nass-simscape/org/stewart_platform.org

28 KiB

Stewart Platform - Simscape Model

Introduction   ignore

Stewart platforms are generated in multiple steps.

We define 4 important frames:

  • $\{F\}$: Frame fixed to the Fixed base and located at the center of its bottom surface. This is used to fix the Stewart platform to some support.
  • $\{M\}$: Frame fixed to the Moving platform and located at the center of its top surface. This is used to place things on top of the Stewart platform.
  • $\{A\}$: Frame fixed to the fixed base. It defined the center of rotation of the moving platform.
  • $\{B\}$: Frame fixed to the moving platform. The motion of the moving platforms and forces applied to it are defined with respect to this frame $\{B\}$.

Then, we define the location of the spherical joints:

  • $\bm{a}_{i}$ are the position of the spherical joints fixed to the fixed base
  • $\bm{b}_{i}$ are the position of the spherical joints fixed to the moving platform

We define the rest position of the Stewart platform:

  • For simplicity, we suppose that the fixed base and the moving platform are parallel and aligned with the vertical axis at their rest position.
  • Thus, to define the rest position of the Stewart platform, we just have to defined its total height $H$. $H$ corresponds to the distance from the bottom of the fixed base to the top of the moving platform.

From $\bm{a}_{i}$ and $\bm{b}_{i}$, we can determine the length and orientation of each strut:

  • $l_{i}$ is the length of the strut
  • ${}^{A}\hat{\bm{s}}_{i}$ is the unit vector align with the strut

The position of the Spherical joints can be computed using various methods:

  • Cubic configuration
  • Circular configuration
  • Arbitrary position
  • These methods should be easily scriptable and corresponds to specific functions that returns ${}^{F}\bm{a}_{i}$ and ${}^{M}\bm{b}_{i}$. The input of these functions are the parameters corresponding to the wanted geometry.

For Simscape, we need:

  • The position and orientation of each spherical joint fixed to the fixed base: ${}^{F}\bm{a}_{i}$ and ${}^{F}\bm{R}_{a_{i}}$
  • The position and orientation of each spherical joint fixed to the moving platform: ${}^{M}\bm{b}_{i}$ and ${}^{M}\bm{R}_{b_{i}}$
  • The rest length of each strut: $l_{i}$
  • The stiffness and damping of each actuator: $k_{i}$ and $c_{i}$
  • The position of the frame $\{A\}$ with respect to the frame $\{F\}$: ${}^{F}\bm{O}_{A}$
  • The position of the frame $\{B\}$ with respect to the frame $\{M\}$: ${}^{M}\bm{O}_{B}$

initializeFramesPositions: Initialize the positions of frames {A}, {B}, {F} and {M}

<<sec:initializeFramesPositions>>

This Matlab function is accessible here.

Function description

  function [stewart] = initializeFramesPositions(args)
  % initializeFramesPositions - Initialize the positions of frames {A}, {B}, {F} and {M}
  %
  % Syntax: [stewart] = initializeFramesPositions(args)
  %
  % Inputs:
  %    - args - Can have the following fields:
  %        - H    [1x1] - Total Height of the Stewart Platform (height from {F} to {M}) [m]
  %        - MO_B [1x1] - Height of the frame {B} with respect to {M} [m]
  %
  % Outputs:
  %    - stewart - A structure with the following fields:
  %        - H    [1x1] - Total Height of the Stewart Platform [m]
  %        - FO_M [3x1] - Position of {M} with respect to {F} [m]
  %        - MO_B [3x1] - Position of {B} with respect to {M} [m]
  %        - FO_A [3x1] - Position of {A} with respect to {F} [m]

Documentation

/tdehaeze/nass-simscape/media/commit/ab10ea5895e764b1b2ca976ff42b1a0360c05f76/org/figs/stewart-frames-position.png
Definition of the position of the frames

Optional Parameters

  arguments
      args.H    (1,1) double {mustBeNumeric, mustBePositive} = 90e-3
      args.MO_B (1,1) double {mustBeNumeric} = 50e-3
  end

Initialize the Stewart structure

  stewart = struct();

Compute the position of each frame

  stewart.H = args.H; % Total Height of the Stewart Platform [m]

  stewart.FO_M = [0; 0; stewart.H]; % Position of {M} with respect to {F} [m]

  stewart.MO_B = [0; 0; args.MO_B]; % Position of {B} with respect to {M} [m]

  stewart.FO_A = stewart.MO_B + stewart.FO_M; % Position of {A} with respect to {F} [m]

Initialize the position of the Joints

generateCubicConfiguration: Generate a Cubic Configuration

<<sec:generateCubicConfiguration>>

This Matlab function is accessible here.

Function description

  function [stewart] = generateCubicConfiguration(stewart, args)
  % generateCubicConfiguration - Generate a Cubic Configuration
  %
  % Syntax: [stewart] = generateCubicConfiguration(stewart, args)
  %
  % Inputs:
  %    - stewart - A structure with the following fields
  %        - H   [1x1] - Total height of the platform [m]
  %    - args - Can have the following fields:
  %        - Hc  [1x1] - Height of the "useful" part of the cube [m]
  %        - FOc [1x1] - Height of the center of the cube with respect to {F} [m]
  %        - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]
  %        - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]
  %
  % Outputs:
  %    - stewart - updated Stewart structure with the added fields:
  %        - Fa  [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
  %        - Mb  [3x6] - Its i'th column is the position vector of joint bi with respect to {M}

Documentation

/tdehaeze/nass-simscape/media/commit/ab10ea5895e764b1b2ca976ff42b1a0360c05f76/org/figs/cubic-configuration-definition.png
Cubic Configuration

Optional Parameters

  arguments
      stewart
      args.Hc  (1,1) double {mustBeNumeric, mustBePositive} = 60e-3
      args.FOc (1,1) double {mustBeNumeric} = 50e-3
      args.FHa (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
      args.MHb (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
  end

Position of the Cube

We define the useful points of the cube with respect to the Cube's center. ${}^{C}C$ are the 6 vertices of the cubes expressed in a frame {C} which is located at the center of the cube and aligned with {F} and {M}.

  sx = [ 2; -1; -1];
  sy = [ 0;  1; -1];
  sz = [ 1;  1;  1];

  R = [sx, sy, sz]./vecnorm([sx, sy, sz]);

  L = args.Hc*sqrt(3);

  Cc = R'*[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] - [0;0;1.5*args.Hc];

  CCf = [Cc(:,1), Cc(:,3), Cc(:,3), Cc(:,5), Cc(:,5), Cc(:,1)]; % CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg
  CCm = [Cc(:,2), Cc(:,2), Cc(:,4), Cc(:,4), Cc(:,6), Cc(:,6)]; % CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg

Compute the pose

We can compute the vector of each leg ${}^{C}\hat{\bm{s}}_{i}$ (unit vector from ${}^{C}C_{f}$ to ${}^{C}C_{m}$).

  CSi = (CCm - CCf)./vecnorm(CCm - CCf);

We now which to compute the position of the joints $a_{i}$ and $b_{i}$.

  stewart.Fa = CCf + [0; 0; args.FOc] + ((args.FHa-(args.FOc-args.Hc/2))./CSi(3,:)).*CSi;
  stewart.Mb = CCf + [0; 0; args.FOc-stewart.H] + ((stewart.H-args.MHb-(args.FOc-args.Hc/2))./CSi(3,:)).*CSi;

generateGeneralConfiguration: Generate a Very General Configuration

<<sec:generateGeneralConfiguration>>

This Matlab function is accessible here.

Function description

  function [stewart] = generateGeneralConfiguration(stewart, args)
  % generateGeneralConfiguration - Generate a Very General Configuration
  %
  % Syntax: [stewart] = generateGeneralConfiguration(stewart, args)
  %
  % Inputs:
  %    - args - Can have the following fields:
  %        - FH  [1x1] - Height of the position of the fixed joints with respect to the frame {F} [m]
  %        - FR  [1x1] - Radius of the position of the fixed joints in the X-Y [m]
  %        - FTh [6x1] - Angles of the fixed joints in the X-Y plane with respect to the X axis [rad]
  %        - MH  [1x1] - Height of the position of the mobile joints with respect to the frame {M} [m]
  %        - FR  [1x1] - Radius of the position of the mobile joints in the X-Y [m]
  %        - MTh [6x1] - Angles of the mobile joints in the X-Y plane with respect to the X axis [rad]
  %
  % Outputs:
  %    - stewart - updated Stewart structure with the added fields:
  %        - Fa  [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
  %        - Mb  [3x6] - Its i'th column is the position vector of joint bi with respect to {M}

Documentation

Joints are positions on a circle centered with the Z axis of {F} and {M} and at a chosen distance from {F} and {M}. The radius of the circles can be chosen as well as the angles where the joints are located.

Optional Parameters

  arguments
      stewart
      args.FH  (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
      args.FR  (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
      args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180);
      args.MH  (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
      args.MR  (1,1) double {mustBeNumeric, mustBePositive} = 70e-3;
      args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180);
  end

Compute the pose

  stewart.Fa = zeros(3,6);
  stewart.Mb = zeros(3,6);
  for i = 1:6
    stewart.Fa(:,i) = [args.FR*cos(args.FTh(i)); args.FR*sin(args.FTh(i)); args.FH];
    stewart.Mb(:,i) = [args.MR*cos(args.MTh(i)); args.MR*sin(args.MTh(i)); -args.MH];
  end

computeJointsPose: Compute the Pose of the Joints

<<sec:computeJointsPose>>

This Matlab function is accessible here.

Function description

  function [stewart] = computeJointsPose(stewart)
  % computeJointsPose -
  %
  % Syntax: [stewart] = computeJointsPose(stewart)
  %
  % Inputs:
  %    - stewart - A structure with the following fields
  %        - Fa   [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
  %        - Mb   [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
  %        - FO_A [3x1] - Position of {A} with respect to {F}
  %        - MO_B [3x1] - Position of {B} with respect to {M}
  %        - FO_M [3x1] - Position of {M} with respect to {F}
  %
  % Outputs:
  %    - stewart - A structure with the following added fields
  %        - Aa  [3x6]   - The i'th column is the position of ai with respect to {A}
  %        - Ab  [3x6]   - The i'th column is the position of bi with respect to {A}
  %        - Ba  [3x6]   - The i'th column is the position of ai with respect to {B}
  %        - Bb  [3x6]   - The i'th column is the position of bi with respect to {B}
  %        - l   [6x1]   - The i'th element is the initial length of strut i
  %        - As  [3x6]   - The i'th column is the unit vector of strut i expressed in {A}
  %        - Bs  [3x6]   - The i'th column is the unit vector of strut i expressed in {B}
  %        - FRa [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the bottom of the i'th strut from {F}
  %        - MRb [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the top of the i'th strut from {M}

Documentation

/tdehaeze/nass-simscape/media/commit/ab10ea5895e764b1b2ca976ff42b1a0360c05f76/org/figs/stewart-struts.png
Position and orientation of the struts

Compute the position of the Joints

  stewart.Aa = stewart.Fa - repmat(stewart.FO_A, [1, 6]);
  stewart.Bb = stewart.Mb - repmat(stewart.MO_B, [1, 6]);

  stewart.Ab = stewart.Bb - repmat(-stewart.MO_B-stewart.FO_M+stewart.FO_A, [1, 6]);
  stewart.Ba = stewart.Aa - repmat( stewart.MO_B+stewart.FO_M-stewart.FO_A, [1, 6]);

Compute the strut length and orientation

  stewart.As = (stewart.Ab - stewart.Aa)./vecnorm(stewart.Ab - stewart.Aa); % As_i is the i'th vector of As

  stewart.l = vecnorm(stewart.Ab - stewart.Aa)';
  stewart.Bs = (stewart.Bb - stewart.Ba)./vecnorm(stewart.Bb - stewart.Ba);

Compute the orientation of the Joints

  stewart.FRa = zeros(3,3,6);
  stewart.MRb = zeros(3,3,6);

  for i = 1:6
    stewart.FRa(:,:,i) = [cross([0;1;0], stewart.As(:,i)) , cross(stewart.As(:,i), cross([0;1;0], stewart.As(:,i))) , stewart.As(:,i)];
    stewart.FRa(:,:,i) = stewart.FRa(:,:,i)./vecnorm(stewart.FRa(:,:,i));

    stewart.MRb(:,:,i) = [cross([0;1;0], stewart.Bs(:,i)) , cross(stewart.Bs(:,i), cross([0;1;0], stewart.Bs(:,i))) , stewart.Bs(:,i)];
    stewart.MRb(:,:,i) = stewart.MRb(:,:,i)./vecnorm(stewart.MRb(:,:,i));
  end

initializeStrutDynamics: Add Stiffness and Damping properties of each strut

<<sec:initializeStrutDynamics>>

This Matlab function is accessible here.

Function description

  function [stewart] = initializeStrutDynamics(stewart, args)
  % initializeStrutDynamics - Add Stiffness and Damping properties of each strut
  %
  % Syntax: [stewart] = initializeStrutDynamics(args)
  %
  % Inputs:
  %    - args - Structure with the following fields:
  %        - Ki [6x1] - Stiffness of each strut [N/m]
  %        - Ci [6x1] - Damping of each strut [N/(m/s)]
  %
  % Outputs:
  %    - stewart - updated Stewart structure with the added fields:
  %        - Ki [6x1] - Stiffness of each strut [N/m]
  %        - Ci [6x1] - Damping of each strut [N/(m/s)]

Optional Parameters

  arguments
      stewart
      args.Ki (6,1) double {mustBeNumeric, mustBePositive} = 1e6*ones(6,1)
      args.Ci (6,1) double {mustBeNumeric, mustBePositive} = 1e3*ones(6,1)
  end

Add Stiffness and Damping properties of each strut

  stewart.Ki = args.Ki;
  stewart.Ci = args.Ci;

computeJacobian: Compute the Jacobian Matrix

<<sec:computeJacobian>>

This Matlab function is accessible here.

Function description

  function [stewart] = computeJacobian(stewart)
  % computeJacobian -
  %
  % Syntax: [stewart] = computeJacobian(stewart)
  %
  % Inputs:
  %    - stewart - With at least the following fields:
  %        - As [3x6] - The 6 unit vectors for each strut expressed in {A}
  %        - Ab [3x6] - The 6 position of the joints bi expressed in {A}
  %
  % Outputs:
  %    - stewart - With the 3 added field:
  %        - J [6x6] - The Jacobian Matrix
  %        - K [6x6] - The Stiffness Matrix
  %        - C [6x6] - The Compliance Matrix

Compute Jacobian Matrix

  stewart.J = [stewart.As' , cross(stewart.Ab, stewart.As)'];

Compute Stiffness Matrix

  stewart.K = stewart.J'*diag(stewart.Ki)*stewart.J;

Compute Compliance Matrix

  stewart.C = inv(stewart.K);

Initialize the Geometry of the Mechanical Elements

initializeCylindricalPlatforms: Initialize the geometry of the Fixed and Mobile Platforms

<<sec:initializeCylindricalPlatforms>>

This Matlab function is accessible here.

Function description

  function [stewart] = initializeCylindricalPlatforms(stewart, args)
  % initializeCylindricalPlatforms - Initialize the geometry of the Fixed and Mobile Platforms
  %
  % Syntax: [stewart] = initializeCylindricalPlatforms(args)
  %
  % Inputs:
  %    - args - Structure with the following fields:
  %        - Fpm [1x1] - Fixed Platform Mass [kg]
  %        - Fph [1x1] - Fixed Platform Height [m]
  %        - Fpr [1x1] - Fixed Platform Radius [m]
  %        - Mpm [1x1] - Mobile Platform Mass [kg]
  %        - Mph [1x1] - Mobile Platform Height [m]
  %        - Mpr [1x1] - Mobile Platform Radius [m]
  %
  % Outputs:
  %    - stewart - updated Stewart structure with the added fields:
  %      - platforms [struct] - structure with the following fields:
  %        - Fpm [1x1] - Fixed Platform Mass [kg]
  %        - Msi [3x3] - Mobile Platform Inertia matrix [kg*m^2]
  %        - Fph [1x1] - Fixed Platform Height [m]
  %        - Fpr [1x1] - Fixed Platform Radius [m]
  %        - Mpm [1x1] - Mobile Platform Mass [kg]
  %        - Fsi [3x3] - Fixed Platform Inertia matrix [kg*m^2]
  %        - Mph [1x1] - Mobile Platform Height [m]
  %        - Mpr [1x1] - Mobile Platform Radius [m]

Optional Parameters

  arguments
      stewart
      args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 1
      args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
      args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 125e-3
      args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 1
      args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
      args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
  end

Create the platforms struct

  platforms = struct();

  platforms.Fpm = args.Fpm;
  platforms.Fph = args.Fph;
  platforms.Fpr = args.Fpr;
  platforms.Fpi = diag([1/12 * platforms.Fpm * (3*platforms.Fpr^2 + platforms.Fph^2), ...
                        1/12 * platforms.Fpm * (3*platforms.Fpr^2 + platforms.Fph^2), ...
                        1/2  * platforms.Fpm * platforms.Fpr^2]);

  platforms.Mpm = args.Mpm;
  platforms.Mph = args.Mph;
  platforms.Mpr = args.Mpr;
  platforms.Mpi = diag([1/12 * platforms.Mpm * (3*platforms.Mpr^2 + platforms.Mph^2), ...
                        1/12 * platforms.Mpm * (3*platforms.Mpr^2 + platforms.Mph^2), ...
                        1/2  * platforms.Mpm * platforms.Mpr^2]);

Save the platforms struct

  stewart.platforms = platforms;

initializeCylindricalStruts: Define the mass and moment of inertia of cylindrical struts

<<sec:initializeCylindricalStruts>>

This Matlab function is accessible here.

Function description

  function [stewart] = initializeCylindricalStruts(stewart, args)
  % initializeCylindricalStruts - Define the mass and moment of inertia of cylindrical struts
  %
  % Syntax: [stewart] = initializeCylindricalStruts(args)
  %
  % Inputs:
  %    - args - Structure with the following fields:
  %        - Fsm [1x1] - Mass of the Fixed part of the struts [kg]
  %        - Fsh [1x1] - Height of cylinder for the Fixed part of the struts [m]
  %        - Fsr [1x1] - Radius of cylinder for the Fixed part of the struts [m]
  %        - Msm [1x1] - Mass of the Mobile part of the struts [kg]
  %        - Msh [1x1] - Height of cylinder for the Mobile part of the struts [m]
  %        - Msr [1x1] - Radius of cylinder for the Mobile part of the struts [m]
  %
  % Outputs:
  %    - stewart - updated Stewart structure with the added fields:
  %      - struts [struct] - structure with the following fields:
  %        - Fsm [6x1]   - Mass of the Fixed part of the struts [kg]
  %        - Fsi [3x3x6] - Moment of Inertia for the Fixed part of the struts [kg*m^2]
  %        - Msm [6x1]   - Mass of the Mobile part of the struts [kg]
  %        - Msi [3x3x6] - Moment of Inertia for the Mobile part of the struts [kg*m^2]
  %        - Fsh [6x1]   - Height of cylinder for the Fixed part of the struts [m]
  %        - Fsr [6x1]   - Radius of cylinder for the Fixed part of the struts [m]
  %        - Msh [6x1]   - Height of cylinder for the Mobile part of the struts [m]
  %        - Msr [6x1]   - Radius of cylinder for the Mobile part of the struts [m]

Optional Parameters

  arguments
      stewart
      args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
      args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
      args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
      args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
      args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
      args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
  end

Create the struts structure

  struts = struct();

  struts.Fsm = ones(6,1).*args.Fsm;
  struts.Msm = ones(6,1).*args.Msm;

  struts.Fsh = ones(6,1).*args.Fsh;
  struts.Fsr = ones(6,1).*args.Fsr;
  struts.Msh = ones(6,1).*args.Msh;
  struts.Msr = ones(6,1).*args.Msr;

  struts.Fsi = zeros(3, 3, 6);
  struts.Msi = zeros(3, 3, 6);
  for i = 1:6
    struts.Fsi(:,:,i) = diag([1/12 * struts.Fsm(i) * (3*struts.Fsr(i)^2 + struts.Fsh(i)^2), ...
                              1/12 * struts.Fsm(i) * (3*struts.Fsr(i)^2 + struts.Fsh(i)^2), ...
                              1/2  * struts.Fsm(i) * struts.Fsr(i)^2]);
    struts.Msi(:,:,i) = diag([1/12 * struts.Msm(i) * (3*struts.Msr(i)^2 + struts.Msh(i)^2), ...
                              1/12 * struts.Msm(i) * (3*struts.Msr(i)^2 + struts.Msh(i)^2), ...
                              1/2  * struts.Msm(i) * struts.Msr(i)^2]);
  end
  stewart.struts = struts;

Utility Functions

inverseKinematics: Compute Inverse Kinematics

<<sec:inverseKinematics>>

This Matlab function is accessible here.

Function description

  function [Li, dLi] = inverseKinematics(stewart, args)
  % inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}
  %
  % Syntax: [stewart] = inverseKinematics(stewart)
  %
  % Inputs:
  %    - stewart - A structure with the following fields
  %        - Aa   [3x6] - The positions ai expressed in {A}
  %        - Bb   [3x6] - The positions bi expressed in {B}
  %    - args - Can have the following fields:
  %        - AP   [3x1] - The wanted position of {B} with respect to {A}
  %        - ARB  [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
  %
  % Outputs:
  %    - Li   [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}
  %    - dLi  [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}

Optional Parameters

  arguments
      stewart
      args.AP  (3,1) double {mustBeNumeric} = zeros(3,1)
      args.ARB (3,3) double {mustBeNumeric} = eye(3)
  end

Theory

For inverse kinematic analysis, it is assumed that the position ${}^A\bm{P}$ and orientation of the moving platform ${}^A\bm{R}_B$ are given and the problem is to obtain the joint variables, namely, $\bm{L} = [l_1, l_2, \dots, l_6]^T$.

From the geometry of the manipulator, the loop closure for each limb, $i = 1, 2, \dots, 6$ can be written as

\begin{align*} l_i {}^A\hat{\bm{s}}_i &= {}^A\bm{A} + {}^A\bm{b}_i - {}^A\bm{a}_i \\ &= {}^A\bm{A} + {}^A\bm{R}_b {}^B\bm{b}_i - {}^A\bm{a}_i \end{align*}

To obtain the length of each actuator and eliminate $\hat{\bm{s}}_i$, it is sufficient to dot multiply each side by itself:

\begin{equation} l_i^2 \left[ {}^A\hat{\bm{s}}_i^T {}^A\hat{\bm{s}}_i \right] = \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]^T \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right] \end{equation}

Hence, for $i = 1, 2, \dots, 6$, each limb length can be uniquely determined by:

\begin{equation} l_i = \sqrt{{}^A\bm{P}^T {}^A\bm{P} + {}^B\bm{b}_i^T {}^B\bm{b}_i + {}^A\bm{a}_i^T {}^A\bm{a}_i - 2 {}^A\bm{P}^T {}^A\bm{a}_i + 2 {}^A\bm{P}^T \left[{}^A\bm{R}_B {}^B\bm{b}_i\right] - 2 \left[{}^A\bm{R}_B {}^B\bm{b}_i\right]^T {}^A\bm{a}_i} \end{equation}

If the position and orientation of the moving platform lie in the feasible workspace of the manipulator, one unique solution to the limb length is determined by the above equation. Otherwise, when the limbs' lengths derived yield complex numbers, then the position or orientation of the moving platform is not reachable.

Compute

  Li = sqrt(args.AP'*args.AP + diag(stewart.Bb'*stewart.Bb) + diag(stewart.Aa'*stewart.Aa) - (2*args.AP'*stewart.Aa)' + (2*args.AP'*(args.ARB*stewart.Bb))' - diag(2*(args.ARB*stewart.Bb)'*stewart.Aa));
  dLi = Li-stewart.l;

forwardKinematicsApprox: Compute the Forward Kinematics

<<sec:forwardKinematicsApprox>>

This Matlab function is accessible here.

Function description

  function [P, R] = forwardKinematicsApprox(stewart, args)
  % forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using
  %                           the Jacobian Matrix
  %
  % Syntax: [P, R] = forwardKinematicsApprox(stewart, args)
  %
  % Inputs:
  %    - stewart - A structure with the following fields
  %        - J  [6x6] - The Jacobian Matrix
  %    - args - Can have the following fields:
  %        - dL [6x1] - Displacement of each strut [m]
  %
  % Outputs:
  %    - P  [3x1] - The estimated position of {B} with respect to {A}
  %    - R  [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}

Optional Parameters

  arguments
      stewart
      args.dL (6,1) double {mustBeNumeric} = zeros(6,1)
  end

Computation

From a small displacement of each strut $d\bm{\mathcal{L}}$, we can compute the position and orientation of {B} with respect to {A} using the following formula: \[ d \bm{\mathcal{X}} = \bm{J}^{-1} d\bm{\mathcal{L}} \]

  X = stewart.J\args.dL;

The position vector corresponds to the first 3 elements.

  P = X(1:3);

The next 3 elements are the orientation of {B} with respect to {A} expressed using the screw axis.

  theta = norm(X(4:6));
  s = X(4:6)/theta;

We then compute the corresponding rotation matrix.

  R = [s(1)^2*(1-cos(theta)) + cos(theta) ,        s(1)*s(2)*(1-cos(theta)) - s(3)*sin(theta), s(1)*s(3)*(1-cos(theta)) + s(2)*sin(theta);
       s(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta),         s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);
       s(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];