|
|
for j = 1:length(wc)
|
|
set(gca,'ColorOrderIndex',j);
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(abs(squeeze(freqresp(S1{j}, freqs, 'Hz'))).^2.*psd_tot(:,i))))), '-', ...
|
|
'DisplayName', sprintf('$\\omega_c = %.0f$ [Hz]', wc(j)));
|
|
end
|
|
plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(psd_tot(:,i))))), 'k-', ...
|
|
'DisplayName', 'Open-Loop');
|
|
plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]');
|
|
legend('Location', 'southwest');
|
|
title(sprintf('$k = %.0g$ [N/m]', Ks(i)))
|
|
|
|
linkaxes([ax1,ax2,ax3,ax4], 'xy');
|
|
xlim([0.5, 500]); ylim([1e-10 1e-6]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_cas_closed_loop.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_cas_closed_loop
|
|
#+caption: Cumulative Amplitude Spectrum of the sample's motion error in Open-Loop and in Closed Loop for several control bandwidth and 4 different nano-hexapod stiffnesses ([[./figs/opt_stiff_cas_closed_loop.png][png]], [[./figs/opt_stiff_cas_closed_loop.pdf][pdf]])
|
|
[[file:figs/opt_stiff_cas_closed_loop.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
wc = logspace(0, 3, 100);
|
|
|
|
Dz1_rms = zeros(length(Ks), length(wc));
|
|
Dz2_rms = zeros(length(Ks), length(wc));
|
|
for i = 1:length(Ks)
|
|
for j = 1:length(wc)
|
|
L = (2*pi*wc(j))/s;
|
|
Dz1_rms(i, j) = sqrt(trapz(freqs, abs(squeeze(freqresp(1/(1 + L), freqs, 'Hz'))).^2.*psd_tot(:,i)));
|
|
|
|
L = ((2*pi*wc(j))/s)^2*(1 + s/(2*pi*wc(j)/2))/(1 + s/(2*pi*wc(j)*2));
|
|
Dz2_rms(i, j) = sqrt(trapz(freqs, abs(squeeze(freqresp(1/(1 + L), freqs, 'Hz'))).^2.*psd_tot(:,i)));
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none
|
|
freqs = dist_f.f;
|
|
|
|
figure;
|
|
ax1 = subplot(1,2,1);
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(wc, Dz1_rms(i, :), '-')
|
|
end
|
|
plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Control Bandwidth [Hz]'); ylabel('$E_z\ [m, rms]$ using $K_1(s)$')
|
|
xlim([1, 500]);
|
|
|
|
ax2 = subplot(1,2,2);
|
|
hold on;
|
|
for i = 1:length(Ks)
|
|
plot(wc, Dz2_rms(i, :), '-', ...
|
|
'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)))
|
|
end
|
|
plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
|
|
hold off;
|
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
xlabel('Control Bandwidth [Hz]'); ylabel('$E_z\ [m, rms]$ using $K_2(s)$')
|
|
legend('Location', 'southwest');
|
|
|
|
linkaxes([ax1, ax2], 'xy');
|
|
xlim([1, 500]);
|
|
#+end_src
|
|
|
|
#+header: :tangle no :exports results :results none :noweb yes
|
|
#+begin_src matlab :var filepath="figs/opt_stiff_req_bandwidth_K1_K2.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
<<plt-matlab>>
|
|
#+end_src
|
|
|
|
#+name: fig:opt_stiff_req_bandwidth_K1_K2
|
|
#+caption: Expected RMS value of the sample's motion error $E_z$ as a function of the control bandwidth when using $K_1$ and $K_2$ ([[./figs/opt_stiff_req_bandwidth_K1_K2.png][png]], [[./figs/opt_stiff_req_bandwidth_K1_K2.pdf][pdf]])
|
|
[[file:figs/opt_stiff_req_bandwidth_K1_K2.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
wb1 = zeros(length(Ks), 1);
|
|
wb2 = zeros(length(Ks), 1);
|
|
|
|
for i = 1:length(Ks)
|
|
[~, i_min] = min(abs(Dz1_rms(i, :) - 10e-9));
|
|
wb1(i) = wc(i_min);
|
|
|
|
[~, i_min] = min(abs(Dz2_rms(i, :) - 10e-9));
|
|
wb2(i) = wc(i_min);
|
|
end
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
|
|
data2orgtable([wb1'; wb2'], {'Required wc with L1 [Hz]', 'Required wc with L2 [Hz]'}, {'Nano-Hexapod stiffness [N/m]', '10^3', '10^4', '10^5', '10^6', '10^7', '10^8', '10^9'}, ' %.0f ');
|
|
#+end_src
|
|
|
|
#+name: tab:approx_required_wc_10nm
|
|
#+caption: Approximate required control bandwidth such that the motion error is below $10nm$
|
|
#+RESULTS:
|
|
| Nano-Hexapod stiffness [N/m] | 10^3 | 10^4 | 10^5 | 10^6 | 10^7 | 10^8 | 10^9 |
|
|
|------------------------------+------+------+------+------+------+------+------|
|
|
| Required wc with L1 [Hz] | 152 | 305 | 1000 | 870 | 933 | 870 | 870 |
|
|
| Required wc with L2 [Hz] | 57 | 66 | 152 | 152 | 248 | 266 | 248 |
|
|
|
|
* Conclusion
|
|
#+begin_important
|
|
From Figure [[fig:opt_stiff_req_bandwidth_K1_K2]] and Table [[tab:approx_required_wc_10nm]], we can clearly see three different results depending on the nano-hexapod stiffness:
|
|
- For a soft nano-hexapod ($k < 10^4\ [N/m]$), the required bandwidth is $\omega_c \approx 50-100\ Hz$
|
|
- For a nano-hexapods with $10^5 < k < 10^6\ [N/m]$, the required bandwidth is $\omega_c \approx 150-300\ Hz$
|
|
- For a stiff nano-hexapods ($k > 10^7\ [N/m]$), the required bandwidth is $\omega_c \approx 250-500\ Hz$
|
|
#+end_important
|