nass-simscape/org/control_voice_coil.org

73 KiB

Control of the NASS with Voice coil actuators

Introduction   ignore

HAC-LAC + Cascade Control Topology

Introduction   ignore

/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/cascade_control_architecture.png

Cascaded Control consisting of (from inner to outer loop): IFF, Linearization Loop, Tracking Control in the frame of the Legs

Initialization

We initialize all the stages with the default parameters.

  initializeGround();
  initializeGranite();
  initializeTy();
  initializeRy();
  initializeRz();
  initializeMicroHexapod();
  initializeAxisc();
  initializeMirror();

The nano-hexapod is a voice coil based hexapod and the sample has a mass of 1kg.

  initializeNanoHexapod('actuator', 'lorentz');
  initializeSample('mass', 1);

We set the references that corresponds to a tomography experiment.

  initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
  initializeDisturbances();
  initializeController('type', 'cascade-hac-lac');
  initializeSimscapeConfiguration('gravity', true);

We log the signals.

  initializeLoggingConfiguration('log', 'all');
  Kp = tf(zeros(6));
  Kl = tf(zeros(6));
  Kiff = tf(zeros(6));

Low Authority Control - Integral Force Feedback $\bm{K}_\text{IFF}$

<<sec:lac_iff>>

Identification

Let's first identify the plant for the IFF controller.

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],    1, 'openinput');               io_i = io_i + 1; % Actuator Inputs
  io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm');  io_i = io_i + 1; % Force Sensors

  %% Run the linearization
  G_iff = linearize(mdl, io, 0);
  G_iff.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
  G_iff.OutputName = {'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'};

Plant

The obtained plant for IFF is shown in Figure fig:cascade_vc_iff_plant.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/cascade_vc_iff_plant.png
IFF Plant (png, pdf)

Root Locus

As seen in the root locus (Figure fig:cascade_vc_iff_root_locus, no damping can be added to modes corresponding to the resonance of the micro-station.

However, critical damping can be achieve for the resonances of the nano-hexapod as shown in the zoomed part of the root (Figure fig:cascade_vc_iff_root_locus, left part). The maximum damping is obtained for a control gain of $\approx 70$.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/cascade_vc_iff_root_locus.png
Root Locus for the IFF control (png, pdf)

Controller and Loop Gain

We create the $6 \times 6$ diagonal Integral Force Feedback controller. The obtained loop gain is shown in Figure fig:cascade_vc_iff_loop_gain.

  Kiff = -70/s*eye(6);
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/cascade_vc_iff_loop_gain.png
Obtained Loop gain the IFF Control (png, pdf)

High Authority Control in the joint space - $\bm{K}_\mathcal{L}$

<<sec:hac_joint_space>>

Identification of the damped plant

Let's identify the dynamics from $\bm{\tau}^\prime$ to $d\bm{\mathcal{L}}$ as shown in Figure fig:cascade_control_architecture.

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],    1, 'input');               io_i = io_i + 1; % Actuator Inputs
  io(io_i) = linio([mdl, '/Micro-Station'], 3, 'output', [], 'Dnlm');  io_i = io_i + 1; % Leg Displacement

  %% Run the linearization
  Gl = linearize(mdl, io, 0);
  Gl.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
  Gl.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'};

There are some unstable poles in the Plant with very small imaginary parts. These unstable poles are probably not physical, and they disappear when taking the minimum realization of the plant.

  isstable(Gl)
  Gl = minreal(Gl);
  isstable(Gl)

Obtained Plant

The obtained dynamics is shown in Figure fig:cascade_vc_hac_joint_plant.

Few things can be said on the dynamics:

  • the dynamics of the diagonal elements are almost all the same
  • the system is well decoupled below the resonances of the nano-hexapod (1Hz)
  • the dynamics of the diagonal elements are almost equivalent to a critically damped mass-spring-system with some spurious resonances above 50Hz corresponding to the resonances of the micro-station
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/cascade_vc_hac_joint_plant.png
Plant for the High Authority Control in the Joint Space (png, pdf)

Controller Design and Loop Gain

As the plant is well decoupled, a diagonal plant is designed.

  wc = 2*pi*10; % Bandwidth Bandwidth [rad/s]

  h = 2; % Lead parameter

  Kl = (s + 2*pi*1)/s;

  % Normalization of the gain of have a loop gain of 1 at frequency wc
  Kl = Kl.*diag(1./diag(abs(freqresp(Gl*Kl, wc))));

Primary Controller in the task space - $\bm{K}_\mathcal{X}$

<<sec:primary_controller>>

Identification of the linearized plant

We know identify the dynamics between $\bm{r}_{\mathcal{X}_n}$ and $\bm{r}_\mathcal{X}$.

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller/Cascade-HAC-LAC/Kp'],  1, 'input'); io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En');      io_i = io_i + 1; % Position Errror

  %% Run the linearization
  Gp = linearize(mdl, io, 0);
  Gp.InputName  = {'rl1', 'rl2', 'rl3', 'rl4', 'rl5', 'rl6'};
  Gp.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};

A minus sign is added because the minus sign is already included in the plant identification.

  isstable(Gp)
  Gp = -minreal(Gp);
  isstable(Gp)
  load('mat/stages.mat', 'nano_hexapod');
  Gpx = Gp*inv(nano_hexapod.J');
  Gpx.InputName  = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};

  Gpl = nano_hexapod.J*Gp;
  Gpl.OutputName  = {'El1', 'El2', 'El3', 'El4', 'El5', 'El6'};

Obtained Plant

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/primary_plant_voice_coil_X.png
Obtained Primary plant in the Task space (png, pdf)
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/primary_plant_voice_coil_L.png
Obtained Primary plant in the frame of the legs (png, pdf)

Controller Design

  wc = 2*pi*200; % Bandwidth Bandwidth [rad/s]

  h = 2; % Lead parameter

  Kp = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ...
       (1/h) * (1 + s/wc*h)/(1 + s/wc/h); % For Piezo
  % Kp = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * (s + 2*pi*10)/s * (s + 2*pi*1)/s ; % For voice coil

  % Normalization of the gain of have a loop gain of 1 at frequency wc
  Kp = Kp.*diag(1./diag(abs(freqresp(Gpx*Kp, wc))));
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/loop_gain_primary_voice_coil_X.png
Obtained Loop gain for the primary controller in the Task space (png, pdf)

And now we include the Jacobian inside the controller.

  Kp = inv(nano_hexapod.J')*Kp;

Simulation

Let's first save the 3 controllers for further analysis:

  save('mat/hac_lac_cascade_vc_controllers.mat', 'Kiff', 'Kl', 'Kp')
  load('mat/conf_simulink.mat');
  set_param(conf_simulink, 'StopTime', '2');

And we simulate the system.

  sim('nass_model');
  cascade_hac_lac_lorentz = simout;
  save('./mat/cascade_hac_lac.mat', 'cascade_hac_lac_lorentz', '-append');

Results

Load the simulation results

  load('./mat/experiment_tomography.mat', 'tomo_align_dist');
  load('./mat/cascade_hac_lac.mat', 'cascade_hac_lac', 'cascade_hac_lac_lorentz');

Control effort

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/actuator_force_torques_tomography_voice_coil.png
Actuator Action during a tomography experiment when using Voice Coil actuators (png, pdf)

Load the simulation results

  n_av = 4;
  han_win = hanning(ceil(length(cascade_hac_lac.Em.En.Data(:,1))/n_av));
  t = cascade_hac_lac.Em.En.Time;
  Ts = t(2)-t(1);

  [pxx_ol, f] = pwelch(tomo_align_dist.Em.En.Data, han_win, [], [], 1/Ts);
  [pxx_ca, ~] = pwelch(cascade_hac_lac.Em.En.Data, han_win, [], [], 1/Ts);
  [pxx_vc, ~] = pwelch(cascade_hac_lac_lorentz.Em.En.Data, han_win, [], [], 1/Ts);
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/exp_tomography_voice_coil_psd_pos_error.png
Power Spectral Density of the position error during a tomography experiment when using Voice Coil based nano-hexapod (png, pdf)
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/exp_tomography_voice_coil_cap_pos_error.png
Cumulative Amplitude Spectrum of the position error during a tomography experiment when using Voice Coil based nano-hexapod (png, pdf)
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/exp_tomography_voice_coil_time_domain.png
Position error during a tomography experiment when using Voice Coil based nano-hexapod (png, pdf)

Compliance of the nano-hexapod

Identification

Let's identify the Compliance of the NASS:

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Disturbances/Fd'], 1, 'openinput');       io_i = io_i + 1; % Direct Forces/Torques applied on the sample
  io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror

First in open-loop:

  Kp = tf(zeros(6));
  Kl = tf(zeros(6));
  Kiff = tf(zeros(6));
  %% Run the linearization
  Gc_ol = linearize(mdl, io, 0);
  Gc_ol.InputName  = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
  Gc_ol.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};

Then with the IFF control.

  load('mat/hac_lac_cascade_vc_controllers.mat', 'Kiff')
  %% Run the linearization
  Gc_iff = linearize(mdl, io, 0);
  Gc_iff.InputName  = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
  Gc_iff.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};

With the HAC control added

  load('mat/hac_lac_cascade_vc_controllers.mat', 'Kl')
  %% Run the linearization
  Gc_hac = linearize(mdl, io, 0);
  Gc_hac.InputName  = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
  Gc_hac.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};

Finally with the primary controller

  load('mat/hac_lac_cascade_vc_controllers.mat', 'Kp')
  %% Run the linearization
  Gc_pri = linearize(mdl, io, 0);
  Gc_pri.InputName  = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
  Gc_pri.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};

Obtained Compliance

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/compliance_evolution_vc_cascade_control.png
Evolution of the NASS compliance with each control loop added (png, pdf)

Comparison with Piezo

Let's initialize a nano-hexapod with piezoelectric actuators.

  initializeNanoHexapod('actuator', 'piezo');

We don't use any controller.

  Kp = tf(zeros(6));
  Kl = tf(zeros(6));
  Kiff = tf(zeros(6));
  %% Run the linearization
  Gc_pz = linearize(mdl, io, 0);
  Gc_pz.InputName  = {'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
  Gc_pz.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/compliance_comp_pz_vc_cascade.png
Comparison of the compliance using the open-loop piezo-nano hexapod and the voice coil nano-hexapod with the cascade control topology (png, pdf)

Robustness to Payload Variability

Initialization

Let's change the payload mass, and see if the controller design for a payload mass of 1 still gives good performance.

  initializeSample('mass', 50);
  Kp = tf(zeros(6));
  Kl = tf(zeros(6));
  Kiff = tf(zeros(6));

Low Authority Control

Let's first identify the transfer function for the Low Authority control.

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],    1, 'openinput');               io_i = io_i + 1; % Actuator Inputs
  io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm');  io_i = io_i + 1; % Force Sensors

  %% Run the linearization
  G_iff_m = linearize(mdl, io, 0);
  G_iff_m.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
  G_iff_m.OutputName = {'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'};

The obtained dynamics is compared when using a payload of 1Kg in Figure fig:voice_coil_variability_mass_iff.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/voice_coil_variability_mass_iff.png
Dynamics of the LAC plant when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (png, pdf)

A gain of 50 will here suffice to obtain critical damping of the nano-hexapod modes.

Let's load the IFF controller designed when the payload has a mass of 1Kg.

  load('mat/hac_lac_cascade_vc_controllers.mat', 'Kiff')
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/voice_coil_variability_mass_iff_loop_gain.png
Loop gain for the IFF Control when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (png, pdf)

High Authority Control

We use the Integral Force Feedback developed with a mass of 1Kg and we identify the dynamics for the High Authority Controller in the case of the 50Kg payload

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],    1, 'input');               io_i = io_i + 1; % Actuator Inputs
  io(io_i) = linio([mdl, '/Micro-Station'], 3, 'output', [], 'Dnlm');  io_i = io_i + 1; % Leg Displacement

  %% Run the linearization
  Gl_m = linearize(mdl, io, 0);
  Gl_m.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
  Gl_m.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'};
 
  isstable(Gl_m)
  Gl_m = minreal(Gl_m);
  isstable(Gl_m)
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/voice_coil_variability_mass_hac_plant.png
Dynamics of the HAC plant when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (png, pdf)

We load the HAC controller design when the payload has a mass of 1Kg.

  load('mat/hac_lac_cascade_vc_controllers.mat', 'Kl')
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/voice_coil_variability_mass_hac_lool_gain.png
Loop Gain of the HAC when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (png, pdf)

Primary Plant

We use the Low Authority Controller developed with a mass of 1Kg and we identify the dynamics for the Primary controller in the case of the 50Kg payload.

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller/Cascade-HAC-LAC/Kp'],  1, 'input'); io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En');      io_i = io_i + 1; % Position Errror

  %% Run the linearization
  Gp_m = linearize(mdl, io, 0);
  Gp_m.InputName  = {'rl1', 'rl2', 'rl3', 'rl4', 'rl5', 'rl6'};
  Gp_m.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};

A minus sign is added to cancel the minus sign already included in the identified plant.

  isstable(Gp_m)
  Gp_m = -minreal(Gp_m);
  isstable(Gp_m)
  load('mat/stages.mat', 'nano_hexapod');
  Gpx_m = Gp_m*inv(nano_hexapod.J');
  Gpx_m.InputName  = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};

  Gpl_m = nano_hexapod.J*Gp_m;
  Gpl_m.OutputName  = {'El1', 'El2', 'El3', 'El4', 'El5', 'El6'};

There are two zeros with positive real part for the plant in the y direction at about 100Hz. This is problematic as it limits the bandwidth to be less than $\approx 50\ \text{Hz}$.

It is important here to physically understand why such "positive" zero appears.

If we make a "rigid" 50kg paylaod, the positive zero disappears.

<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/voice_coil_variability_mass_primary_plant.png
Dynamics of the Primary plant when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (png, pdf)

We load the primary controller that was design when the payload has a mass of 1Kg.

We load the HAC controller design when the payload has a mass of 1Kg.

  load('mat/hac_lac_cascade_vc_controllers.mat', 'Kp')
  Kp_x = nano_hexapod.J'*Kp;
  wc = 2*pi*50; % Bandwidth Bandwidth [rad/s]

  h = 2; % Lead parameter

  Kp = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ...
       (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ...
       (s + 2*pi*1)/s * ...
       1/(1+s/2/wc); % For Piezo

  % Normalization of the gain of have a loop gain of 1 at frequency wc
  Kp = Kp.*diag(1./diag(abs(freqresp(Gpx_m*Kp, wc))));
<<plt-matlab>>
/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/voice_coil_variability_mass_primary_lool_gain.png
Loop Gain of the Primary loop when using a 50Kg payload (dashed) and when using a 1Kg payload (solid) (png, pdf)

Simulation

  load('mat/conf_simulink.mat');
  set_param(conf_simulink, 'StopTime', '2');

And we simulate the system.

  sim('nass_model');
  cascade_hac_lac_lorentz_high_mass = simout;
  save('./mat/cascade_hac_lac.mat', 'cascade_hac_lac_lorentz_high_mass', '-append');
  load('./mat/experiment_tomography.mat', 'tomo_align_dist');

Other analysis

Robustness to Payload Variability

  • For 3/masses (1kg, 10kg, 50kg), plot each of the 3 plants

Direct HAC control in the task space - $\bm{K}_\mathcal{X}$

Introduction   ignore

/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/control_architecture_hac_iff_pos_X.png
Control Architecture containing an IFF controller and a Controller in the task space

Identification

  initializeController('type', 'hac-iff');
  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller/HAC-IFF/Kx'],  1, 'input');    io_i = io_i + 1; % Control input
  io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror

  %% Run the linearization
  G = linearize(mdl, io, 0);
  G.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
  G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
  isstable(G)
  G = -minreal(G);
  isstable(G)
  load('mat/stages.mat', 'nano_hexapod');
  Gx = G*inv(nano_hexapod.J');
  Gx.InputName  = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};

  Gl = nano_hexapod.J*G;
  Gl.OutputName  = {'El1', 'El2', 'El3', 'El4', 'El5', 'El6'};

Obtained Plant in the Task Space

Obtained Plant in the Joint Space

Controller Design in the Joint Space

  wc = 2*pi*200; % Bandwidth Bandwidth [rad/s]

  h = 2; % Lead parameter

  Kx = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ... % Lead
       (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ... % Lead
       (s + 2*pi*10)/s * ... % Pseudo Integrator
       1/(1+s/2/pi/500); % Low pass Filter

  % Normalization of the gain of have a loop gain of 1 at frequency wc
  Kx = Kx.*diag(1./diag(abs(freqresp(Gx*Kx, wc))));
  wc = 2*pi*200; % Bandwidth Bandwidth [rad/s]

  h = 2; % Lead parameter

  Kl = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ... % Lead
       (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * ... % Lead
       (s + 2*pi*1)/s * ... % Pseudo Integrator
       (s + 2*pi*10)/s * ... % Pseudo Integrator
       1/(1+s/2/pi/500); % Low pass Filter

  % Normalization of the gain of have a loop gain of 1 at frequency wc
  Kl = Kl.*diag(1./diag(abs(freqresp(Gl*Kl, wc))));

On the usefulness of the High Authority Control loop / Linearization loop

Introduction   ignore

Let's see what happens is we omit the HAC loop and we directly try to control the damped plant using the measurement of the sample with respect to the granite $\bm{\mathcal{X}}$.

We can do that in two different ways:

  \begin{tikzpicture}
    % Blocs
    \node[block={3.0cm}{3.0cm}] (P) {Plant};
    \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
    \coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$);
    \coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
    \coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$);

    \node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
    \node[addb={+}{}{-}{}{}, left= of inputF] (addF) {};
    \node[block, left= of addF] (J) {$\bm{J}^{-T}$};
    \node[block, left= of J] (K) {$\bm{K}_\mathcal{X}$};
    \node[addb={+}{}{}{}{-}, left= of K] (subr) {};

    % Connections and labels
    \draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
    \draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
    \draw[->] (Kiff.west) -| (addF.north);
    \draw[->] (addF.east) -- (inputF) node[above left]{$\bm{\tau}$};

    \draw[->] (outputL) -- ++(1, 0) node[above left]{$d\bm{\mathcal{L}}$};

    \draw[->] (outputX) -- ++(1.6, 0);
    \draw[->] ($(outputX) + (1.2, 0)$)node[branch]{} node[above]{$\bm{\mathcal{X}}$} -- ++(0, -2) -| (subr.south);

    \draw[<-] (subr.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
    \draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{\mathcal{X}}$};
    \draw[->] (K.east) -- (J.west) node[above left]{$\bm{\mathcal{F}}$};
    \draw[->] (J.east) -- (addF.west) node[above left]{$\bm{\tau}^\prime$};
  \end{tikzpicture}

/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/control_architecture_iff_X.png

IFF control + primary controller in the task space
  \begin{tikzpicture}
    % Blocs
    \node[block={3.0cm}{3.0cm}] (P) {Plant};
    \coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
    \coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$);
    \coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
    \coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$);

    \node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
    \node[addb={+}{}{-}{}{}, left= of inputF] (addF) {};
    \node[block, left= of addF] (K) {$\bm{K}_\mathcal{L}$};
    \node[block, left= of K] (J) {$\bm{J}$};
    \node[addb={+}{}{}{}{-}, left= of J] (subr) {};

    % Connections and labels
    \draw[->] (outputF) -- ++(1, 0) node[below left]{$\bm{\tau}_m$};
    \draw[->] ($(outputF) + (0.6, 0)$)node[branch]{} |- (Kiff.east);
    \draw[->] (Kiff.west) -| (addF.north);
    \draw[->] (addF.east) -- (inputF) node[above left]{$\bm{\tau}$};

    \draw[->] (outputL) -- ++(1, 0) node[above left]{$d\bm{\mathcal{L}}$};

    \draw[->] (outputX) -- ++(1.6, 0);
    \draw[->] ($(outputX) + (1.2, 0)$)node[branch]{} node[above]{$\bm{\mathcal{X}}$} -- ++(0, -2) -| (subr.south);

    \draw[<-] (subr.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
    \draw[->] (subr.east) -- (J.west) node[above left]{$\bm{\epsilon}_{\mathcal{X}}$};
    \draw[->] (J.east) -- (K.west) node[above left]{$\bm{\epsilon}_{\mathcal{L}}$};
    \draw[->] (K.east) -- (addF.west) node[above left]{$\bm{\tau}^\prime$};
  \end{tikzpicture}

/tdehaeze/nass-simscape/media/commit/19c6456cd54267d285bdd9f5364b7c4b8fe3ceac/org/figs/control_architecture_iff_L.png

HAC-LAC control architecture in the frame of the legs

Identification

  initializeController('type', 'hac-iff');
  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller/HAC-IFF/Kx'],  1, 'input');    io_i = io_i + 1;
  io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror

  %% Run the linearization
  G = linearize(mdl, io, 0);
  G.InputName  = {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'};
  G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
  isstable(G)
  G = -minreal(G);
  isstable(G)

Plant in the Task space

The obtained plant is shown in Figure

  Gx = G*inv(nano_hexapod.J');

Plant in the Leg's space

  Gl = nano_hexapod.J*G;

DVF instead of IFF?

Initialization and Identification

  initializeController('type', 'hac-dvf');
  Kdvf = tf(zeros(6));
  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller'],    1, 'openinput');               io_i = io_i + 1; % Actuator Inputs
  io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm');  io_i = io_i + 1; % Displacement Sensors

  %% Run the linearization
  G_dvf = linearize(mdl, io, 0);
  G_dvf.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
  G_dvf.OutputName = {'Dlm1', 'Dlm2', 'Dlm3', 'Dlm4', 'Dlm5', 'Dlm6'};

Obtained Plant

Controller

  Kdvf = -850*s/(1+s/2/pi/1000)*eye(6);

HAC Identification

  %% Name of the Simulink File
  mdl = 'nass_model';

  %% Input/Output definition
  clear io; io_i = 1;
  io(io_i) = linio([mdl, '/Controller/HAC-DVF/Kx'],  1, 'input');    io_i = io_i + 1; % Control input
  io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror

  %% Run the linearization
  G = linearize(mdl, io, 0);
  G.InputName  = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
  G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
  isstable(G)
  G = -minreal(G);
  isstable(G)
  load('mat/stages.mat', 'nano_hexapod');
  Gx = G*inv(nano_hexapod.J');
  Gx.InputName  = {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'};

  Gl = nano_hexapod.J*G;
  Gl.OutputName  = {'El1', 'El2', 'El3', 'El4', 'El5', 'El6'};

Conclusion

DVF can be used instead of IFF.