116 KiB
Nano-Hexapod
- Introduction
- Nano-Hexapod
- Introduction
- Nano Hexapod - Configuration
- Effect of encoders on the decentralized plant
- Effect of APA flexibility
- Nano Hexapod - Number of DoF
- Direct Velocity Feedback Plant
- Integral Force Feedback Plant
- Decentralized Plant - Cartesian coordinates
- Decentralized Plant - Decoupling at the Center of Stiffness
- Stiffness matrix
- Active Damping using Integral Force Feedback
- Active Damping using Direct Velocity Feedback - Encoders on the struts
- Active Damping using Direct Velocity Feedback - Encoders on the plates
- Function - Initialize Nano Hexapod
Introduction ignore
In this document, a Simscape model of the nano-hexapod is developed.
- Section sec:nano_hexapod:
- Section sec:integral_force_feedback:
- Section sec:direct_velocity_feedback_struts:
- Section sec:direct_velocity_feedback_plates:
Nano-Hexapod
<<sec:nano_hexapod>>
Introduction ignore
Nano Hexapod - Configuration
<<sec:nano_hexapod_conf>>
The nano-hexapod can be initialized and configured using the initializeNanoHexapodFinal
function (link).
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'MO_B', 150e-3);
We initialize the identification parameters.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nano_hexapod';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
Effect of encoders on the decentralized plant
<<sec:effect_encoder_location>>
We here wish to compare the plant from actuators to the encoders when the encoders are either fixed on the struts or on the plates.
Identify the plant when the encoders are on the struts:
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gs.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
And identify the plant when the encoders are fixed on the plates:
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof');
Gp = linearize(mdl, io, 0.0, options);
Gp.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gp.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
The obtained plants are compared in Figure fig:nano_hexapod_effect_encoder.
Why do we have zeros at 400Hz and 800Hz when the encoders are fixed on the struts?
Effect of APA flexibility
<<sec:effect_apa_flexibility>>
First identify the plant for APA represented by 2DoF system:
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'actuator_Ga', 2);
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gs.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
First identify the plant for APA represented by a flexible element:
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', 'flexible');
Gf = linearize(mdl, io, 0.0, options);
Gf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gf.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
The first resonance is strange when using the flexible APA model (Figure fig:nano_hexapod_effect_flexible_apa). Moreover the system is unstable. Otherwise, the 2DoF model matches quite well the flexible model considering its simplicity.
Nano Hexapod - Number of DoF
<<sec:num_states>>
In this section, we wish to see how the configuration of each element changes the number of the states of the obtained system.
The most minimalist model is the following:
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '3dof', ...
'flex_top_type', '2dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
G = linearize(mdl, io, 0.0, options);
There are 24 states.
These states are summarized on table tab:num_states_nano_hexapod.
Element | States |
---|---|
Struts | 2*6 |
Top Plate | 12 |
Total: | 24 |
If we add axial stiffness on the top joints, we should add 2 states for each struts.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '2dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
G = linearize(mdl, io, 0.0, options);
There are 36 states.
If we add torsional stiffness on the bottom joints, we should again add 2 states for each struts.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
G = linearize(mdl, io, 0.0, options);
There are 48 states.
Finally, if we add axial stiffness on the bottom joint, we should add 2 states for each struts.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
G = linearize(mdl, io, 0.0, options);
There are 60 states.
Obtained number of states is very comprehensible. Depending on the physical effects we want to model, we therefore know how many states are added when configuring the model.
Direct Velocity Feedback Plant
<<sec:dvf_plant>>
The transfer function from actuator forces $\tau_i$ to the encoder measurements $\mathcal{L}_i$ is now identified both when the encoders are fixed to the struts.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nano_hexapod';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs [N]
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative displacements [m]
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
Gdvf = linearize(mdl, io, 0.0, options);
The DC gain from actuator to relative motion sensor should be equal to (for the 2dof APA): \[ \frac{1}{k + k_a + kk_a/k_e} \]
Which is equal to:
DCgain = 1.87e-08 [m/N]
Let's verify that by looking at the DC gain of the $6 \times 6$ DVF plant in Table tab:dvf_dc_gain.
1.8617e-08 | -1.0408e-10 | 1.3034e-10 | 3.2559e-11 | -1.1188e-10 | 9.0385e-11 |
-5.1839e-11 | 1.8593e-08 | -4.4868e-11 | 8.016e-11 | 4.3558e-11 | -1.1164e-10 |
5.1963e-12 | -6.9001e-12 | 1.8564e-08 | 3.0844e-11 | 4.0097e-11 | -3.4387e-11 |
1.9359e-11 | 1.7432e-10 | -5.0928e-11 | 1.855e-08 | 1.6406e-10 | 4.5757e-12 |
-2.1185e-11 | 2.1724e-10 | 1.5333e-12 | -8.802e-11 | 1.8803e-08 | -4.6946e-11 |
-1.1728e-11 | -5.7682e-11 | 1.6213e-10 | 2.1934e-12 | -1.6237e-10 | 1.8715e-08 |
And the bode plot of the DVF plant is shown in Figure fig:nano_hexapod_struts_2dof_dvf_plant.
Integral Force Feedback Plant
<<sec:iff_plant>>
The transfer function from actuators to force sensors is identified.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nano_hexapod';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
Giff = linearize(mdl, io, 0.0, options);
This is corresponding to the dynamics for the Integral Force Feedback (IFF) control strategy.
The bode plot is shown in Figure fig:nano_hexapod_struts_2dof_iff_plant.
Decentralized Plant - Cartesian coordinates
<<sec:decoupled_plant>>
Introduction ignore
Consider the plant shown in Figure fig:nano_hexapod_decentralized_schematic with:
- $\tau$ the 6 input forces (APA)
- $d\mathcal{L}$ the relative motion sensor outputs (encoders)
- $\mathcal{X}$ the motion of the top platform measured with "perfect" 6-dof sensor
- $J_a$ and $J_s$ the Jacobians for the actuators and sensors
\begin{tikzpicture}
% Blocs
\node[block={2.0cm}{2.0cm}] (P) {Plant};
\coordinate[] (inputF) at (P.west);
\coordinate[] (outputL) at ($(P.south east)!0.8!(P.north east)$);
\coordinate[] (outputX) at ($(P.south east)!0.2!(P.north east)$);
\node[block, left= of inputF] (Ja) {$\bm{J}^{-T}_a$};
\node[block, right= of outputL] (Js) {$\bm{J}^{-1}_s$};
% Connections and labels
\draw[->] ($(Ja.west)+(-1,0)$) -- (Ja.west) node[above left]{$\bm{\mathcal{F}}$};
\draw[->] (Ja.east) -- (inputF) node[above left]{$\bm{\tau}$};
\draw[->] (outputL) -- (Js.west) node[above left]{$d\bm{\mathcal{L}}$};
\draw[->] (Js.east) -- ++(1, 0) node[above left]{$d\bm{\mathcal{X}}$};
\draw[->] (outputX.east) -- ++(1, 0) node[above left]{$\bm{\mathcal{X}}$};
\end{tikzpicture}
Verification of the Sensor Jacobian
The "perfect" sensor output $\mathcal{X}$ is used to verify that the sensor Jacobian is working correctly both when the encoders are fixed to the struts and to the plates.
Let's then identify the plant for both configuration, and compare the transfer functions from $\mathcal{F}$ to $d\mathcal{X}$ and to $\mathcal{X}$.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nano_hexapod';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
Start when the encoders are fixed on the struts.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'MO_B', 150e-3);
Gs = linearize(mdl, io, 0.0, options);
Gs.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gs.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6', ...
'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
% Cartesian plant using the Jacobians
Gsc = inv(n_hexapod.geometry.Js)*Gs({'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'})*inv(n_hexapod.geometry.J)';
% Cartesian plant using the perfect sensor
Gsp = -Gs({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'})*inv(n_hexapod.geometry.J)';
The diagonal elements of the plant are shown in Figure fig:nano_hexapod_comp_cartesian_plants_struts.
The same if performed when the encoders are fixed to the plates.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof', ...
'MO_B', 150e-3);
Gp = linearize(mdl, io, 0.0, options);
Gp.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gp.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6', ...
'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
% Cartesian plant using the Jacobians
Gpc = inv(n_hexapod.geometry.Js)*Gp({'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'})*inv(n_hexapod.geometry.J)';
% Cartesian plant using the perfect sensor
Gpp = -Gp({'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'})*inv(n_hexapod.geometry.J)';
The obtained bode plots are shown in Figure fig:nano_hexapod_comp_cartesian_plants_plates.
The Jacobian for the encoders is working properly both when the encoders are fixed to the plates or to the struts.
However, then the encoders are fixed to the struts, there is a mismatch between the estimated motion and the measured motion above 100Hz due to a complex conjugate zero.
Comparison of the decentralized plants
The decentralized plants are now compared whether the encoders are fixed on the struts or on the plates in Figure fig:nano_hexapod_cartesian_plant_encoder_comp.
Decentralized Plant - Decoupling at the Center of Stiffness
<<sec:decoupled_plant_cok>>
Center of Stiffness
<<sec:center_of_stiffness>>
Let's define some parameters that will be used for the computation of the stiffness matrix:
si = n_hexapod.geometry.si; % Orientation of struts
bi = n_hexapod.geometry.Fb; % Location of bi w.r.t. {F}
ki = ones(1,6); % Normalized strut stiffness
In order to find is the Center of Stiffness (CoK) exists, we have to verify is the following is diagonal:
ki.*si*si'
1.8977 | 2.4659e-17 | 5.1838e-19 |
2.4659e-17 | 1.8977 | -2.3143e-05 |
5.1838e-19 | -2.3143e-05 | 2.2046 |
And we can find the location of the CoK with respect to {F}:
OkX = (ki.*cross(bi, si)*si')/(ki.*si*si');
Ok = [OkX(3,2);OkX(1,3);OkX(2,1)]
-1.7444e-18 |
2.1511e-06 |
0.052707 |
The "center of stiffness" is therefore 52.7mm above the bottom platform {F} frame.
Let's initialize the hexapod with frame {A} and {B} at the CoK:
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'MO_B', Ok(3)-95e-3);
And the (normalized) stiffness matrix is computed as follows:
n_hexapod.geometry.J'*diag(ki)*n_hexapod.geometry.J
1.8977 | 0 | 0 | 0 | -2.0817e-17 | -1.5311e-06 |
0 | 1.8977 | -2.3143e-05 | 4.175e-06 | 0 | 0 |
0 | -2.3143e-05 | 2.2046 | 4.7422e-06 | 0 | 0 |
0 | 4.175e-06 | 4.7422e-06 | 0.012594 | 2.1684e-19 | -8.6736e-19 |
-1.8521e-17 | 0 | 0 | 0 | 0.012594 | -9.3183e-08 |
-1.5311e-06 | -6.9389e-18 | 2.7756e-17 | -8.6736e-19 | -9.3183e-08 | 0.043362 |
And we indeed obtain a diagonal stiffness matrix.
Obtained plant
Let's identify the transfer function from $\tau$ to $d\mathcal{L}$ and from $\tau$ to $\mathcal{X}$.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nano_hexapod';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1; % 6DoF perfect measurement
G = linearize(mdl, io, 0.0, options);
G.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
G.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6', ...
'Dx', 'Dy', 'Dz', 'Rx', 'Ry', 'Rz'};
Then use the Jacobian matrices to obtain the "cartesian" centralized plant.
Gc = inv(n_hexapod.geometry.J)*...
G({'D1', 'D2', 'D3', 'D4', 'D5', 'D6'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'})*...
inv(n_hexapod.geometry.J');
The DC gain of the obtained plant is shown in Table tab:dc_gain_cartesian_cok_plan.
9.8602e-09 | 7.8692e-11 | 1.4426e-11 | -2.663e-10 | 2.8e-10 | -4.7559e-11 |
8.457e-11 | 9.8788e-09 | -2.4002e-11 | -2.9502e-11 | -1.3262e-10 | -8.7346e-11 |
-4.3244e-11 | 2.4075e-13 | 8.4775e-09 | 1.1442e-11 | -2.5809e-10 | 2.8796e-11 |
-1.8326e-09 | -9.318e-10 | 6.8188e-10 | 1.4697e-06 | 5.5936e-09 | 8.7632e-10 |
4.6906e-10 | 1.5911e-09 | 1.6989e-10 | -5.223e-09 | 1.4729e-06 | -2.6059e-10 |
-6.5754e-11 | -3.0408e-12 | 5.394e-11 | -1.0917e-10 | 6.9479e-10 | 4.2979e-07 |
As the rotations and translations have very different gains, we normalize each motion to one.
Gc = diag(1./diag(dcgain(Gc)))*Gc;
The diagonal and off-diagonal elements are shown in Figure fig:nano_hexapod_diagonal_plant_cok, and we can see good decoupling at low frequency.
The Jacobian matrices can be used to decoupled the plant at low frequency.
Stiffness matrix
<<sec:stiffness_matrix>>
Introduction ignore
The stiffness matrix of the nano-hexapod describes its induced static displacement/rotation when a force/torque is applied on its top platform. The location of the applied force/torque and the expressed displacement/rotation can be defined as wanted. Such location (or frame) is then used for the computation of the Jacobian which in turns is used to compute the stiffness matrix.
Compute the theoretical stiffness of the nano-hexapod
Neglecting stiffness of the joints, we have: \[ K = J^t \mathcal{K} J \] where $\mathcal{K}$ is a diagonal 6x6 matrix with axial stiffness of the struts on the diagonal.
Let's note the axial stiffness of the APA: \[ k_{\text{APA}} = k + \frac{k_e k_a}{k_e + k_a} \]
Them axial stiffness of the struts $k_s$: \[ k_s = \frac{k_z k_{\text{APA}}}{k_z + 2 k_{\text{APA}}} \] with $k_z$ the axial stiffness of the flexible joints.
Let's initialize the nano-hexapod.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
The axial stiffness of the joints and stiffnesses of the 2-DoF actuators are defined below.
k = n_hexapod.actuator.k(1);
ke = n_hexapod.actuator.ke(1);
ka = n_hexapod.actuator.ka(1);
kz = n_hexapod.flex_top.kz(1); % Joint's axial stiffness [m/N]
The total axial stiffness of the APA is:
kAPA = k + ke*ka/(ke + ka);
kAPA = 1.799e+06 [N/m]
And the total axial stiffness of the struts is:
ks = kz*kAPA/(kz + 2*kAPA);
ks = 1.737e+06 [N/m]
We can see that the axial stiffness of the flexible joint as little impact on the total axial stiffness of the struts.
Let's now compute the stiffness matrix corresponding to an hexapod with perfect joints and the above computed axial strut stiffness:
Ks = n_hexapod.geometry.J'*(ks*eye(6))*n_hexapod.geometry.J;
And the compliance matrix can be computed as the inverse of the stiffness matrix.
C = inv(Ks);
The obtained compliance matrix is shown in Table tab:compliance_matrix_perfect_joints.
1.9938e-06 | -2.3138e-22 | 3.3403e-23 | 1.0202e-21 | 8.7906e-06 | 2.9603e-11 |
-3.1875e-23 | 1.9938e-06 | 2.2094e-11 | -8.7909e-06 | -1.6576e-22 | -3.5622e-28 |
6.6811e-23 | 2.2094e-11 | 2.6115e-07 | -9.8337e-11 | 3.4744e-22 | 7.4663e-28 |
1.4054e-22 | -8.7909e-06 | -9.8337e-11 | 4.5715e-05 | 7.3086e-22 | 1.5706e-27 |
8.7906e-06 | -1.0202e-21 | 1.7371e-22 | 4.498e-21 | 4.5714e-05 | 9.8237e-11 |
2.9603e-11 | -1.9261e-22 | -1.7611e-27 | 8.4925e-22 | 9.8237e-11 | 1.3277e-05 |
Comparison with Simscape Model
Let's now identify the compliance matrix using Simscape.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nano_hexapod';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Fe'], 1, 'openinput'); io_i = io_i + 1; % External forces [N, Nm/rad]
io(io_i) = linio([mdl, '/X'], 1, 'openoutput'); io_i = io_i + 1; % Induced motion [m, rad]
G = linearize(mdl, io, 0.0, options);
The DC gain of the identified plant is therefore the compliance matrix of the nano-hexapod. It takes into account the bending and torsional stiffness of the flexible joints.
The obtained compliance matrix is shown in Table tab:compliance_matrix_simscape_joints.
1.9863e-06 | 2.4683e-08 | 2.2859e-09 | -6.4768e-08 | 8.7307e-06 | 3.2754e-10 |
-3.693e-09 | 1.9663e-06 | -7.4503e-09 | -8.615e-06 | -6.7926e-08 | -2.0193e-08 |
-3.5525e-09 | -8.8671e-10 | 2.6042e-07 | 4.7504e-09 | -9.9677e-09 | 1.7242e-10 |
2.1133e-08 | -8.6554e-06 | 3.2841e-08 | 4.4849e-05 | 3.0873e-07 | 8.1525e-08 |
8.7375e-06 | 9.9165e-08 | 8.135e-09 | -2.5208e-07 | 4.5331e-05 | 3.0602e-09 |
6.1611e-09 | 6.1733e-09 | 2.6778e-09 | -3.3188e-08 | 3.3887e-08 | 1.3212e-05 |
The bending and torsional stiffness of the flexible joints induces a lot of coupling between forces/torques applied to the to platform to its displacement/rotation. It can be seen by comparison the compliance matrices in Tables tab:compliance_matrix_perfect_joints and tab:compliance_matrix_simscape_joints.
Active Damping using Integral Force Feedback
<<sec:integral_force_feedback>>
Introduction ignore
In this section Integral Force Feedback (IFF) strategy is used to damp the nano-hexapod resonances.
It is structured as follows:
- Section sec:iff_identification: the IFF plant is identified
- Section sec:iff_controller: the optimal control gain is identified using the Root Locus plot
- Section sec:iff_effect_plant: the IFF is applied, and the effect on the damped plant is identified and compared with the un-damped one
- Section sec:iff_effect_compliance: the IFF is applied, and the effect on the compliance is identified
Plant Identification
<<sec:iff_identification>>
The nano-hexapod is initialized as usual.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
The transfer function from actuator inputs to force sensors outputs is identified.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nano_hexapod';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/Fm'], 1, 'openoutput'); io_i = io_i + 1; % Force Sensors
Giff = linearize(mdl, io, 0.0, options);
Giff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Giff.OutputName = {'Fm1', 'Fm2', 'Fm3', 'Fm4', 'Fm5', 'Fm6'};
Its bode plot is shown in Figure
Root Locus
<<sec:iff_controller>>
The controller is a diagonal (i.e. decentralized) controller with simple low pass filters (i.e. pseudo integrators) on the diagonal:
\begin{equation} K_{\text{IFF}} = \frac{g}{s + \omega_c} \bm{I}_{6 \times 6} \end{equation}The value of $\omega_c$ has quite a large impact both on the attainable damping and on the compliance degradation at low frequency.
It is here chosen to have quite a large $\omega_c$ in order to not modify the plant at low frequency.
wc = 2*pi*20;
The obtained Root Locus is shown in Figure fig:nano_hexapod_iff_root_locus. The control gain chosen for future plots is shown by the red crosses.
The obtained controller is then:
Kiff = 1.5e4/(s + 2*pi*20)*eye(6); % IFF Controller
The corresponding loop gain of the diagonal terms are shown in Figure fig:nano_hexapod_iff_loop_gain. It is shown that the loop gain is quite large around resonances (which allows to add lots of damping) and less than one at low frequency thanks to the large value of $\omega_c$.
Effect of IFF on the plant
<<sec:iff_effect_plant>>
Let's now see how the IFF control strategy effectively damps the plant and how it affects the transfer functions from the actuator forces to the relative motion sensors (encoders).
First identify the plant in open-loop.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'none');
Gol = linearize(mdl, io, 0.0, options);
Gol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gol.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
And then with the IFF controller.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '3dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'iff');
Giff = linearize(mdl, io, 0.0, options);
Giff.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Giff.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
The obtained plants are compared in Figure fig:nano_hexapod_effect_iff_plant.
The Integral Force Feedback Strategy is very effective to damp the 6 suspension modes of the nano-hexapod.
Effect of IFF on the compliance
<<sec:iff_effect_compliance>>
The IFF strategy has the well known drawback of degrading the compliance (transfer function from external forces/torques applied to the top platform to the motion of the top platform), especially at low frequency where the control gain is large. Let's quantify that for the nano-hexapod.
The obtained compliances are compared in Figure
The use of IFF induces a degradation of the compliance. This degradation is limited due to the use of a pseudo integrator (instead of a pure integrator). Also, it should not be a major problem for the NASS, as no direct forces should be applied to the top platform.
Active Damping using Direct Velocity Feedback - Encoders on the struts
<<sec:direct_velocity_feedback_struts>>
Introduction ignore
In this section, the Direct Velocity Feedback (DVF) strategy is used to damp the nano-hexapod resonances.
It is structured as follows:
- Section sec:dvf_identification_struts: the DVF plant is identified
- Section sec:dvf_controller_struts: the optimal control gain is identified using the Root Locus plot
- Section sec:dvf_effect_plant_struts: the DVF is applied, and the effect on the damped plant is identified and compared with the un-damped one
- Section sec:dvf_effect_compliance_struts: the DVF is applied, and the effect on the compliance is identified
Plant Identification
<<sec:dvf_identification_struts>>
The nano-hexapod is initialized as usual.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof');
The transfer function from actuator inputs to force sensors outputs is identified.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nano_hexapod';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
Gdvf = linearize(mdl, io, 0.0, options);
Gdvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gdvf.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
Its bode plot is shown in Figure fig:nano_hexapod_dvf_plant_bode_plot_struts.
Root Locus
<<sec:dvf_controller_struts>>
The controller is a diagonal (i.e. decentralized) controller with simple high pass filters (i.e. pseudo derivators) on the diagonal:
\begin{equation} K_{\text{DVF}} = g \frac{s}{s + \omega_d} \bm{I}_{6 \times 6} \end{equation}The value of $\omega_d$ sets the frequency above high the derivative action is stopped.
wd = 2*pi*150;
The obtained Root Locus is shown in Figure fig:nano_hexapod_dvf_root_locus_struts. The control gain chosen for future plots is shown by the red crosses.
The obtained controller is then:
Kdvf = 5e8*s/(s + wd)*eye(6); % DVF Controller
The corresponding loop gain of the diagonal terms are shown in Figure fig:nano_hexapod_dvf_loop_gain_struts. It is shown that the loop gain is quite large around resonances (which allows to add lots of damping) and less than one at low frequency thanks to the large value of $\omega_c$.
Effect of DVF on the plant
<<sec:dvf_effect_plant_struts>>
Let's now see how the DVF control strategy effectively damps the plant and how it affects the transfer functions from the actuator forces to the relative motion sensors (encoders).
First identify the plant in open-loop.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'none');
Gol = linearize(mdl, io, 0.0, options);
Gol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gol.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
And then with the DVF controller.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'struts', ...
'actuator_type', '2dof', ...
'controller_type', 'dvf');
Gdvf = linearize(mdl, io, 0.0, options);
Gdvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gdvf.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
The obtained plants are compared in Figure fig:nano_hexapod_effect_dvf_plant_struts.
The Direct Velocity Feedback Strategy is very effective to damp the 6 suspension modes of the nano-hexapod.
Effect of DVF on the compliance
<<sec:dvf_effect_compliance_struts>>
The DVF strategy has the well known drawback of degrading the compliance (transfer function from external forces/torques applied to the top platform to the motion of the top platform), especially at low frequency where the control gain is large. Let's quantify that for the nano-hexapod.
The obtained compliances are compared in Figure fig:nano_hexapod_dvf_compare_compliance_struts.
Active Damping using Direct Velocity Feedback - Encoders on the plates
<<sec:direct_velocity_feedback_plates>>
Introduction ignore
In this section, the Direct Velocity Feedback (DVF) strategy is used to damp the nano-hexapod resonances.
It is structured as follows:
- Section sec:dvf_identification_plates: the DVF plant is identified
- Section sec:dvf_controller_plates: the optimal control gain is identified using the Root Locus plot
- Section sec:dvf_effect_plant_plates: the DVF is applied, and the effect on the damped plant is identified and compared with the un-damped one
- Section sec:dvf_effect_compliance_plates: the DVF is applied, and the effect on the compliance is identified
Plant Identification
<<sec:dvf_identification_plates>>
The nano-hexapod is initialized as usual.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof');
The transfer function from actuator inputs to force sensors outputs is identified.
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'nano_hexapod';
%% Input/Output definition
clear io; io_i = 1;
io(io_i) = linio([mdl, '/F'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1; % Relative Motion Outputs
Gdvf = linearize(mdl, io, 0.0, options);
Gdvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gdvf.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
Its bode plot is shown in Figure fig:nano_hexapod_dvf_plant_bode_plot_plates.
Root Locus
<<sec:dvf_controller_plates>>
The controller is a diagonal (i.e. decentralized) controller with simple high pass filters (i.e. pseudo derivators) on the diagonal:
\begin{equation} K_{\text{DVF}} = g \frac{s}{s + \omega_d} \bm{I}_{6 \times 6} \end{equation}The value of $\omega_d$ sets the frequency above high the derivative action is stopped.
wd = 2*pi*150;
The obtained Root Locus is shown in Figure fig:nano_hexapod_dvf_root_locus_plates. The control gain chosen for future plots is shown by the red crosses.
The obtained controller is then:
Kdvf = 2e8*s/(s + wd)*eye(6); % DVF Controller
The corresponding loop gain of the diagonal terms are shown in Figure fig:nano_hexapod_dvf_loop_gain_plates. It is shown that the loop gain is quite large around resonances (which allows to add lots of damping).
Effect of DVF on the plant
<<sec:dvf_effect_plant_plates>>
Let's now see how the DVF control strategy effectively damps the plant and how it affects the transfer functions from the actuator forces to the relative motion sensors (encoders).
First identify the plant in open-loop.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof', ...
'controller_type', 'none');
Gol = linearize(mdl, io, 0.0, options);
Gol.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gol.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
And then with the DVF controller.
n_hexapod = initializeNanoHexapodFinal('flex_bot_type', '4dof', ...
'flex_top_type', '4dof', ...
'motion_sensor_type', 'plates', ...
'actuator_type', '2dof', ...
'controller_type', 'dvf');
Gdvf = linearize(mdl, io, 0.0, options);
Gdvf.InputName = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
Gdvf.OutputName = {'D1', 'D2', 'D3', 'D4', 'D5', 'D6'};
The obtained plants are compared in Figure fig:nano_hexapod_effect_dvf_plant_plates.
The Direct Velocity Feedback Strategy is very effective in damping the 6 suspension modes of the nano-hexapod.
Effect of DVF on the compliance
<<sec:dvf_effect_compliance_plates>>
The DVF strategy has the well known drawback of degrading the compliance (transfer function from external forces/torques applied to the top platform to the motion of the top platform), especially at low frequency where the control gain is large. Let's quantify that for the nano-hexapod.
The obtained compliances are compared in Figure fig:nano_hexapod_dvf_compare_compliance_plates.
Function - Initialize Nano Hexapod
<<sec:initializeNanoHexapodFinal>>
Function description
function [nano_hexapod] = initializeNanoHexapodFinal(args)
Optional Parameters
arguments
%% Bottom Flexible Joints
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
%% Top Flexible Joints
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
%% Jacobian - Location of frame {A} and {B}
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
%% Relative Motion Sensor
args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts'
%% Actuators
args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible'
args.actuator_Ga (6,1) double {mustBeNumeric} = ones(6,1)*1 % Actuator gain [N/V]
args.actuator_Gs (6,1) double {mustBeNumeric} = ones(6,1)*1 % Sensor gain [V/m]
% For 2DoF
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.35e6 % [N/m]
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.5e6 % [N/m]
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*43e6 % [N/m]
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e1 % [N/(m/s)]
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
% For Flexible Frame
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m]
% For Flexible
args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
%% Controller
args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf'})} = 'none'
end
Nano Hexapod Object
nano_hexapod = struct();
Flexible Joints - Bot
nano_hexapod.flex_bot = struct();
switch args.flex_bot_type
case '2dof'
nano_hexapod.flex_bot.type = 1;
case '3dof'
nano_hexapod.flex_bot.type = 2;
case '4dof'
nano_hexapod.flex_bot.type = 3;
case 'flexible'
nano_hexapod.flex_bot.type = 4;
end
nano_hexapod.flex_bot.kRx = args.flex_bot_kRx; % X bending stiffness [Nm/rad]
nano_hexapod.flex_bot.kRy = args.flex_bot_kRy; % Y bending stiffness [Nm/rad]
nano_hexapod.flex_bot.kRz = args.flex_bot_kRz; % Torsionnal stiffness [Nm/rad]
nano_hexapod.flex_bot.kz = args.flex_bot_kz; % Axial stiffness [N/m]
nano_hexapod.flex_bot.cRx = args.flex_bot_cRx; % [Nm/(rad/s)]
nano_hexapod.flex_bot.cRy = args.flex_bot_cRy; % [Nm/(rad/s)]
nano_hexapod.flex_bot.cRz = args.flex_bot_cRz; % [Nm/(rad/s)]
nano_hexapod.flex_bot.cz = args.flex_bot_cz; %[N/(m/s)]
Flexible Joints - Top
nano_hexapod.flex_top = struct();
switch args.flex_top_type
case '2dof'
nano_hexapod.flex_top.type = 1;
case '3dof'
nano_hexapod.flex_top.type = 2;
case '4dof'
nano_hexapod.flex_top.type = 3;
case 'flexible'
nano_hexapod.flex_top.type = 4;
end
nano_hexapod.flex_top.kRx = args.flex_top_kRx; % X bending stiffness [Nm/rad]
nano_hexapod.flex_top.kRy = args.flex_top_kRy; % Y bending stiffness [Nm/rad]
nano_hexapod.flex_top.kRz = args.flex_top_kRz; % Torsionnal stiffness [Nm/rad]
nano_hexapod.flex_top.kz = args.flex_top_kz; % Axial stiffness [N/m]
nano_hexapod.flex_top.cRx = args.flex_top_cRx; % [Nm/(rad/s)]
nano_hexapod.flex_top.cRy = args.flex_top_cRy; % [Nm/(rad/s)]
nano_hexapod.flex_top.cRz = args.flex_top_cRz; % [Nm/(rad/s)]
nano_hexapod.flex_top.cz = args.flex_top_cz; %[N/(m/s)]
Relative Motion Sensor
nano_hexapod.motion_sensor = struct();
switch args.motion_sensor_type
case 'struts'
nano_hexapod.motion_sensor.type = 1;
case 'plates'
nano_hexapod.motion_sensor.type = 2;
end
Amplified Piezoelectric Actuator
nano_hexapod.actuator = struct();
switch args.actuator_type
case '2dof'
nano_hexapod.actuator.type = 1;
case 'flexible frame'
nano_hexapod.actuator.type = 2;
case 'flexible'
nano_hexapod.actuator.type = 3;
end
nano_hexapod.actuator.Ga = args.actuator_Ga; % Actuator gain [N/V]
nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m]
2dof
nano_hexapod.actuator.k = args.actuator_k; % [N/m]
nano_hexapod.actuator.ke = args.actuator_ke; % [N/m]
nano_hexapod.actuator.ka = args.actuator_ka; % [N/m]
nano_hexapod.actuator.c = args.actuator_c; % [N/(m/s)]
nano_hexapod.actuator.ce = args.actuator_ce; % [N/(m/s)]
nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)]
nano_hexapod.actuator.Leq = args.actuator_Leq; % [m]
Flexible frame and fully flexible
switch args.actuator_type
case 'flexible frame'
nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]
case 'flexible'
nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
end
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m]
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
Geometry
nano_hexapod.geometry = struct();
Center of joints $a_i$ with respect to {F}:
Fa = [[-86.05, -74.78, 22.49],
[ 86.05, -74.78, 22.49],
[ 107.79, -37.13, 22.49],
[ 21.74, 111.91, 22.49],
[-21.74, 111.91, 22.49],
[-107.79, -37.13, 22.49]]'*1e-3; % Ai w.r.t. {F} [m]
Center of joints $b_i$ with respect to {M}:
Mb = [[-28.47, -106.25, -22.50],
[ 28.47, -106.25, -22.50],
[ 106.25, 28.47, -22.50],
[ 77.78, 77.78, -22.50],
[-77.78, 77.78, -22.50],
[-106.25, 28.47, -22.50]]'*1e-3; % Bi w.r.t. {M} [m]
Now compute the positions $b_i$ with respect to {F}:
Fb = Mb + [0; 0; 95e-3]; % Bi w.r.t. {F} [m]
The unit vector representing the orientation of the struts can then be computed:
si = Fb - Fa;
si = si./vecnorm(si); % Normalize
Location of encoder measurement points when fixed on the plates:
Fc = [[-29.362, -105.765, 52.605]
[ 29.362, -105.765, 52.605]
[ 106.276, 27.454, 52.605]
[ 76.914, 78.31, 52.605]
[-76.914, 78.31, 52.605]
[-106.276, 27.454, 52.605]]'*1e-3; % Meas pos w.r.t. {F}
Mc = Fc - [0; 0; 95e-3]; % Meas pos w.r.t. {M}
nano_hexapod.geometry.Fa = Fa;
nano_hexapod.geometry.Fb = Fb;
nano_hexapod.geometry.Fc = Fc;
nano_hexapod.geometry.Mb = Mb;
nano_hexapod.geometry.Mc = Mc;
nano_hexapod.geometry.si = si;
nano_hexapod.geometry.MO_B = args.MO_B;
Jacobian for Actuators
Bb = Mb - [0; 0; args.MO_B];
nano_hexapod.geometry.J = [nano_hexapod.geometry.si', cross(Bb, nano_hexapod.geometry.si)'];
Jacobian for Sensors
switch args.motion_sensor_type
case 'struts'
nano_hexapod.geometry.Js = nano_hexapod.geometry.J;
case 'plates'
Bc = Mc - [0; 0; args.MO_B];
nano_hexapod.geometry.Js = [nano_hexapod.geometry.si', cross(Bc, nano_hexapod.geometry.si)'];
end
Controller
switch args.controller_type
case 'none'
nano_hexapod.controller.type = 1;
case 'iff'
nano_hexapod.controller.type = 2;
case 'dvf'
nano_hexapod.controller.type = 3;
end
Save the Structure
if nargout == 0
save('./mat/stages.mat', 'nano_hexapod', '-append');
end