nass-simscape/org/control_voice_coil.org

34 KiB

Control of the NASS with Voice coil actuators

Introduction   ignore

The goal here is to study the use of a voice coil based nano-hexapod. That is to say a nano-hexapod with a very small stiffness.

/tdehaeze/nass-simscape/media/commit/7e14a32efe4d5c002db54016944f698de4ae8809/org/figs/cascade_control_architecture.png

Cascaded Control consisting of (from inner to outer loop): IFF, Linearization Loop, Tracking Control in the frame of the Legs

Initialization

We initialize all the stages with the default parameters.

  initializeGround();
  initializeGranite();
  initializeTy();
  initializeRy();
  initializeRz();
  initializeMicroHexapod();
  initializeAxisc();
  initializeMirror();

The nano-hexapod is a voice coil based hexapod and the sample has a mass of 1kg.

  initializeNanoHexapod('actuator', 'lorentz');
  initializeSample('mass', 1);

We set the references that corresponds to a tomography experiment.

  initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
  initializeDisturbances();
  initializeController('type', 'cascade-hac-lac');
  initializeSimscapeConfiguration('gravity', true);

We log the signals.

  initializeLoggingConfiguration('log', 'all');
  Kx = tf(zeros(6));
  Kl = tf(zeros(6));
  Kiff = tf(zeros(6));

Low Authority Control - Integral Force Feedback $\bm{K}_\text{IFF}$

<<sec:lac_iff>>

Identification

Let's first identify the plant for the IFF controller.

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],    1, 'openinput');               io_i = io_i + 1; % Actuator Inputs
  io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm');  io_i = io_i + 1; % Force Sensors

  %% Run the linearization
  G_iff = linearize(mdl, io, 0);
  G_iff.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
  G_iff.OutputName = {'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'};

Plant

The obtained plant for IFF is shown in Figure fig:cascade_vc_iff_plant.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/7e14a32efe4d5c002db54016944f698de4ae8809/org/figs/cascade_vc_iff_plant.png
IFF Plant (png, pdf)

Root Locus

As seen in the root locus (Figure fig:cascade_vc_iff_root_locus, no damping can be added to modes corresponding to the resonance of the micro-station.

However, critical damping can be achieve for the resonances of the nano-hexapod as shown in the zoomed part of the root (Figure fig:cascade_vc_iff_root_locus, left part). The maximum damping is obtained for a control gain of $\approx 70$.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/7e14a32efe4d5c002db54016944f698de4ae8809/org/figs/cascade_vc_iff_root_locus.png
Root Locus for the IFF control (png, pdf)

Controller and Loop Gain

We create the $6 \times 6$ diagonal Integral Force Feedback controller. The obtained loop gain is shown in Figure fig:cascade_vc_iff_loop_gain.

  Kiff = -70/s*eye(6);
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/7e14a32efe4d5c002db54016944f698de4ae8809/org/figs/cascade_vc_iff_loop_gain.png
Obtained Loop gain the IFF Control (png, pdf)

High Authority Control in the joint space - $\bm{K}_\mathcal{L}$

<<sec:hac_joint_space>>

Identification of the damped plant

Let's identify the dynamics from $\bm{\tau}^\prime$ to $d\bm{\mathcal{L}}$ as shown in Figure fig:cascade_control_architecture.

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],    1, 'input');               io_i = io_i + 1; % Actuator Inputs
  io(io_i) = linio([mdl, '/Micro-Station'], 3, 'output', [], 'Dnlm');  io_i = io_i + 1; % Leg Displacement

  %% Run the linearization
  Gl = linearize(mdl, io, 0);
  Gl.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
  Gl.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'};

There are some unstable poles in the Plant with very small imaginary parts. These unstable poles are probably not physical, and they disappear when taking the minimum realization of the plant.

  isstable(Gl)
  Gl = minreal(Gl);
  isstable(Gl)

Obtained Plant

The obtained dynamics is shown in Figure fig:cascade_vc_hac_joint_plant.

Few things can be said on the dynamics:

  • the dynamics of the diagonal elements are almost all the same
  • the system is well decoupled below the resonances of the nano-hexapod (1Hz)
  • the dynamics of the diagonal elements are almost equivalent to a critically damped mass-spring-system with some spurious resonances above 50Hz corresponding to the resonances of the micro-station
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/7e14a32efe4d5c002db54016944f698de4ae8809/org/figs/cascade_vc_hac_joint_plant.png
Plant for the High Authority Control in the Joint Space (png, pdf)

Controller Design and Loop Gain

As the plant is well decoupled, a diagonal plant is designed.

  wc = 2*pi*5; % Bandwidth Bandwidth [rad/s]

  h = 2; % Lead parameter

  Kl = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ... % Lead
       (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ... % Lead
       (s + 2*pi*10)/s * ... % Weak Integrator
       (s + 2*pi*1)/s * ... % Weak Integrator
       1/(1 + s/2/pi/10); % Low pass filter after crossover

  % Normalization of the gain of have a loop gain of 1 at frequency wc
  Kl = Kl.*diag(1./diag(abs(freqresp(Gl*Kl, wc))));

On the usefulness of the High Authority Control loop / Linearization loop

Introduction   ignore

Let's see what happens is we omit the HAC loop and we directly try to control the damped plant using the measurement of the sample with respect to the granite $\bm{\mathcal{X}}$.

We can do that in two different ways:

  \begin{tikzpicture}
    % Blocs
    \node[block={3.0cm}{3.0cm}] (P) {Plant};
    \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
    \coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$);
    \coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
    \coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$);

    \node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
    \node[addb={+}{}{-}{}{}, left= of inputF] (addF) {};
    \node[block, left= of addF] (J) {$\bm{J}^{-T}$};
    \node[block, left= of J] (K) {$\bm{K}_\mathcal{X}$};
    \node[addb={+}{}{}{}{-}, left= of K] (subr) {};

    % Connections and labels
    \draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
    \draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
    \draw[->] (Kiff.west) -| (addF.north);
    \draw[->] (addF.east) -- (inputF) node[above left]{$\bm{\tau}$};

    \draw[->] (outputL) -- ++(1, 0) node[above left]{$d\bm{\mathcal{L}}$};

    \draw[->] (outputX) -- ++(1.6, 0);
    \draw[->] ($(outputX) + (1.2, 0)$)node[branch]{} node[above]{$\bm{\mathcal{X}}$} -- ++(0, -2) -| (subr.south);

    \draw[<-] (subr.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
    \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{\mathcal{X}}$};
    \draw[->] (K.east) -- (J.west) node[above left]{$\bm{\mathcal{F}}$};
    \draw[->] (J.east) -- (addF.west) node[above left]{$\bm{\tau}^\prime$};
  \end{tikzpicture}

/tdehaeze/nass-simscape/media/commit/7e14a32efe4d5c002db54016944f698de4ae8809/org/figs/control_architecture_iff_X.png

IFF control + primary controller in the task space
  \begin{tikzpicture}
    % Blocs
    \node[block={3.0cm}{3.0cm}] (P) {Plant};
    \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
    \coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$);
    \coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
    \coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$);

    \node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
    \node[addb={+}{}{-}{}{}, left= of inputF] (addF) {};
    \node[block, left= of addF] (K) {$\bm{K}_\mathcal{L}$};
    \node[block, left= of K] (J) {$\bm{J}$};
    \node[addb={+}{}{}{}{-}, left= of J] (subr) {};

    % Connections and labels
    \draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
    \draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
    \draw[->] (Kiff.west) -| (addF.north);
    \draw[->] (addF.east) -- (inputF) node[above left]{$\bm{\tau}$};

    \draw[->] (outputL) -- ++(1, 0) node[above left]{$d\bm{\mathcal{L}}$};

    \draw[->] (outputX) -- ++(1.6, 0);
    \draw[->] ($(outputX) + (1.2, 0)$)node[branch]{} node[above]{$\bm{\mathcal{X}}$} -- ++(0, -2) -| (subr.south);

    \draw[<-] (subr.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
    \draw[->] (subr.east) -- (J.west) node[above left]{$\bm{\epsilon}_{\mathcal{X}}$};
    \draw[->] (J.east) -- (K.west) node[above left]{$\bm{\epsilon}_{\mathcal{L}}$};
    \draw[->] (K.east) -- (addF.west) node[above left]{$\bm{\tau}^\prime$};
  \end{tikzpicture}

/tdehaeze/nass-simscape/media/commit/7e14a32efe4d5c002db54016944f698de4ae8809/org/figs/control_architecture_iff_L.png

HAC-LAC control architecture in the frame of the legs

Identification

  initializeController('type', 'hac-iff');
  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller/HAC-IFF/Kx'],  1, 'input');    io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror

  %% Run the linearization
  G = linearize(mdl, io, 0);
  G.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
  G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
  isstable(G)
  G = -minreal(G);
  isstable(G)

Plant in the Task space

The obtained plant is shown in Figure

  Gx = G*inv(nano_hexapod.J');

Plant in the Leg's space

  Gl = nano_hexapod.J*G;

Primary Controller in the task space - $\bm{K}_\mathcal{X}$

<<sec:primary_controller>>

Identification of the linearized plant

We know identify the dynamics between $\bm{r}_{\mathcal{X}_n}$ and $\bm{r}_\mathcal{X}$.

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller/Cascade-HAC-LAC/Kx'],  1, 'input'); io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En');      io_i = io_i + 1; % Position Errror

  %% Run the linearization
  Gx = linearize(mdl, io, 0);
  Gx.InputName  = {'rL1', 'rL2', 'rL3', 'rL4', 'rL5', 'rL6'};
  Gx.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};

As before, we take the minimum realization.

  isstable(Gx)
  Gx = -minreal(Gx);
  isstable(Gx)

Obtained Plant

Controller Design

  wc = 2*pi*200; % Bandwidth Bandwidth [rad/s]

  h = 2; % Lead parameter

  Kx = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ...
       (s + 2*pi*10)/s * ...
       (s + 2*pi*100)/s * ...
       1/(1+s/2/pi/500); % For Piezo
  % Kx = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * (s + 2*pi*10)/s * (s + 2*pi*1)/s ; % For voice coil

  % Normalization of the gain of have a loop gain of 1 at frequency wc
  Kx = Kx.*diag(1./diag(abs(freqresp(Gx*Kx, wc))));

Simulation

  load('mat/conf_simulink.mat');
  set_param(conf_simulink, 'StopTime', '2');

And we simulate the system.

  sim('nass_model');
  cascade_hac_lac_lorentz = simout;
  save('./mat/cascade_hac_lac.mat', 'cascade_hac_lac_lorentz', '-append');

Results

Load the simulation results

  load('./mat/experiment_tomography.mat', 'tomo_align_dist');
  load('./mat/cascade_hac_lac.mat', 'cascade_hac_lac', 'cascade_hac_lac_lorentz');

Control effort

Load the simulation results

  n_av = 4;
  han_win = hanning(ceil(length(cascade_hac_lac.Em.En.Data(:,1))/n_av));
  t = cascade_hac_lac.Em.En.Time;
  Ts = t(2)-t(1);

  [pxx_ol, f] = pwelch(tomo_align_dist.Em.En.Data, han_win, [], [], 1/Ts);
  [pxx_ca, ~] = pwelch(cascade_hac_lac.Em.En.Data, han_win, [], [], 1/Ts);
  [pxx_vc, ~] = pwelch(cascade_hac_lac_lorentz.Em.En.Data, han_win, [], [], 1/Ts);