nass-simscape/org/optimal_stiffness_disturbances.org

36 KiB

Determination of the optimal nano-hexapod's stiffness for reducing the effect of disturbances

Introduction   ignore

In this document is studied how the stiffness of the nano-hexapod will impact the effect of disturbances on the position error of the sample.

It is divided in the following sections:

  • Section sec:psd_disturbances: the disturbances are listed and their Power Spectral Densities (PSD) are shown
  • Section sec:effect_disturbances: the transfer functions from disturbances to the position error of the sample are computed for a wide range of nano-hexapod stiffnesses
  • Section sec:granite_stiffness:
  • Section sec:open_loop_budget_error: from both the PSD of the disturbances and the transfer function from disturbances to sample's position errors, we compute the resulting PSD and Cumulative Amplitude Spectrum (CAS)
  • Section sec:closed_loop_budget_error: from a simplistic model is computed the required control bandwidth to reduce the position error to acceptable values

Disturbances

<<sec:psd_disturbances>>

Introduction   ignore

The main disturbances considered here are:

  • $D_w$: Ground displacement in the $x$, $y$ and $z$ directions
  • $F_{ty}$: Forces applied by the Translation stage in the $x$ and $z$ directions
  • $F_{rz}$: Forces applied by the Spindle in the $z$ direction
  • $F_d$: Direct forces applied at the center of mass of the Payload

The level of these disturbances has been identified form experiments which are detailed in this document.

Plots   ignore

The measured Amplitude Spectral Densities (ASD) of these forces are shown in Figures fig:opt_stiff_dist_gm and fig:opt_stiff_dist_fty_frz.

In this study, the expected frequency content of the direct forces applied to the payload is not considered.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_dist_gm.png
Amplitude Spectral Density of the Ground Displacement (png, pdf)
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_dist_fty_frz.png
Amplitude Spectral Density of the "parasitic" forces comming from the Translation stage and the spindle (png, pdf)

Effect of disturbances on the position error

<<sec:effect_disturbances>>

Introduction   ignore

In this section, we use the Simscape model to identify the transfer function from disturbances to the position error of the sample. We do that for a wide range of nano-hexapod stiffnesses and we compare the obtained results.

Initialization

We initialize all the stages with the default parameters.

  initializeGround();
  initializeGranite();
  initializeTy();
  initializeRy();
  initializeRz();
  initializeMicroHexapod();
  initializeAxisc();
  initializeMirror();

We use a sample mass of 10kg.

  initializeSample('mass', 10);

We include gravity, and we use no controller.

  initializeSimscapeConfiguration('gravity', true);
  initializeController();
  initializeDisturbances('enable', false);
  initializeLoggingConfiguration('log', 'none');

Identification

The considered inputs are:

  • Dwx: Ground displacement in the $x$ direction
  • Dwy: Ground displacement in the $y$ direction
  • Dwz: Ground displacement in the $z$ direction
  • Fty_x: Forces applied by the Translation stage in the $x$ direction
  • Fty_z: Forces applied by the Translation stage in the $z$ direction
  • Frz_z: Forces applied by the Spindle in the $z$ direction
  • Fd: Direct forces applied at the center of mass of the Payload

The outputs are Ex, Ey, Ez, Erx, Ery, Erz which are the 3 positions and 3 orientations errors of the sample.

We initialize the set of the nano-hexapod stiffnesses, and for each of them, we identify the dynamics from defined inputs to defined outputs.

  Ks = logspace(3,9,7); % [N/m]

Sensitivity to Stages vibration (Filtering)

The sensitivity the stage vibrations are displayed:

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_sensitivity_Frz.png
Sensitivity to Spindle vertical motion error ($F_{rz}$) to the vertical error position of the sample ($E_z$) (png, pdf)
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_sensitivity_Fty_z.png
Sensitivity to Translation stage vertical motion error ($F_{ty,z}$) to the vertical error position of the sample ($E_z$) (png, pdf)
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_sensitivity_Fty_x.png
Sensitivity to Translation stage $x$ motion error ($F_{ty,x}$) to the error position of the sample in the $x$ direction ($E_x$) (png, pdf)

Effect of Ground motion (Transmissibility).

The effect of Ground motion on the position error of the sample is shown in Figure fig:opt_stiff_sensitivity_Dw.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_sensitivity_Dw.png
Sensitivity to Ground motion ($D_{w}$) to the position error of the sample ($E_y$ and $E_z$) (png, pdf)

Direct Forces (Compliance).

The effect of direct forces/torques applied on the sample (cable forces for instance) on the position error of the sample is shown in Figure fig:opt_stiff_sensitivity_Fd.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_sensitivity_Fd.png
Sensitivity to Direct forces and torques applied to the sample ($F_d$, $M_d$) to the position error of the sample (png, pdf)

Conclusion

Reducing the nano-hexapod stiffness generally lowers the sensitivity to stages vibration but increases the sensitivity to ground motion and direct forces.

In order to conclude on the optimal stiffness that will yield the smallest sample vibration, one has to include the level of disturbances. This is done in Section sec:open_loop_budget_error.

Effect of granite stiffness

<<sec:granite_stiffness>>

Introduction   ignore

In this section, we wish to see if a soft granite suspension could help in reducing the effect of disturbances on the position error of the sample.

Analytical Analysis

Simple mass-spring-damper model

Let's consider the system shown in Figure fig:2dof_system_granite_stiffness consisting of two stacked mass-spring-damper systems. The bottom one represents the granite, and the top one all the positioning stages. We want the smallest stage "deformation" $d = x^\prime - x$ due to ground motion $w$.

  \begin{tikzpicture}
    % ====================
    % Parameters
    % ====================
    \def\massw{2.2}  % Width of the masses
    \def\massh{0.8}  % Height of the masses
    \def\spaceh{1.2} % Height of the springs/dampers
    \def\dispw{0.3}  % Width of the dashed line for the displacement
    \def\disph{0.5}  % Height of the arrow for the displacements
    \def\bracs{0.05} % Brace spacing vertically
    \def\brach{-10pt} % Brace shift horizontaly
    % ====================


    % ====================
    % Ground
    % ====================
    \draw (-0.5*\massw, 0) -- (0.5*\massw, 0);
    \draw[dashed] (0.5*\massw, 0) -- ++(\dispw, 0) coordinate(dlow);
    \draw[->] (0.5*\massw+0.5*\dispw, 0) -- ++(0, \disph) node[right]{$w$};

    % ====================
    % Micro Station
    % ====================
    \begin{scope}[shift={(0, 0)}]
      % Mass
      \draw[fill=white] (-0.5*\massw, \spaceh) rectangle (0.5*\massw, \spaceh+\massh) node[pos=0.5]{$m$};

      % Spring, Damper, and Actuator
      \draw[spring] (-0.3*\massw, 0) -- (-0.3*\massw, \spaceh) node[midway, left=0.1]{$k$};
      \draw[damper] ( 0.3*\massw, 0) -- ( 0.3*\massw, \spaceh) node[midway, left=0.2]{$c$};

      % Displacements
      \draw[dashed] (0.5*\massw, \spaceh) -- ++(\dispw, 0);
      \draw[->] (0.5*\massw+0.5*\dispw, \spaceh) -- ++(0, \disph) node[right]{$x$};

      % Legend
      \draw[decorate, decoration={brace, amplitude=8pt}, xshift=\brach] %
      (-0.5*\massw, \bracs) -- (-0.5*\massw, \spaceh+\massh-\bracs) %
      node[midway,rotate=90,anchor=south,yshift=10pt,align=center]{Granite};
    \end{scope}

    % ====================
    % Nano Station
    % ====================
    \begin{scope}[shift={(0, \spaceh+\massh)}]
      % Mass
      \draw[fill=white] (-0.5*\massw, \spaceh) rectangle (0.5*\massw, \spaceh+\massh) node[pos=0.5]{$m^\prime$};

      % Spring, Damper, and Actuator
      \draw[spring] (-0.3*\massw, 0) -- (-0.3*\massw, \spaceh) node[midway, left=0.1]{$k^\prime$};
      \draw[damper] ( 0.3*\massw, 0) -- ( 0.3*\massw, \spaceh) node[midway, left=0.2]{$c^\prime$};

      % Displacements
      \draw[dashed] (0.5*\massw, \spaceh) -- ++(\dispw, 0) coordinate(dhigh);
      \draw[->] (0.5*\massw+0.5*\dispw, \spaceh) -- ++(0, \disph) node[right]{$x^\prime$};

      % Legend
      \draw[decorate, decoration={brace, amplitude=8pt}, xshift=\brach] %
      (-0.5*\massw, \bracs) -- (-0.5*\massw, \spaceh+\massh-\bracs) %
      node[midway,rotate=90,anchor=south,yshift=10pt,align=center]{Positioning\\Stages};
    \end{scope}
  \end{tikzpicture}

/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/2dof_system_granite_stiffness.png

Mass Spring Damper system consisting of a granite and a positioning stage

If we write the equation of motion of the system in Figure fig:2dof_system_granite_stiffness, we obtain:

\begin{align} m^\prime s^2 x^\prime &= (c^\prime s + k^\prime) (x - x^\prime) \\ ms^2 x &= (c^\prime s + k^\prime) (x^\prime - x) + (cs + k) (w - x) \end{align}

If we note $d = x^\prime - x$, we obtain:

\begin{equation} \frac{d}{w} = \frac{-m^\prime s^2 (cs + k)}{ (m^\prime s^2 + c^\prime s + k^\prime) (ms^2 + cs + k) + m^\prime s^2(c^\prime s + k^\prime)} \end{equation}

General Case

Let's now considering a general positioning stage defined by:

  • $G^\prime(s) = \frac{F}{x}$: its mechanical "impedance"
  • $D^\prime(s) = \frac{d}{x}$: its "deformation" transfer function
  \begin{tikzpicture}
    \def\massw{2.2}  % Width of the masses
    \def\massh{0.8}  % Height of the masses
    \def\spaceh{1.2} % Height of the springs/dampers
    \def\dispw{0.3}  % Width of the dashed line for the displacement
    \def\disph{0.5}  % Height of the arrow for the displacements
    \def\bracs{0.05} % Brace spacing vertically
    \def\brach{-10pt} % Brace shift horizontaly

    % Mass
    \draw[fill=white] (-0.5*\massw, \spaceh) rectangle node[left=6pt]{$m$} (0.5*\massw, \spaceh+\massh);

    % Spring, Damper, and Actuator
    \draw[spring] (-0.3*\massw, 0) -- (-0.3*\massw, \spaceh) node[midway, left=0.1]{$k$};
    \draw[damper] ( 0.3*\massw, 0) -- ( 0.3*\massw, \spaceh) node[midway, left=0.2]{$c$};

    % Ground
    \draw (-0.5*\massw, 0) -- (0.5*\massw, 0);
    % Groud Motion
    \draw[dashed] (0.5*\massw, 0) -- ++(\dispw, 0);
    \draw[->] (0.5*\massw+0.5*\dispw, 0) -- ++(0, \disph) node[right]{$w$};

    % Displacements
    \draw[dashed] (0.5*\massw, \spaceh+\massh) -- ++(2*\dispw, 0) coordinate(dhigh);
    \draw[->] (0.5*\massw+1.5*\dispw, \spaceh+\massh) -- ++(0, \disph) node[right]{$x$};

    % Legend
    \draw[decorate, decoration={brace, amplitude=8pt}, xshift=\brach] %
      (-0.5*\massw, \bracs) -- (-0.5*\massw, \spaceh+\massh-\bracs) %
      node[midway,rotate=90,anchor=south,yshift=10pt,align=center]{Granite};

    \begin{scope}[shift={(0, \spaceh+\massh)}]
      \node[piezo={2.2}{1.5}{6}, anchor=south] (piezo) at (0, 0){};
      \draw[->] (0,0)node[branch]{} -- ++(0, -0.6)node[above right]{$F$}

      \draw[<->] (1.1+0.5*\dispw,0) -- node[midway, right]{$d$} ++(0,1.5);

      \draw[decorate, decoration={brace, amplitude=8pt}, xshift=\brach] %
        ($(piezo.south west) + (-10pt, 0)$) -- ($(piezo.north west) + (-10pt, 0)$) %
        node[midway,rotate=90,anchor=south,yshift=10pt,align=center]{Positioning\\Stages};
    \end{scope}
  \end{tikzpicture}

/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/general_system_granite_stiffness.png

Mass Spring Damper representing the granite and a general representation of positioning stages

The equation of motion are:

\begin{align} ms^2 x &= (cs + k) (x - w) - F \\ F &= G^\prime(s) x \\ d &= D^\prime(s) x \end{align}

where:

  • $F$ is the force applied by the position stages on the granite mass

We can express $d$ as a function of $w$:

\begin{equation} \frac{d}{w} = \frac{D^\prime(s) (cs + k)}{ms^2 + cs + k + G^\prime(s)} \end{equation}

This is the transfer function that we would like to minimize.

Let's verify this formula for a simple mass/spring/damper positioning stage. In that case, we have:

\begin{align*} D^\prime(s) &= \frac{d}{x} = \frac{- m^\prime s^2}{m^\prime s^2 + c^\prime s + k^\prime} \\ G^\prime(s) &= \frac{F}{x} = \frac{m^\prime s^2(c^\prime s + k)}{m^\prime s^2 + c^\prime s + k^\prime} \end{align*}

And finally:

\begin{equation} \frac{d}{w} = \frac{-m^\prime s^2 (cs + k)}{ (m^\prime s^2 + c^\prime s + k^\prime) (ms^2 + cs + k) + m^\prime s^2(c^\prime s + k^\prime)} \end{equation}

which is the same as the previously derived equation.

Soft Granite

Let's initialize a soft granite and see how the sensitivity to disturbances will change.

  initializeGranite('K', 5e5*ones(3,1), 'C', 5e3*ones(3,1));

Effect of the Granite transfer function

From Figure fig:opt_stiff_soft_granite_Dw, we can see that having a "soft" granite suspension greatly lowers the sensitivity to ground motion. The sensitivity is indeed lowered starting from the resonance of the granite on its soft suspension (few Hz here).

From Figures fig:opt_stiff_soft_granite_Frz and fig:opt_stiff_soft_granite_Fd, we see that the change of granite suspension does not change a lot the sensitivity to both direct forces and stage vibrations.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_soft_granite_Dw.png
Change of sensibility to Ground motion when using a stiff Granite (solid curves) and a soft Granite (dashed curves) (png, pdf)
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_soft_granite_Frz.png
Change of sensibility to Spindle vibrations when using a stiff Granite (solid curves) and a soft Granite (dashed curves) (png, pdf)
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/60c41f1cbcd8cba6a5ca448bad7ef374d59cc8a9/org/figs/opt_stiff_soft_granite_Fd.png
Change of sensibility to direct forces when using a stiff Granite (solid curves) and a soft Granite (dashed curves) (png, pdf)

Conclusion

Having a soft granite suspension could greatly improve the sensitivity the ground motion and thus the level of sample vibration if it is found that ground motion is the limiting factor.

Open Loop Budget Error

<<sec:open_loop_budget_error>>

Introduction   ignore

Load of the identified disturbances and transfer functions

  load('./mat/dist_psd.mat', 'dist_f');
  load('./mat/opt_stiffness_disturbances.mat', 'Gd')

Equations

Results

Effect of all disturbances

  freqs = dist_f.f;

  figure;
  hold on;
  for i = 1:length(Ks)
    plot(freqs, sqrt(dist_f.psd_rz).*abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))));
  end
  hold off;
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
  xlabel('Frequency [Hz]'); ylabel('ASD $\left[\frac{m}{\sqrt{Hz}}\right]$')
  legend('Location', 'southwest');
  xlim([2, 500]);

Cumulative Amplitude Spectrum

  freqs = dist_f.f;

  figure;
  hold on;
  for i = 1:length(Ks)
    plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(dist_f.psd_ty.*abs(squeeze(freqresp(Gd{i}('Ez', 'Fty_z'), freqs, 'Hz'))).^2)))), '-', ...
           'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
  end
  plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
  hold off;
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
  xlabel('Frequency [Hz]'); ylabel('CAS $[m]$')
  legend('Location', 'southwest');
  xlim([2, 500]); ylim([1e-10 1e-6]);
  freqs = dist_f.f;

  figure;
  hold on;
  for i = 1:length(Ks)
    plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(dist_f.psd_rz.*abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))).^2)))), '-', ...
           'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
  end
  plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
  hold off;
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
  xlabel('Frequency [Hz]'); ylabel('CAS $[m]$')
  legend('Location', 'southwest');
  xlim([2, 500]); ylim([1e-10 1e-6]);

Ground motion

  freqs = dist_f.f;

  figure;
  hold on;
  for i = 1:length(Ks)
    plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(dist_f.psd_gm.*abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'), freqs, 'Hz'))).^2)))), '-', ...
           'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
  end
  plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
  hold off;
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
  xlabel('Frequency [Hz]'); ylabel('CAS $E_y$ $[m]$')
  legend('Location', 'northeast');
  xlim([2, 500]); ylim([1e-10 1e-6]);
  freqs = dist_f.f;

  figure;
  hold on;
  for i = 1:length(Ks)
    plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(dist_f.psd_gm.*abs(squeeze(freqresp(Gd{i}('Ex', 'Dwx'), freqs, 'Hz'))).^2)))), '-', ...
           'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
  end
  plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
  hold off;
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'lin');
  xlabel('Frequency [Hz]'); ylabel('CAS $E_y$ $[m]$')
  legend('Location', 'northeast');
  xlim([2, 500]);
  freqs = dist_f.f;

  figure;
  hold on;
  for i = 1:length(Ks)
    plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(dist_f.psd_gm.*abs(squeeze(freqresp(Gd{i}('Ey', 'Dwy'), freqs, 'Hz'))).^2)))), '-', ...
           'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
  end
  plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
  hold off;
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'lin');
  xlabel('Frequency [Hz]'); ylabel('CAS $E_y$ $[m]$')
  legend('Location', 'northeast');
  xlim([2, 500]);

Sum of all perturbations

  psd_tot = zeros(length(freqs), length(Ks));

  for i = 1:length(Ks)
      psd_tot(:,i) = dist_f.psd_gm.*abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'  ), freqs, 'Hz'))).^2 + ...
          dist_f.psd_ty.*abs(squeeze(freqresp(Gd{i}('Ez', 'Fty_z'), freqs, 'Hz'))).^2 + ...
          dist_f.psd_rz.*abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))).^2;
  end
  freqs = dist_f.f;

  figure;
  hold on;
  for i = 1:length(Ks)
    plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(psd_tot(:,i))))), '-', ...
           'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)));
  end
  plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
  hold off;
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
  xlabel('Frequency [Hz]'); ylabel('CAS $E_z$ $[m]$')
  legend('Location', 'northeast');
  xlim([1, 500]); ylim([1e-10 1e-6]);

Closed Loop Budget Error

<<sec:closed_loop_budget_error>>

Introduction   ignore

Reduction thanks to feedback - Required bandwidth

  wc = 1*2*pi; % [rad/s]
  xic = 0.5;

  S = (s/wc)/(1 + s/wc);

  bodeFig({S}, logspace(-1,2,1000))
  wc = [1, 5, 10, 20, 50, 100, 200];

  S1 = {zeros(length(wc), 1)};
  S2 = {zeros(length(wc), 1)};

  for j = 1:length(wc)
      L = (2*pi*wc(j))/s; % Simple integrator
      S1{j} = 1/(1 + L);
      L = ((2*pi*wc(j))/s)^2*(1 + s/(2*pi*wc(j)/2))/(1 + s/(2*pi*wc(j)*2));
      S2{j} = 1/(1 + L);
  end
  freqs = dist_f.f;

  figure;
  hold on;
  i = 6;
  for j = 1:length(wc)
      set(gca,'ColorOrderIndex',j);
      plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(abs(squeeze(freqresp(S1{j}, freqs, 'Hz'))).^2.*psd_tot(:,i))))), '-', ...
           'DisplayName', sprintf('$\\omega_c = %.0f$ [Hz]', wc(j)));
  end
  plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(psd_tot(:,i))))), 'k-', ...
       'DisplayName', 'Open-Loop');
  plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off');
  hold off;
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
  xlabel('Frequency [Hz]'); ylabel('CAS $E_y$ $[m]$')
  legend('Location', 'northeast');
  xlim([0.5, 500]); ylim([1e-10 1e-6]);
  wc = logspace(0, 3, 100);

  Dz1_rms = zeros(length(Ks), length(wc));
  Dz2_rms = zeros(length(Ks), length(wc));
  for i = 1:length(Ks)
      for j = 1:length(wc)
          L = (2*pi*wc(j))/s;
          Dz1_rms(i, j) = sqrt(trapz(freqs, abs(squeeze(freqresp(1/(1 + L), freqs, 'Hz'))).^2.*psd_tot(:,i)));

          L = ((2*pi*wc(j))/s)^2*(1 + s/(2*pi*wc(j)/2))/(1 + s/(2*pi*wc(j)*2));
          Dz2_rms(i, j) = sqrt(trapz(freqs, abs(squeeze(freqresp(1/(1 + L), freqs, 'Hz'))).^2.*psd_tot(:,i)));
      end
  end
  freqs = dist_f.f;

  figure;
  hold on;
  for i = 1:length(Ks)
    set(gca,'ColorOrderIndex',i);
    plot(wc, Dz1_rms(i, :), '-', ...
           'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i)))

    set(gca,'ColorOrderIndex',i);
    plot(wc, Dz2_rms(i, :), '--', ...
           'HandleVisibility', 'off')
  end
  hold off;
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
  xlabel('Control Bandwidth [Hz]'); ylabel('$E_z\ [m, rms]$')
  legend('Location', 'southwest');
  xlim([1, 500]);

Conclusion