2102 lines
68 KiB
Org Mode
2102 lines
68 KiB
Org Mode
#+TITLE: Stewart Platform - Simscape Model
|
|
#+SETUPFILE: ./setup/org-setup-file.org
|
|
|
|
* Introduction :ignore:
|
|
Stewart platforms are generated in multiple steps.
|
|
|
|
We define 4 important *frames*:
|
|
- $\{F\}$: Frame fixed to the *Fixed* base and located at the center of its bottom surface.
|
|
This is used to fix the Stewart platform to some support.
|
|
- $\{M\}$: Frame fixed to the *Moving* platform and located at the center of its top surface.
|
|
This is used to place things on top of the Stewart platform.
|
|
- $\{A\}$: Frame fixed to the fixed base.
|
|
It defined the center of rotation of the moving platform.
|
|
- $\{B\}$: Frame fixed to the moving platform.
|
|
The motion of the moving platforms and forces applied to it are defined with respect to this frame $\{B\}$.
|
|
|
|
Then, we define the *location of the spherical joints*:
|
|
- $\bm{a}_{i}$ are the position of the spherical joints fixed to the fixed base
|
|
- $\bm{b}_{i}$ are the position of the spherical joints fixed to the moving platform
|
|
|
|
We define the *rest position* of the Stewart platform:
|
|
- For simplicity, we suppose that the fixed base and the moving platform are parallel and aligned with the vertical axis at their rest position.
|
|
- Thus, to define the rest position of the Stewart platform, we just have to defined its total height $H$.
|
|
$H$ corresponds to the distance from the bottom of the fixed base to the top of the moving platform.
|
|
|
|
From $\bm{a}_{i}$ and $\bm{b}_{i}$, we can determine the *length and orientation of each strut*:
|
|
- $l_{i}$ is the length of the strut
|
|
- ${}^{A}\hat{\bm{s}}_{i}$ is the unit vector align with the strut
|
|
|
|
The position of the Spherical joints can be computed using various methods:
|
|
- Cubic configuration
|
|
- Circular configuration
|
|
- Arbitrary position
|
|
- These methods should be easily scriptable and corresponds to specific functions that returns ${}^{F}\bm{a}_{i}$ and ${}^{M}\bm{b}_{i}$.
|
|
The input of these functions are the parameters corresponding to the wanted geometry.
|
|
|
|
For Simscape, we need:
|
|
- The position and orientation of each spherical joint fixed to the fixed base: ${}^{F}\bm{a}_{i}$ and ${}^{F}\bm{R}_{a_{i}}$
|
|
- The position and orientation of each spherical joint fixed to the moving platform: ${}^{M}\bm{b}_{i}$ and ${}^{M}\bm{R}_{b_{i}}$
|
|
- The rest length of each strut: $l_{i}$
|
|
- The stiffness and damping of each actuator: $k_{i}$ and $c_{i}$
|
|
- The position of the frame $\{A\}$ with respect to the frame $\{F\}$: ${}^{F}\bm{O}_{A}$
|
|
- The position of the frame $\{B\}$ with respect to the frame $\{M\}$: ${}^{M}\bm{O}_{B}$
|
|
|
|
* =initializeStewartPlatform=: Initialize the Stewart Platform structure
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeStewartPlatform.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeStewartPlatform>>
|
|
|
|
This Matlab function is accessible [[file:../src/initializeStewartPlatform.m][here]].
|
|
|
|
** Documentation
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+name: fig:stewart-frames-position
|
|
#+caption: Definition of the position of the frames
|
|
[[file:figs/stewart-frames-position.png]]
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = initializeStewartPlatform()
|
|
% initializeStewartPlatform - Initialize the stewart structure
|
|
%
|
|
% Syntax: [stewart] = initializeStewartPlatform(args)
|
|
%
|
|
% Outputs:
|
|
% - stewart - A structure with the following sub-structures:
|
|
% - platform_F -
|
|
% - platform_M -
|
|
% - joints_F -
|
|
% - joints_M -
|
|
% - struts_F -
|
|
% - struts_M -
|
|
% - actuators -
|
|
% - geometry -
|
|
% - properties -
|
|
#+end_src
|
|
|
|
** Initialize the Stewart structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart = struct();
|
|
stewart.platform_F = struct();
|
|
stewart.platform_M = struct();
|
|
stewart.joints_F = struct();
|
|
stewart.joints_M = struct();
|
|
stewart.struts_F = struct();
|
|
stewart.struts_M = struct();
|
|
stewart.actuators = struct();
|
|
stewart.sensors = struct();
|
|
stewart.sensors.inertial = struct();
|
|
stewart.sensors.force = struct();
|
|
stewart.sensors.relative = struct();
|
|
stewart.geometry = struct();
|
|
stewart.kinematics = struct();
|
|
#+end_src
|
|
|
|
* =initializeFramesPositions=: Initialize the positions of frames {A}, {B}, {F} and {M}
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeFramesPositions.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeFramesPositions>>
|
|
|
|
This Matlab function is accessible [[file:../src/initializeFramesPositions.m][here]].
|
|
|
|
** Documentation
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+name: fig:stewart-frames-position
|
|
#+caption: Definition of the position of the frames
|
|
[[file:figs/stewart-frames-position.png]]
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = initializeFramesPositions(stewart, args)
|
|
% initializeFramesPositions - Initialize the positions of frames {A}, {B}, {F} and {M}
|
|
%
|
|
% Syntax: [stewart] = initializeFramesPositions(stewart, args)
|
|
%
|
|
% Inputs:
|
|
% - args - Can have the following fields:
|
|
% - H [1x1] - Total Height of the Stewart Platform (height from {F} to {M}) [m]
|
|
% - MO_B [1x1] - Height of the frame {B} with respect to {M} [m]
|
|
%
|
|
% Outputs:
|
|
% - stewart - A structure with the following fields:
|
|
% - geometry.H [1x1] - Total Height of the Stewart Platform [m]
|
|
% - geometry.FO_M [3x1] - Position of {M} with respect to {F} [m]
|
|
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M} [m]
|
|
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F} [m]
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.H (1,1) double {mustBeNumeric, mustBePositive} = 90e-3
|
|
args.MO_B (1,1) double {mustBeNumeric} = 50e-3
|
|
end
|
|
#+end_src
|
|
|
|
** Compute the position of each frame
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
H = args.H; % Total Height of the Stewart Platform [m]
|
|
|
|
FO_M = [0; 0; H]; % Position of {M} with respect to {F} [m]
|
|
|
|
MO_B = [0; 0; args.MO_B]; % Position of {B} with respect to {M} [m]
|
|
|
|
FO_A = MO_B + FO_M; % Position of {A} with respect to {F} [m]
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.geometry.H = H;
|
|
stewart.geometry.FO_M = FO_M;
|
|
stewart.platform_M.MO_B = MO_B;
|
|
stewart.platform_F.FO_A = FO_A;
|
|
#+end_src
|
|
|
|
* =generateGeneralConfiguration=: Generate a Very General Configuration
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/generateGeneralConfiguration.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:generateGeneralConfiguration>>
|
|
|
|
This Matlab function is accessible [[file:../src/generateGeneralConfiguration.m][here]].
|
|
|
|
** Documentation
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
Joints are positions on a circle centered with the Z axis of {F} and {M} and at a chosen distance from {F} and {M}.
|
|
The radius of the circles can be chosen as well as the angles where the joints are located (see Figure [[fig:joint_position_general]]).
|
|
|
|
#+begin_src latex :file stewart_bottom_plate.pdf
|
|
\begin{tikzpicture}
|
|
% Internal and external limit
|
|
\draw[fill=white!80!black] (0, 0) circle [radius=3];
|
|
% Circle where the joints are located
|
|
\draw[dashed] (0, 0) circle [radius=2.5];
|
|
|
|
% Bullets for the positions of the joints
|
|
\node[] (J1) at ( 80:2.5){$\bullet$};
|
|
\node[] (J2) at (100:2.5){$\bullet$};
|
|
\node[] (J3) at (200:2.5){$\bullet$};
|
|
\node[] (J4) at (220:2.5){$\bullet$};
|
|
\node[] (J5) at (320:2.5){$\bullet$};
|
|
\node[] (J6) at (340:2.5){$\bullet$};
|
|
|
|
% Name of the points
|
|
\node[above right] at (J1) {$a_{1}$};
|
|
\node[above left] at (J2) {$a_{2}$};
|
|
\node[above left] at (J3) {$a_{3}$};
|
|
\node[right ] at (J4) {$a_{4}$};
|
|
\node[left ] at (J5) {$a_{5}$};
|
|
\node[above right] at (J6) {$a_{6}$};
|
|
|
|
% First 2 angles
|
|
\draw[dashed, ->] (0:1) arc [start angle=0, end angle=80, radius=1] node[below right]{$\theta_{1}$};
|
|
\draw[dashed, ->] (0:1.5) arc [start angle=0, end angle=100, radius=1.5] node[left ]{$\theta_{2}$};
|
|
|
|
% Division of 360 degrees by 3
|
|
\draw[dashed] (0, 0) -- ( 80:3.2);
|
|
\draw[dashed] (0, 0) -- (100:3.2);
|
|
\draw[dashed] (0, 0) -- (200:3.2);
|
|
\draw[dashed] (0, 0) -- (220:3.2);
|
|
\draw[dashed] (0, 0) -- (320:3.2);
|
|
\draw[dashed] (0, 0) -- (340:3.2);
|
|
|
|
% Radius for the position of the joints
|
|
\draw[<->] (0, 0) --node[near end, above]{$R$} (180:2.5);
|
|
|
|
\draw[->] (0, 0) -- ++(3.4, 0) node[above]{$x$};
|
|
\draw[->] (0, 0) -- ++(0, 3.4) node[left]{$y$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:joint_position_general
|
|
#+caption: Position of the joints
|
|
#+RESULTS:
|
|
[[file:figs/stewart_bottom_plate.png]]
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = generateGeneralConfiguration(stewart, args)
|
|
% generateGeneralConfiguration - Generate a Very General Configuration
|
|
%
|
|
% Syntax: [stewart] = generateGeneralConfiguration(stewart, args)
|
|
%
|
|
% Inputs:
|
|
% - args - Can have the following fields:
|
|
% - FH [1x1] - Height of the position of the fixed joints with respect to the frame {F} [m]
|
|
% - FR [1x1] - Radius of the position of the fixed joints in the X-Y [m]
|
|
% - FTh [6x1] - Angles of the fixed joints in the X-Y plane with respect to the X axis [rad]
|
|
% - MH [1x1] - Height of the position of the mobile joints with respect to the frame {M} [m]
|
|
% - FR [1x1] - Radius of the position of the mobile joints in the X-Y [m]
|
|
% - MTh [6x1] - Angles of the mobile joints in the X-Y plane with respect to the X axis [rad]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
|
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.FH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
|
args.FR (1,1) double {mustBeNumeric, mustBePositive} = 115e-3;
|
|
args.FTh (6,1) double {mustBeNumeric} = [-10, 10, 120-10, 120+10, 240-10, 240+10]*(pi/180);
|
|
args.MH (1,1) double {mustBeNumeric, mustBePositive} = 15e-3
|
|
args.MR (1,1) double {mustBeNumeric, mustBePositive} = 90e-3;
|
|
args.MTh (6,1) double {mustBeNumeric} = [-60+10, 60-10, 60+10, 180-10, 180+10, -60-10]*(pi/180);
|
|
end
|
|
#+end_src
|
|
|
|
** Compute the pose
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
Fa = zeros(3,6);
|
|
Mb = zeros(3,6);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
for i = 1:6
|
|
Fa(:,i) = [args.FR*cos(args.FTh(i)); args.FR*sin(args.FTh(i)); args.FH];
|
|
Mb(:,i) = [args.MR*cos(args.MTh(i)); args.MR*sin(args.MTh(i)); -args.MH];
|
|
end
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.platform_F.Fa = Fa;
|
|
stewart.platform_M.Mb = Mb;
|
|
#+end_src
|
|
|
|
* =computeJointsPose=: Compute the Pose of the Joints
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/computeJointsPose.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:computeJointsPose>>
|
|
|
|
This Matlab function is accessible [[file:../src/computeJointsPose.m][here]].
|
|
|
|
** Documentation
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+name: fig:stewart-struts
|
|
#+caption: Position and orientation of the struts
|
|
[[file:figs/stewart-struts.png]]
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = computeJointsPose(stewart)
|
|
% computeJointsPose -
|
|
%
|
|
% Syntax: [stewart] = computeJointsPose(stewart)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
|
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
|
% - platform_F.FO_A [3x1] - Position of {A} with respect to {F}
|
|
% - platform_M.MO_B [3x1] - Position of {B} with respect to {M}
|
|
% - geometry.FO_M [3x1] - Position of {M} with respect to {F}
|
|
%
|
|
% Outputs:
|
|
% - stewart - A structure with the following added fields
|
|
% - geometry.Aa [3x6] - The i'th column is the position of ai with respect to {A}
|
|
% - geometry.Ab [3x6] - The i'th column is the position of bi with respect to {A}
|
|
% - geometry.Ba [3x6] - The i'th column is the position of ai with respect to {B}
|
|
% - geometry.Bb [3x6] - The i'th column is the position of bi with respect to {B}
|
|
% - geometry.l [6x1] - The i'th element is the initial length of strut i
|
|
% - geometry.As [3x6] - The i'th column is the unit vector of strut i expressed in {A}
|
|
% - geometry.Bs [3x6] - The i'th column is the unit vector of strut i expressed in {B}
|
|
% - struts_F.l [6x1] - Length of the Fixed part of the i'th strut
|
|
% - struts_M.l [6x1] - Length of the Mobile part of the i'th strut
|
|
% - platform_F.FRa [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the bottom of the i'th strut from {F}
|
|
% - platform_M.MRb [3x3x6] - The i'th 3x3 array is the rotation matrix to orientate the top of the i'th strut from {M}
|
|
#+end_src
|
|
|
|
** Check the =stewart= structure elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa')
|
|
Fa = stewart.platform_F.Fa;
|
|
|
|
assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb')
|
|
Mb = stewart.platform_M.Mb;
|
|
|
|
assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A')
|
|
FO_A = stewart.platform_F.FO_A;
|
|
|
|
assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B')
|
|
MO_B = stewart.platform_M.MO_B;
|
|
|
|
assert(isfield(stewart.geometry, 'FO_M'), 'stewart.geometry should have attribute FO_M')
|
|
FO_M = stewart.geometry.FO_M;
|
|
#+end_src
|
|
|
|
** Compute the position of the Joints
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
Aa = Fa - repmat(FO_A, [1, 6]);
|
|
Bb = Mb - repmat(MO_B, [1, 6]);
|
|
|
|
Ab = Bb - repmat(-MO_B-FO_M+FO_A, [1, 6]);
|
|
Ba = Aa - repmat( MO_B+FO_M-FO_A, [1, 6]);
|
|
#+end_src
|
|
|
|
** Compute the strut length and orientation
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
As = (Ab - Aa)./vecnorm(Ab - Aa); % As_i is the i'th vector of As
|
|
|
|
l = vecnorm(Ab - Aa)';
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
Bs = (Bb - Ba)./vecnorm(Bb - Ba);
|
|
#+end_src
|
|
|
|
** Compute the orientation of the Joints
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
FRa = zeros(3,3,6);
|
|
MRb = zeros(3,3,6);
|
|
|
|
for i = 1:6
|
|
FRa(:,:,i) = [cross([0;1;0], As(:,i)) , cross(As(:,i), cross([0;1;0], As(:,i))) , As(:,i)];
|
|
FRa(:,:,i) = FRa(:,:,i)./vecnorm(FRa(:,:,i));
|
|
|
|
MRb(:,:,i) = [cross([0;1;0], Bs(:,i)) , cross(Bs(:,i), cross([0;1;0], Bs(:,i))) , Bs(:,i)];
|
|
MRb(:,:,i) = MRb(:,:,i)./vecnorm(MRb(:,:,i));
|
|
end
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.geometry.Aa = Aa;
|
|
stewart.geometry.Ab = Ab;
|
|
stewart.geometry.Ba = Ba;
|
|
stewart.geometry.Bb = Bb;
|
|
stewart.geometry.As = As;
|
|
stewart.geometry.Bs = Bs;
|
|
stewart.geometry.l = l;
|
|
|
|
stewart.struts_F.l = l/2;
|
|
stewart.struts_M.l = l/2;
|
|
|
|
stewart.platform_F.FRa = FRa;
|
|
stewart.platform_M.MRb = MRb;
|
|
#+end_src
|
|
|
|
* =initializeStewartPose=: Determine the initial stroke in each leg to have the wanted pose
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeStewartPose.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeStewartPose>>
|
|
|
|
This Matlab function is accessible [[file:../src/initializeStewartPose.m][here]].
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = initializeStewartPose(stewart, args)
|
|
% initializeStewartPose - Determine the initial stroke in each leg to have the wanted pose
|
|
% It uses the inverse kinematic
|
|
%
|
|
% Syntax: [stewart] = initializeStewartPose(stewart, args)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - Aa [3x6] - The positions ai expressed in {A}
|
|
% - Bb [3x6] - The positions bi expressed in {B}
|
|
% - args - Can have the following fields:
|
|
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
|
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - actuators.Leq [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
|
end
|
|
#+end_src
|
|
|
|
** Use the Inverse Kinematic function
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
[Li, dLi] = inverseKinematics(stewart, 'AP', args.AP, 'ARB', args.ARB);
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.actuators.Leq = dLi;
|
|
#+end_src
|
|
|
|
* =initializeCylindricalPlatforms=: Initialize the geometry of the Fixed and Mobile Platforms
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeCylindricalPlatforms.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeCylindricalPlatforms>>
|
|
|
|
This Matlab function is accessible [[file:../src/initializeCylindricalPlatforms.m][here]].
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = initializeCylindricalPlatforms(stewart, args)
|
|
% initializeCylindricalPlatforms - Initialize the geometry of the Fixed and Mobile Platforms
|
|
%
|
|
% Syntax: [stewart] = initializeCylindricalPlatforms(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - Fpm [1x1] - Fixed Platform Mass [kg]
|
|
% - Fph [1x1] - Fixed Platform Height [m]
|
|
% - Fpr [1x1] - Fixed Platform Radius [m]
|
|
% - Mpm [1x1] - Mobile Platform Mass [kg]
|
|
% - Mph [1x1] - Mobile Platform Height [m]
|
|
% - Mpr [1x1] - Mobile Platform Radius [m]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - platform_F [struct] - structure with the following fields:
|
|
% - type = 1
|
|
% - M [1x1] - Fixed Platform Mass [kg]
|
|
% - I [3x3] - Fixed Platform Inertia matrix [kg*m^2]
|
|
% - H [1x1] - Fixed Platform Height [m]
|
|
% - R [1x1] - Fixed Platform Radius [m]
|
|
% - platform_M [struct] - structure with the following fields:
|
|
% - M [1x1] - Mobile Platform Mass [kg]
|
|
% - I [3x3] - Mobile Platform Inertia matrix [kg*m^2]
|
|
% - H [1x1] - Mobile Platform Height [m]
|
|
% - R [1x1] - Mobile Platform Radius [m]
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.Fpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
args.Fph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
|
args.Fpr (1,1) double {mustBeNumeric, mustBePositive} = 125e-3
|
|
args.Mpm (1,1) double {mustBeNumeric, mustBePositive} = 1
|
|
args.Mph (1,1) double {mustBeNumeric, mustBePositive} = 10e-3
|
|
args.Mpr (1,1) double {mustBeNumeric, mustBePositive} = 100e-3
|
|
end
|
|
#+end_src
|
|
|
|
** Compute the Inertia matrices of platforms
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
I_F = diag([1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
|
|
1/12*args.Fpm * (3*args.Fpr^2 + args.Fph^2), ...
|
|
1/2 *args.Fpm * args.Fpr^2]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
I_M = diag([1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
|
|
1/12*args.Mpm * (3*args.Mpr^2 + args.Mph^2), ...
|
|
1/2 *args.Mpm * args.Mpr^2]);
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.platform_F.type = 1;
|
|
|
|
stewart.platform_F.I = I_F;
|
|
stewart.platform_F.M = args.Fpm;
|
|
stewart.platform_F.R = args.Fpr;
|
|
stewart.platform_F.H = args.Fph;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
stewart.platform_M.type = 1;
|
|
|
|
stewart.platform_M.I = I_M;
|
|
stewart.platform_M.M = args.Mpm;
|
|
stewart.platform_M.R = args.Mpr;
|
|
stewart.platform_M.H = args.Mph;
|
|
#+end_src
|
|
|
|
* =initializeCylindricalStruts=: Define the inertia of cylindrical struts
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeCylindricalStruts.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeCylindricalStruts>>
|
|
|
|
This Matlab function is accessible [[file:../src/initializeCylindricalStruts.m][here]].
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = initializeCylindricalStruts(stewart, args)
|
|
% initializeCylindricalStruts - Define the mass and moment of inertia of cylindrical struts
|
|
%
|
|
% Syntax: [stewart] = initializeCylindricalStruts(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - Fsm [1x1] - Mass of the Fixed part of the struts [kg]
|
|
% - Fsh [1x1] - Height of cylinder for the Fixed part of the struts [m]
|
|
% - Fsr [1x1] - Radius of cylinder for the Fixed part of the struts [m]
|
|
% - Msm [1x1] - Mass of the Mobile part of the struts [kg]
|
|
% - Msh [1x1] - Height of cylinder for the Mobile part of the struts [m]
|
|
% - Msr [1x1] - Radius of cylinder for the Mobile part of the struts [m]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - struts_F [struct] - structure with the following fields:
|
|
% - M [6x1] - Mass of the Fixed part of the struts [kg]
|
|
% - I [3x3x6] - Moment of Inertia for the Fixed part of the struts [kg*m^2]
|
|
% - H [6x1] - Height of cylinder for the Fixed part of the struts [m]
|
|
% - R [6x1] - Radius of cylinder for the Fixed part of the struts [m]
|
|
% - struts_M [struct] - structure with the following fields:
|
|
% - M [6x1] - Mass of the Mobile part of the struts [kg]
|
|
% - I [3x3x6] - Moment of Inertia for the Mobile part of the struts [kg*m^2]
|
|
% - H [6x1] - Height of cylinder for the Mobile part of the struts [m]
|
|
% - R [6x1] - Radius of cylinder for the Mobile part of the struts [m]
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.Fsm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
|
args.Fsh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
|
args.Fsr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
|
args.Msm (1,1) double {mustBeNumeric, mustBePositive} = 0.1
|
|
args.Msh (1,1) double {mustBeNumeric, mustBePositive} = 50e-3
|
|
args.Msr (1,1) double {mustBeNumeric, mustBePositive} = 5e-3
|
|
end
|
|
#+end_src
|
|
|
|
** Compute the properties of the cylindrical struts
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+begin_src matlab
|
|
Fsm = ones(6,1).*args.Fsm;
|
|
Fsh = ones(6,1).*args.Fsh;
|
|
Fsr = ones(6,1).*args.Fsr;
|
|
|
|
Msm = ones(6,1).*args.Msm;
|
|
Msh = ones(6,1).*args.Msh;
|
|
Msr = ones(6,1).*args.Msr;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
I_F = zeros(3, 3, 6); % Inertia of the "fixed" part of the strut
|
|
I_M = zeros(3, 3, 6); % Inertia of the "mobile" part of the strut
|
|
|
|
for i = 1:6
|
|
I_F(:,:,i) = diag([1/12 * Fsm(i) * (3*Fsr(i)^2 + Fsh(i)^2), ...
|
|
1/12 * Fsm(i) * (3*Fsr(i)^2 + Fsh(i)^2), ...
|
|
1/2 * Fsm(i) * Fsr(i)^2]);
|
|
|
|
I_M(:,:,i) = diag([1/12 * Msm(i) * (3*Msr(i)^2 + Msh(i)^2), ...
|
|
1/12 * Msm(i) * (3*Msr(i)^2 + Msh(i)^2), ...
|
|
1/2 * Msm(i) * Msr(i)^2]);
|
|
end
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.struts_M.type = 1;
|
|
|
|
stewart.struts_M.I = I_M;
|
|
stewart.struts_M.M = Msm;
|
|
stewart.struts_M.R = Msr;
|
|
stewart.struts_M.H = Msh;
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
stewart.struts_F.type = 1;
|
|
|
|
stewart.struts_F.I = I_F;
|
|
stewart.struts_F.M = Fsm;
|
|
stewart.struts_F.R = Fsr;
|
|
stewart.struts_F.H = Fsh;
|
|
#+end_src
|
|
|
|
* =initializeStrutDynamics=: Add Stiffness and Damping properties of each strut
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeStrutDynamics.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeStrutDynamics>>
|
|
|
|
This Matlab function is accessible [[file:../src/initializeStrutDynamics.m][here]].
|
|
|
|
** Documentation
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
#+name: fig:piezoelectric_stack
|
|
#+attr_html: :width 500px
|
|
#+caption: Example of a piezoelectric stach actuator (PI)
|
|
[[file:figs/piezoelectric_stack.jpg]]
|
|
|
|
A simplistic model of such amplified actuator is shown in Figure [[fig:actuator_model_simple]] where:
|
|
- $K$ represent the vertical stiffness of the actuator
|
|
- $C$ represent the vertical damping of the actuator
|
|
- $F$ represents the force applied by the actuator
|
|
- $F_{m}$ represents the total measured force
|
|
- $v_{m}$ represents the absolute velocity of the top part of the actuator
|
|
- $d_{m}$ represents the total relative displacement of the actuator
|
|
|
|
#+begin_src latex :file actuator_model_simple.pdf
|
|
\begin{tikzpicture}
|
|
\draw (-1, 0) -- (1, 0);
|
|
|
|
% Spring, Damper, and Actuator
|
|
\draw[spring] (-1, 0) -- (-1, 1.5) node[midway, left=0.1]{$K$};
|
|
\draw[damper] ( 0, 0) -- ( 0, 1.5) node[midway, left=0.2]{$C$};
|
|
\draw[actuator] ( 1, 0) -- ( 1, 1.5) node[midway, left=0.1](F){$F$};
|
|
|
|
\node[forcesensor={2}{0.2}] (fsens) at (0, 1.5){};
|
|
|
|
\node[left] at (fsens.west) {$F_{m}$};
|
|
|
|
\draw[dashed] (1, 0) -- ++(0.4, 0);
|
|
\draw[dashed] (1, 1.7) -- ++(0.4, 0);
|
|
|
|
\draw[->] (0, 1.7)node[]{$\bullet$} -- ++(0, 0.5) node[right]{$v_{m}$};
|
|
|
|
\draw[<->] (1.4, 0) -- ++(0, 1.7) node[midway, right]{$d_{m}$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:actuator_model_simple
|
|
#+caption: Simple model of an Actuator
|
|
#+RESULTS:
|
|
[[file:figs/actuator_model_simple.png]]
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = initializeStrutDynamics(stewart, args)
|
|
% initializeStrutDynamics - Add Stiffness and Damping properties of each strut
|
|
%
|
|
% Syntax: [stewart] = initializeStrutDynamics(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - K [6x1] - Stiffness of each strut [N/m]
|
|
% - C [6x1] - Damping of each strut [N/(m/s)]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - actuators.type = 1
|
|
% - actuators.K [6x1] - Stiffness of each strut [N/m]
|
|
% - actuators.C [6x1] - Damping of each strut [N/(m/s)]
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.type char {mustBeMember(args.type,{'classical', 'amplified'})} = 'classical'
|
|
args.K (6,1) double {mustBeNumeric, mustBeNonnegative} = 20e6*ones(6,1)
|
|
args.C (6,1) double {mustBeNumeric, mustBeNonnegative} = 2e1*ones(6,1)
|
|
args.k1 (6,1) double {mustBeNumeric} = 1e6
|
|
args.ke (6,1) double {mustBeNumeric} = 5e6
|
|
args.ka (6,1) double {mustBeNumeric} = 60e6
|
|
args.c1 (6,1) double {mustBeNumeric} = 10
|
|
args.ce (6,1) double {mustBeNumeric} = 10
|
|
args.ca (6,1) double {mustBeNumeric} = 10
|
|
args.me (6,1) double {mustBeNumeric} = 0.05
|
|
args.ma (6,1) double {mustBeNumeric} = 0.05
|
|
end
|
|
#+end_src
|
|
|
|
** Add Stiffness and Damping properties of each strut
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
if strcmp(args.type, 'classical')
|
|
stewart.actuators.type = 1;
|
|
elseif strcmp(args.type, 'amplified')
|
|
stewart.actuators.type = 2;
|
|
end
|
|
|
|
stewart.actuators.K = args.K;
|
|
stewart.actuators.C = args.C;
|
|
|
|
stewart.actuators.k1 = args.k1;
|
|
stewart.actuators.c1 = args.c1;
|
|
|
|
stewart.actuators.ka = args.ka;
|
|
stewart.actuators.ca = args.ca;
|
|
|
|
stewart.actuators.ke = args.ke;
|
|
stewart.actuators.ce = args.ce;
|
|
|
|
stewart.actuators.ma = args.ma;
|
|
stewart.actuators.me = args.me;
|
|
#+end_src
|
|
|
|
* =initializeAmplifiedStrutDynamics=: Add Stiffness and Damping properties of each strut for an amplified piezoelectric actuator
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeAmplifiedStrutDynamics.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeAmplifiedStrutDynamics>>
|
|
|
|
This Matlab function is accessible [[file:../src/initializeAmplifiedStrutDynamics.m][here]].
|
|
|
|
** Documentation
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
An amplified piezoelectric actuator is shown in Figure [[fig:cedrat_apa95ml]].
|
|
|
|
#+name: fig:cedrat_apa95ml
|
|
#+attr_html: :width 500px
|
|
#+caption: Example of an Amplified piezoelectric actuator with an integrated displacement sensor (Cedrat Technologies)
|
|
[[file:figs/amplified_piezo_with_displacement_sensor.jpg]]
|
|
|
|
A simplistic model of such amplified actuator is shown in Figure [[fig:amplified_piezo_model]] where:
|
|
- $K_{r}$ represent the vertical stiffness when the piezoelectric stack is removed
|
|
- $K_{a}$ is the vertical stiffness contribution of the piezoelectric stack
|
|
- $F_{i}$ represents the part of the piezoelectric stack that is used as a force actuator
|
|
- $F_{m,i}$ represents the remaining part of the piezoelectric stack that is used as a force sensor
|
|
- $v_{m,i}$ represents the absolute velocity of the top part of the actuator
|
|
- $d_{m,i}$ represents the total relative displacement of the actuator
|
|
|
|
#+begin_src latex :file iff_1dof.pdf
|
|
\begin{tikzpicture}
|
|
% Ground
|
|
\draw (-1.2, 0) -- (1, 0);
|
|
|
|
% Mass
|
|
\draw (-1.2, 1.4) -- ++(2.2, 0);
|
|
\node[forcesensor={0.4}{0.4}] (fsensn) at (0, 1){};
|
|
\draw[] (-0.4, 1) -- (0.4, 1);
|
|
\node[right] at (fsensn.east) {$F_{m}$};
|
|
|
|
% Spring, Damper, and Actuator
|
|
\draw[spring] (-0.4, 0) -- (-0.4, 1) node[midway, right=0.1]{$K_{a}$};
|
|
\draw[actuator={0.4}{0.2}] (0.4, 0) -- (0.4, 1) node[midway, right=0.1]{$F$};
|
|
|
|
\draw[spring] (-1, 0) -- (-1, 1.4) node[midway, left=0.1]{$K_{r}$};
|
|
|
|
\draw[dashed] (1, 0) -- ++(0.4, 0);
|
|
|
|
\draw[dashed] (1, 1.4) -- ++(0.4, 0);
|
|
|
|
\draw[->] (0, 1.4)node[]{$\bullet$} -- ++(0, 0.5) node[right]{$v_{m}$};
|
|
|
|
\draw[<->] (1.4, 0) -- ++(0, 1.4) node[midway, right]{$d_{m}$};
|
|
\end{tikzpicture}
|
|
#+end_src
|
|
|
|
#+name: fig:amplified_piezo_model
|
|
#+caption: Model of an amplified actuator
|
|
#+RESULTS:
|
|
[[file:figs/iff_1dof.png]]
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = initializeAmplifiedStrutDynamics(stewart, args)
|
|
% initializeAmplifiedStrutDynamics - Add Stiffness and Damping properties of each strut
|
|
%
|
|
% Syntax: [stewart] = initializeAmplifiedStrutDynamics(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - Ka [6x1] - Vertical stiffness contribution of the piezoelectric stack [N/m]
|
|
% - Ca [6x1] - Vertical damping contribution of the piezoelectric stack [N/(m/s)]
|
|
% - Kr [6x1] - Vertical (residual) stiffness when the piezoelectric stack is removed [N/m]
|
|
% - Cr [6x1] - Vertical (residual) damping when the piezoelectric stack is removed [N/(m/s)]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - actuators.type = 2
|
|
% - actuators.K [6x1] - Total Stiffness of each strut [N/m]
|
|
% - actuators.C [6x1] - Total Damping of each strut [N/(m/s)]
|
|
% - actuators.Ka [6x1] - Vertical stiffness contribution of the piezoelectric stack [N/m]
|
|
% - actuators.Ca [6x1] - Vertical damping contribution of the piezoelectric stack [N/(m/s)]
|
|
% - actuators.Kr [6x1] - Vertical stiffness when the piezoelectric stack is removed [N/m]
|
|
% - actuators.Cr [6x1] - Vertical damping when the piezoelectric stack is removed [N/(m/s)]
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.Kr (6,1) double {mustBeNumeric, mustBeNonnegative} = 5e6*ones(6,1)
|
|
args.Cr (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
|
args.Ka (6,1) double {mustBeNumeric, mustBeNonnegative} = 15e6*ones(6,1)
|
|
args.Ca (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e1*ones(6,1)
|
|
end
|
|
#+end_src
|
|
|
|
** Compute the total stiffness and damping
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
K = args.Ka + args.Kr;
|
|
C = args.Ca + args.Cr;
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.actuators.type = 2;
|
|
|
|
stewart.actuators.Ka = args.Ka;
|
|
stewart.actuators.Ca = args.Ca;
|
|
|
|
stewart.actuators.Kr = args.Kr;
|
|
stewart.actuators.Cr = args.Cr;
|
|
|
|
stewart.actuators.K = K;
|
|
stewart.actuators.C = K;
|
|
#+end_src
|
|
|
|
* =initializeJointDynamics=: Add Stiffness and Damping properties for spherical joints
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeJointDynamics.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeJointDynamics>>
|
|
|
|
This Matlab function is accessible [[file:../src/initializeJointDynamics.m][here]].
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = initializeJointDynamics(stewart, args)
|
|
% initializeJointDynamics - Add Stiffness and Damping properties for the spherical joints
|
|
%
|
|
% Syntax: [stewart] = initializeJointDynamics(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - type_F - 'universal', 'spherical', 'universal_p', 'spherical_p'
|
|
% - type_M - 'universal', 'spherical', 'universal_p', 'spherical_p'
|
|
% - Kf_M [6x1] - Bending (Rx, Ry) Stiffness for each top joints [(N.m)/rad]
|
|
% - Kt_M [6x1] - Torsion (Rz) Stiffness for each top joints [(N.m)/rad]
|
|
% - Cf_M [6x1] - Bending (Rx, Ry) Damping of each top joint [(N.m)/(rad/s)]
|
|
% - Ct_M [6x1] - Torsion (Rz) Damping of each top joint [(N.m)/(rad/s)]
|
|
% - Kz_M [6x1] - Translation (Tz) Stiffness for each top joints [N/m]
|
|
% - Cz_M [6x1] - Translation (Tz) Damping of each top joint [N/m]
|
|
% - Kf_F [6x1] - Bending (Rx, Ry) Stiffness for each bottom joints [(N.m)/rad]
|
|
% - Kt_F [6x1] - Torsion (Rz) Stiffness for each bottom joints [(N.m)/rad]
|
|
% - Cf_F [6x1] - Bending (Rx, Ry) Damping of each bottom joint [(N.m)/(rad/s)]
|
|
% - Cf_F [6x1] - Torsion (Rz) Damping of each bottom joint [(N.m)/(rad/s)]
|
|
% - Kz_F [6x1] - Translation (Tz) Stiffness for each bottom joints [N/m]
|
|
% - Cz_F [6x1] - Translation (Tz) Damping of each bottom joint [N/m]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - stewart.joints_F and stewart.joints_M:
|
|
% - type - 1 (universal), 2 (spherical), 3 (universal perfect), 4 (spherical perfect)
|
|
% - Kx, Ky, Kz [6x1] - Translation (Tx, Ty, Tz) Stiffness [N/m]
|
|
% - Kf [6x1] - Flexion (Rx, Ry) Stiffness [(N.m)/rad]
|
|
% - Kt [6x1] - Torsion (Rz) Stiffness [(N.m)/rad]
|
|
% - Cx, Cy, Cz [6x1] - Translation (Rx, Ry) Damping [N/(m/s)]
|
|
% - Cf [6x1] - Flexion (Rx, Ry) Damping [(N.m)/(rad/s)]
|
|
% - Cb [6x1] - Torsion (Rz) Damping [(N.m)/(rad/s)]
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.type_F char {mustBeMember(args.type_F,{'universal', 'spherical', 'universal_p', 'spherical_p', 'universal_3dof'})} = 'universal'
|
|
args.type_M char {mustBeMember(args.type_M,{'universal', 'spherical', 'universal_p', 'spherical_p', 'spherical_3dof'})} = 'spherical'
|
|
args.Kf_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 15*ones(6,1)
|
|
args.Cf_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-4*ones(6,1)
|
|
args.Kt_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 20*ones(6,1)
|
|
args.Ct_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-3*ones(6,1)
|
|
args.Kz_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 60e6*ones(6,1)
|
|
args.Cz_M (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e2*ones(6,1)
|
|
args.Kf_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 15*ones(6,1)
|
|
args.Cf_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-4*ones(6,1)
|
|
args.Kt_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 20*ones(6,1)
|
|
args.Ct_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e-3*ones(6,1)
|
|
args.Kz_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 60e6*ones(6,1)
|
|
args.Cz_F (6,1) double {mustBeNumeric, mustBeNonnegative} = 1e2*ones(6,1)
|
|
end
|
|
#+end_src
|
|
|
|
** Add Actuator Type
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
switch args.type_F
|
|
case 'universal'
|
|
stewart.joints_F.type = 1;
|
|
case 'spherical'
|
|
stewart.joints_F.type = 2;
|
|
case 'universal_p'
|
|
stewart.joints_F.type = 1;
|
|
case 'spherical_p'
|
|
stewart.joints_F.type = 2;
|
|
case 'universal_3dof'
|
|
stewart.joints_F.type = 5;
|
|
end
|
|
|
|
switch args.type_M
|
|
case 'universal'
|
|
stewart.joints_M.type = 1;
|
|
case 'spherical'
|
|
stewart.joints_M.type = 2;
|
|
case 'universal_p'
|
|
stewart.joints_M.type = 1;
|
|
case 'spherical_p'
|
|
stewart.joints_M.type = 2;
|
|
case 'spherical_3dof'
|
|
stewart.joints_M.type = 6;
|
|
end
|
|
#+end_src
|
|
|
|
** Initialize Stiffness
|
|
#+begin_src matlab
|
|
stewart.joints_M.Kx = zeros(6,1);
|
|
stewart.joints_M.Ky = zeros(6,1);
|
|
stewart.joints_M.Kz = zeros(6,1);
|
|
stewart.joints_F.Kx = zeros(6,1);
|
|
stewart.joints_F.Ky = zeros(6,1);
|
|
stewart.joints_F.Kz = zeros(6,1);
|
|
|
|
stewart.joints_M.Kf = zeros(6,1);
|
|
stewart.joints_M.Kt = zeros(6,1);
|
|
stewart.joints_F.Kf = zeros(6,1);
|
|
stewart.joints_F.Kt = zeros(6,1);
|
|
|
|
stewart.joints_M.Cx = zeros(6,1);
|
|
stewart.joints_M.Cy = zeros(6,1);
|
|
stewart.joints_M.Cz = zeros(6,1);
|
|
stewart.joints_F.Cx = zeros(6,1);
|
|
stewart.joints_F.Cy = zeros(6,1);
|
|
stewart.joints_F.Cz = zeros(6,1);
|
|
|
|
stewart.joints_M.Cf = zeros(6,1);
|
|
stewart.joints_M.Ct = zeros(6,1);
|
|
stewart.joints_F.Cf = zeros(6,1);
|
|
stewart.joints_F.Ct = zeros(6,1);
|
|
#+end_src
|
|
|
|
** Add Stiffness and Damping in Translation of each strut
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
Translation Stiffness
|
|
#+begin_src matlab
|
|
if ~strcmp(args.type_M, 'universal_p') || ~strcmp(args.type_M, 'spherical_p')
|
|
stewart.joints_M.Kz = args.Kz_M;
|
|
stewart.joints_M.Cz = args.Cz_M;
|
|
end
|
|
|
|
if ~strcmp(args.type_F, 'universal_p') || ~strcmp(args.type_F, 'spherical_p')
|
|
stewart.joints_F.Kz = args.Kz_F;
|
|
stewart.joints_F.Cz = args.Cz_F;
|
|
end
|
|
#+end_src
|
|
|
|
** Add Stiffness and Damping in Rotation of each strut
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
Rotational Stiffness
|
|
#+begin_src matlab
|
|
if ~strcmp(args.type_M, 'universal_p') || ~strcmp(args.type_M, 'spherical_p')
|
|
stewart.joints_M.Kf = args.Kf_M;
|
|
stewart.joints_M.Cf = args.Cf_M;
|
|
|
|
stewart.joints_M.Kt = args.Kt_M;
|
|
stewart.joints_M.Ct = args.Ct_M;
|
|
end
|
|
|
|
if ~strcmp(args.type_F, 'universal_p') || ~strcmp(args.type_F, 'spherical_p')
|
|
stewart.joints_F.Kf = args.Kf_F;
|
|
stewart.joints_F.Cf = args.Cf_F;
|
|
|
|
stewart.joints_F.Kt = args.Kt_F;
|
|
stewart.joints_F.Ct = args.Ct_F;
|
|
end
|
|
#+end_src
|
|
|
|
* =initializeInertialSensor=: Initialize the inertial sensor in each strut
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/initializeInertialSensor.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:initializeInertialSensor>>
|
|
|
|
This Matlab function is accessible [[file:../src/initializeInertialSensor.m][here]].
|
|
|
|
** Geophone - Working Principle
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
From the schematic of the Z-axis geophone shown in Figure [[fig:z_axis_geophone]], we can write the transfer function from the support velocity $\dot{w}$ to the relative velocity of the inertial mass $\dot{d}$:
|
|
\[ \frac{\dot{d}}{\dot{w}} = \frac{-\frac{s^2}{{\omega_0}^2}}{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1} \]
|
|
with:
|
|
- $\omega_0 = \sqrt{\frac{k}{m}}$
|
|
- $\xi = \frac{1}{2} \sqrt{\frac{m}{k}}$
|
|
|
|
#+name: fig:z_axis_geophone
|
|
#+caption: Schematic of a Z-Axis geophone
|
|
[[file:figs/inertial_sensor.png]]
|
|
|
|
We see that at frequencies above $\omega_0$:
|
|
\[ \frac{\dot{d}}{\dot{w}} \approx -1 \]
|
|
|
|
And thus, the measurement of the relative velocity of the mass with respect to its support gives the absolute velocity of the support.
|
|
|
|
We generally want to have the smallest resonant frequency $\omega_0$ to measure low frequency absolute velocity, however there is a trade-off between $\omega_0$ and the mass of the inertial mass.
|
|
|
|
** Accelerometer - Working Principle
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
From the schematic of the Z-axis accelerometer shown in Figure [[fig:z_axis_accelerometer]], we can write the transfer function from the support acceleration $\ddot{w}$ to the relative position of the inertial mass $d$:
|
|
\[ \frac{d}{\ddot{w}} = \frac{-\frac{1}{{\omega_0}^2}}{\frac{s^2}{{\omega_0}^2} + 2 \xi \frac{s}{\omega_0} + 1} \]
|
|
with:
|
|
- $\omega_0 = \sqrt{\frac{k}{m}}$
|
|
- $\xi = \frac{1}{2} \sqrt{\frac{m}{k}}$
|
|
|
|
#+name: fig:z_axis_accelerometer
|
|
#+caption: Schematic of a Z-Axis geophone
|
|
[[file:figs/inertial_sensor.png]]
|
|
|
|
We see that at frequencies below $\omega_0$:
|
|
\[ \frac{d}{\ddot{w}} \approx -\frac{1}{{\omega_0}^2} \]
|
|
|
|
And thus, the measurement of the relative displacement of the mass with respect to its support gives the absolute acceleration of the support.
|
|
|
|
Note that there is trade-off between:
|
|
- the highest measurable acceleration $\omega_0$
|
|
- the sensitivity of the accelerometer which is equal to $-\frac{1}{{\omega_0}^2}$
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = initializeInertialSensor(stewart, args)
|
|
% initializeInertialSensor - Initialize the inertial sensor in each strut
|
|
%
|
|
% Syntax: [stewart] = initializeInertialSensor(args)
|
|
%
|
|
% Inputs:
|
|
% - args - Structure with the following fields:
|
|
% - type - 'geophone', 'accelerometer', 'none'
|
|
% - mass [1x1] - Weight of the inertial mass [kg]
|
|
% - freq [1x1] - Cutoff frequency [Hz]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - stewart.sensors.inertial
|
|
% - type - 1 (geophone), 2 (accelerometer), 3 (none)
|
|
% - K [1x1] - Stiffness [N/m]
|
|
% - C [1x1] - Damping [N/(m/s)]
|
|
% - M [1x1] - Inertial Mass [kg]
|
|
% - G [1x1] - Gain
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.type char {mustBeMember(args.type,{'geophone', 'accelerometer', 'none'})} = 'none'
|
|
args.mass (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e-2
|
|
args.freq (1,1) double {mustBeNumeric, mustBeNonnegative} = 1e3
|
|
end
|
|
#+end_src
|
|
|
|
** Compute the properties of the sensor
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
sensor = struct();
|
|
|
|
switch args.type
|
|
case 'geophone'
|
|
sensor.type = 1;
|
|
|
|
sensor.M = args.mass;
|
|
sensor.K = sensor.M * (2*pi*args.freq)^2;
|
|
sensor.C = 2*sqrt(sensor.M * sensor.K);
|
|
case 'accelerometer'
|
|
sensor.type = 2;
|
|
|
|
sensor.M = args.mass;
|
|
sensor.K = sensor.M * (2*pi*args.freq)^2;
|
|
sensor.C = 2*sqrt(sensor.M * sensor.K);
|
|
sensor.G = -sensor.K/sensor.M;
|
|
case 'none'
|
|
sensor.type = 3;
|
|
end
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.sensors.inertial = sensor;
|
|
#+end_src
|
|
|
|
* =displayArchitecture=: 3D plot of the Stewart platform architecture
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/displayArchitecture.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:displayArchitecture>>
|
|
|
|
This Matlab function is accessible [[file:../src/displayArchitecture.m][here]].
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [] = displayArchitecture(stewart, args)
|
|
% displayArchitecture - 3D plot of the Stewart platform architecture
|
|
%
|
|
% Syntax: [] = displayArchitecture(args)
|
|
%
|
|
% Inputs:
|
|
% - stewart
|
|
% - args - Structure with the following fields:
|
|
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
|
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
|
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
|
% - F_color [color] - Color used for the Fixed elements
|
|
% - M_color [color] - Color used for the Mobile elements
|
|
% - L_color [color] - Color used for the Legs elements
|
|
% - frames [true/false] - Display the Frames
|
|
% - legs [true/false] - Display the Legs
|
|
% - joints [true/false] - Display the Joints
|
|
% - labels [true/false] - Display the Labels
|
|
% - platforms [true/false] - Display the Platforms
|
|
% - views ['all', 'xy', 'yz', 'xz', 'default'] -
|
|
%
|
|
% Outputs:
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
|
args.F_color = [0 0.4470 0.7410]
|
|
args.M_color = [0.8500 0.3250 0.0980]
|
|
args.L_color = [0 0 0]
|
|
args.frames logical {mustBeNumericOrLogical} = true
|
|
args.legs logical {mustBeNumericOrLogical} = true
|
|
args.joints logical {mustBeNumericOrLogical} = true
|
|
args.labels logical {mustBeNumericOrLogical} = true
|
|
args.platforms logical {mustBeNumericOrLogical} = true
|
|
args.views char {mustBeMember(args.views,{'all', 'xy', 'xz', 'yz', 'default'})} = 'default'
|
|
end
|
|
#+end_src
|
|
|
|
** Check the =stewart= structure elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
assert(isfield(stewart.platform_F, 'FO_A'), 'stewart.platform_F should have attribute FO_A')
|
|
FO_A = stewart.platform_F.FO_A;
|
|
|
|
assert(isfield(stewart.platform_M, 'MO_B'), 'stewart.platform_M should have attribute MO_B')
|
|
MO_B = stewart.platform_M.MO_B;
|
|
|
|
assert(isfield(stewart.geometry, 'H'), 'stewart.geometry should have attribute H')
|
|
H = stewart.geometry.H;
|
|
|
|
assert(isfield(stewart.platform_F, 'Fa'), 'stewart.platform_F should have attribute Fa')
|
|
Fa = stewart.platform_F.Fa;
|
|
|
|
assert(isfield(stewart.platform_M, 'Mb'), 'stewart.platform_M should have attribute Mb')
|
|
Mb = stewart.platform_M.Mb;
|
|
#+end_src
|
|
|
|
|
|
** Figure Creation, Frames and Homogeneous transformations
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
The reference frame of the 3d plot corresponds to the frame $\{F\}$.
|
|
#+begin_src matlab
|
|
if ~strcmp(args.views, 'all')
|
|
figure;
|
|
else
|
|
f = figure('visible', 'off');
|
|
end
|
|
|
|
hold on;
|
|
#+end_src
|
|
|
|
We first compute homogeneous matrices that will be useful to position elements on the figure where the reference frame is $\{F\}$.
|
|
#+begin_src matlab
|
|
FTa = [eye(3), FO_A; ...
|
|
zeros(1,3), 1];
|
|
ATb = [args.ARB, args.AP; ...
|
|
zeros(1,3), 1];
|
|
BTm = [eye(3), -MO_B; ...
|
|
zeros(1,3), 1];
|
|
|
|
FTm = FTa*ATb*BTm;
|
|
#+end_src
|
|
|
|
Let's define a parameter that define the length of the unit vectors used to display the frames.
|
|
#+begin_src matlab
|
|
d_unit_vector = H/4;
|
|
#+end_src
|
|
|
|
Let's define a parameter used to position the labels with respect to the center of the element.
|
|
#+begin_src matlab
|
|
d_label = H/20;
|
|
#+end_src
|
|
|
|
** Fixed Base elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
Let's first plot the frame $\{F\}$.
|
|
#+begin_src matlab
|
|
Ff = [0, 0, 0];
|
|
if args.frames
|
|
quiver3(Ff(1)*ones(1,3), Ff(2)*ones(1,3), Ff(3)*ones(1,3), ...
|
|
[d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color)
|
|
|
|
if args.labels
|
|
text(Ff(1) + d_label, ...
|
|
Ff(2) + d_label, ...
|
|
Ff(3) + d_label, '$\{F\}$', 'Color', args.F_color);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
Now plot the frame $\{A\}$ fixed to the Base.
|
|
#+begin_src matlab
|
|
if args.frames
|
|
quiver3(FO_A(1)*ones(1,3), FO_A(2)*ones(1,3), FO_A(3)*ones(1,3), ...
|
|
[d_unit_vector 0 0], [0 d_unit_vector 0], [0 0 d_unit_vector], '-', 'Color', args.F_color)
|
|
|
|
if args.labels
|
|
text(FO_A(1) + d_label, ...
|
|
FO_A(2) + d_label, ...
|
|
FO_A(3) + d_label, '$\{A\}$', 'Color', args.F_color);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
Let's then plot the circle corresponding to the shape of the Fixed base.
|
|
#+begin_src matlab
|
|
if args.platforms && stewart.platform_F.type == 1
|
|
theta = [0:0.01:2*pi+0.01]; % Angles [rad]
|
|
v = null([0; 0; 1]'); % Two vectors that are perpendicular to the circle normal
|
|
center = [0; 0; 0]; % Center of the circle
|
|
radius = stewart.platform_F.R; % Radius of the circle [m]
|
|
|
|
points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta));
|
|
|
|
plot3(points(1,:), ...
|
|
points(2,:), ...
|
|
points(3,:), '-', 'Color', args.F_color);
|
|
end
|
|
#+end_src
|
|
|
|
Let's now plot the position and labels of the Fixed Joints
|
|
#+begin_src matlab
|
|
if args.joints
|
|
scatter3(Fa(1,:), ...
|
|
Fa(2,:), ...
|
|
Fa(3,:), 'MarkerEdgeColor', args.F_color);
|
|
if args.labels
|
|
for i = 1:size(Fa,2)
|
|
text(Fa(1,i) + d_label, ...
|
|
Fa(2,i), ...
|
|
Fa(3,i), sprintf('$a_{%i}$', i), 'Color', args.F_color);
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
** Mobile Platform elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
|
|
Plot the frame $\{M\}$.
|
|
#+begin_src matlab
|
|
Fm = FTm*[0; 0; 0; 1]; % Get the position of frame {M} w.r.t. {F}
|
|
|
|
if args.frames
|
|
FM_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors
|
|
quiver3(Fm(1)*ones(1,3), Fm(2)*ones(1,3), Fm(3)*ones(1,3), ...
|
|
FM_uv(1,1:3), FM_uv(2,1:3), FM_uv(3,1:3), '-', 'Color', args.M_color)
|
|
|
|
if args.labels
|
|
text(Fm(1) + d_label, ...
|
|
Fm(2) + d_label, ...
|
|
Fm(3) + d_label, '$\{M\}$', 'Color', args.M_color);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
Plot the frame $\{B\}$.
|
|
#+begin_src matlab
|
|
FB = FO_A + args.AP;
|
|
|
|
if args.frames
|
|
FB_uv = FTm*[d_unit_vector*eye(3); zeros(1,3)]; % Rotated Unit vectors
|
|
quiver3(FB(1)*ones(1,3), FB(2)*ones(1,3), FB(3)*ones(1,3), ...
|
|
FB_uv(1,1:3), FB_uv(2,1:3), FB_uv(3,1:3), '-', 'Color', args.M_color)
|
|
|
|
if args.labels
|
|
text(FB(1) - d_label, ...
|
|
FB(2) + d_label, ...
|
|
FB(3) + d_label, '$\{B\}$', 'Color', args.M_color);
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
Let's then plot the circle corresponding to the shape of the Mobile platform.
|
|
#+begin_src matlab
|
|
if args.platforms && stewart.platform_M.type == 1
|
|
theta = [0:0.01:2*pi+0.01]; % Angles [rad]
|
|
v = null((FTm(1:3,1:3)*[0;0;1])'); % Two vectors that are perpendicular to the circle normal
|
|
center = Fm(1:3); % Center of the circle
|
|
radius = stewart.platform_M.R; % Radius of the circle [m]
|
|
|
|
points = center*ones(1, length(theta)) + radius*(v(:,1)*cos(theta) + v(:,2)*sin(theta));
|
|
|
|
plot3(points(1,:), ...
|
|
points(2,:), ...
|
|
points(3,:), '-', 'Color', args.M_color);
|
|
end
|
|
#+end_src
|
|
|
|
Plot the position and labels of the rotation joints fixed to the mobile platform.
|
|
#+begin_src matlab
|
|
if args.joints
|
|
Fb = FTm*[Mb;ones(1,6)];
|
|
|
|
scatter3(Fb(1,:), ...
|
|
Fb(2,:), ...
|
|
Fb(3,:), 'MarkerEdgeColor', args.M_color);
|
|
|
|
if args.labels
|
|
for i = 1:size(Fb,2)
|
|
text(Fb(1,i) + d_label, ...
|
|
Fb(2,i), ...
|
|
Fb(3,i), sprintf('$b_{%i}$', i), 'Color', args.M_color);
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
** Legs
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
Plot the legs connecting the joints of the fixed base to the joints of the mobile platform.
|
|
#+begin_src matlab
|
|
if args.legs
|
|
for i = 1:6
|
|
plot3([Fa(1,i), Fb(1,i)], ...
|
|
[Fa(2,i), Fb(2,i)], ...
|
|
[Fa(3,i), Fb(3,i)], '-', 'Color', args.L_color);
|
|
|
|
if args.labels
|
|
text((Fa(1,i)+Fb(1,i))/2 + d_label, ...
|
|
(Fa(2,i)+Fb(2,i))/2, ...
|
|
(Fa(3,i)+Fb(3,i))/2, sprintf('$%i$', i), 'Color', args.L_color);
|
|
end
|
|
end
|
|
end
|
|
#+end_src
|
|
|
|
** Figure parameters
|
|
#+begin_src matlab
|
|
switch args.views
|
|
case 'default'
|
|
view([1 -0.6 0.4]);
|
|
case 'xy'
|
|
view([0 0 1]);
|
|
case 'xz'
|
|
view([0 -1 0]);
|
|
case 'yz'
|
|
view([1 0 0]);
|
|
end
|
|
axis equal;
|
|
axis off;
|
|
#+end_src
|
|
|
|
** Subplots
|
|
#+begin_src matlab
|
|
if strcmp(args.views, 'all')
|
|
hAx = findobj('type', 'axes');
|
|
|
|
figure;
|
|
s1 = subplot(2,2,1);
|
|
copyobj(get(hAx(1), 'Children'), s1);
|
|
view([0 0 1]);
|
|
axis equal;
|
|
axis off;
|
|
title('Top')
|
|
|
|
s2 = subplot(2,2,2);
|
|
copyobj(get(hAx(1), 'Children'), s2);
|
|
view([1 -0.6 0.4]);
|
|
axis equal;
|
|
axis off;
|
|
|
|
s3 = subplot(2,2,3);
|
|
copyobj(get(hAx(1), 'Children'), s3);
|
|
view([1 0 0]);
|
|
axis equal;
|
|
axis off;
|
|
title('Front')
|
|
|
|
s4 = subplot(2,2,4);
|
|
copyobj(get(hAx(1), 'Children'), s4);
|
|
view([0 -1 0]);
|
|
axis equal;
|
|
axis off;
|
|
title('Side')
|
|
|
|
close(f);
|
|
end
|
|
#+end_src
|
|
|
|
|
|
* =describeStewartPlatform=: Display some text describing the current defined Stewart Platform
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/describeStewartPlatform.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:describeStewartPlatform>>
|
|
|
|
This Matlab function is accessible [[file:../src/describeStewartPlatform.m][here]].
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [] = describeStewartPlatform(stewart)
|
|
% describeStewartPlatform - Display some text describing the current defined Stewart Platform
|
|
%
|
|
% Syntax: [] = describeStewartPlatform(args)
|
|
%
|
|
% Inputs:
|
|
% - stewart
|
|
%
|
|
% Outputs:
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
end
|
|
#+end_src
|
|
|
|
** Geometry
|
|
#+begin_src matlab
|
|
fprintf('GEOMETRY:\n')
|
|
fprintf('- The height between the fixed based and the top platform is %.3g [mm].\n', 1e3*stewart.geometry.H)
|
|
|
|
if stewart.platform_M.MO_B(3) > 0
|
|
fprintf('- Frame {A} is located %.3g [mm] above the top platform.\n', 1e3*stewart.platform_M.MO_B(3))
|
|
else
|
|
fprintf('- Frame {A} is located %.3g [mm] below the top platform.\n', - 1e3*stewart.platform_M.MO_B(3))
|
|
end
|
|
|
|
fprintf('- The initial length of the struts are:\n')
|
|
fprintf('\t %.3g, %.3g, %.3g, %.3g, %.3g, %.3g [mm]\n', 1e3*stewart.geometry.l)
|
|
fprintf('\n')
|
|
#+end_src
|
|
|
|
** Actuators
|
|
#+begin_src matlab
|
|
fprintf('ACTUATORS:\n')
|
|
if stewart.actuators.type == 1
|
|
fprintf('- The actuators are classical.\n')
|
|
fprintf('- The Stiffness and Damping of each actuators is:\n')
|
|
fprintf('\t k = %.0e [N/m] \t c = %.0e [N/(m/s)]\n', stewart.actuators.K(1), stewart.actuators.C(1))
|
|
elseif stewart.actuators.type == 2
|
|
fprintf('- The actuators are mechanicaly amplified.\n')
|
|
fprintf('- The vertical stiffness and damping contribution of the piezoelectric stack is:\n')
|
|
fprintf('\t ka = %.0e [N/m] \t ca = %.0e [N/(m/s)]\n', stewart.actuators.Ka(1), stewart.actuators.Ca(1))
|
|
fprintf('- Vertical stiffness when the piezoelectric stack is removed is:\n')
|
|
fprintf('\t kr = %.0e [N/m] \t cr = %.0e [N/(m/s)]\n', stewart.actuators.Kr(1), stewart.actuators.Cr(1))
|
|
end
|
|
fprintf('\n')
|
|
#+end_src
|
|
|
|
** Joints
|
|
#+begin_src matlab
|
|
fprintf('JOINTS:\n')
|
|
#+end_src
|
|
|
|
Type of the joints on the fixed base.
|
|
#+begin_src matlab
|
|
switch stewart.joints_F.type
|
|
case 1
|
|
fprintf('- The joints on the fixed based are universal joints\n')
|
|
case 2
|
|
fprintf('- The joints on the fixed based are spherical joints\n')
|
|
case 3
|
|
fprintf('- The joints on the fixed based are perfect universal joints\n')
|
|
case 4
|
|
fprintf('- The joints on the fixed based are perfect spherical joints\n')
|
|
end
|
|
#+end_src
|
|
|
|
Type of the joints on the mobile platform.
|
|
#+begin_src matlab
|
|
switch stewart.joints_M.type
|
|
case 1
|
|
fprintf('- The joints on the mobile based are universal joints\n')
|
|
case 2
|
|
fprintf('- The joints on the mobile based are spherical joints\n')
|
|
case 3
|
|
fprintf('- The joints on the mobile based are perfect universal joints\n')
|
|
case 4
|
|
fprintf('- The joints on the mobile based are perfect spherical joints\n')
|
|
end
|
|
#+end_src
|
|
|
|
Position of the fixed joints
|
|
#+begin_src matlab
|
|
fprintf('- The position of the joints on the fixed based with respect to {F} are (in [mm]):\n')
|
|
fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_F.Fa)
|
|
#+end_src
|
|
|
|
Position of the mobile joints
|
|
#+begin_src matlab
|
|
fprintf('- The position of the joints on the mobile based with respect to {M} are (in [mm]):\n')
|
|
fprintf('\t % .3g \t % .3g \t % .3g\n', 1e3*stewart.platform_M.Mb)
|
|
fprintf('\n')
|
|
#+end_src
|
|
|
|
** Kinematics
|
|
#+begin_src matlab
|
|
fprintf('KINEMATICS:\n')
|
|
|
|
if isfield(stewart.kinematics, 'K')
|
|
fprintf('- The Stiffness matrix K is (in [N/m]):\n')
|
|
fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.K)
|
|
end
|
|
|
|
if isfield(stewart.kinematics, 'C')
|
|
fprintf('- The Damping matrix C is (in [m/N]):\n')
|
|
fprintf('\t % .0e \t % .0e \t % .0e \t % .0e \t % .0e \t % .0e\n', stewart.kinematics.C)
|
|
end
|
|
#+end_src
|
|
|
|
* =generateCubicConfiguration=: Generate a Cubic Configuration
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/generateCubicConfiguration.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:generateCubicConfiguration>>
|
|
|
|
This Matlab function is accessible [[file:../src/generateCubicConfiguration.m][here]].
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = generateCubicConfiguration(stewart, args)
|
|
% generateCubicConfiguration - Generate a Cubic Configuration
|
|
%
|
|
% Syntax: [stewart] = generateCubicConfiguration(stewart, args)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - geometry.H [1x1] - Total height of the platform [m]
|
|
% - args - Can have the following fields:
|
|
% - Hc [1x1] - Height of the "useful" part of the cube [m]
|
|
% - FOc [1x1] - Height of the center of the cube with respect to {F} [m]
|
|
% - FHa [1x1] - Height of the plane joining the points ai with respect to the frame {F} [m]
|
|
% - MHb [1x1] - Height of the plane joining the points bi with respect to the frame {M} [m]
|
|
%
|
|
% Outputs:
|
|
% - stewart - updated Stewart structure with the added fields:
|
|
% - platform_F.Fa [3x6] - Its i'th column is the position vector of joint ai with respect to {F}
|
|
% - platform_M.Mb [3x6] - Its i'th column is the position vector of joint bi with respect to {M}
|
|
#+end_src
|
|
|
|
** Documentation
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+name: fig:cubic-configuration-definition
|
|
#+caption: Cubic Configuration
|
|
[[file:figs/cubic-configuration-definition.png]]
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.Hc (1,1) double {mustBeNumeric, mustBePositive} = 60e-3
|
|
args.FOc (1,1) double {mustBeNumeric} = 50e-3
|
|
args.FHa (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e-3
|
|
args.MHb (1,1) double {mustBeNumeric, mustBeNonnegative} = 15e-3
|
|
end
|
|
#+end_src
|
|
|
|
** Check the =stewart= structure elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
assert(isfield(stewart.geometry, 'H'), 'stewart.geometry should have attribute H')
|
|
H = stewart.geometry.H;
|
|
#+end_src
|
|
|
|
** Position of the Cube
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
We define the useful points of the cube with respect to the Cube's center.
|
|
${}^{C}C$ are the 6 vertices of the cubes expressed in a frame {C} which is located at the center of the cube and aligned with {F} and {M}.
|
|
|
|
#+begin_src matlab
|
|
sx = [ 2; -1; -1];
|
|
sy = [ 0; 1; -1];
|
|
sz = [ 1; 1; 1];
|
|
|
|
R = [sx, sy, sz]./vecnorm([sx, sy, sz]);
|
|
|
|
L = args.Hc*sqrt(3);
|
|
|
|
Cc = R'*[[0;0;L],[L;0;L],[L;0;0],[L;L;0],[0;L;0],[0;L;L]] - [0;0;1.5*args.Hc];
|
|
|
|
CCf = [Cc(:,1), Cc(:,3), Cc(:,3), Cc(:,5), Cc(:,5), Cc(:,1)]; % CCf(:,i) corresponds to the bottom cube's vertice corresponding to the i'th leg
|
|
CCm = [Cc(:,2), Cc(:,2), Cc(:,4), Cc(:,4), Cc(:,6), Cc(:,6)]; % CCm(:,i) corresponds to the top cube's vertice corresponding to the i'th leg
|
|
#+end_src
|
|
|
|
** Compute the pose
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
We can compute the vector of each leg ${}^{C}\hat{\bm{s}}_{i}$ (unit vector from ${}^{C}C_{f}$ to ${}^{C}C_{m}$).
|
|
#+begin_src matlab
|
|
CSi = (CCm - CCf)./vecnorm(CCm - CCf);
|
|
#+end_src
|
|
|
|
We now which to compute the position of the joints $a_{i}$ and $b_{i}$.
|
|
#+begin_src matlab
|
|
Fa = CCf + [0; 0; args.FOc] + ((args.FHa-(args.FOc-args.Hc/2))./CSi(3,:)).*CSi;
|
|
Mb = CCf + [0; 0; args.FOc-H] + ((H-args.MHb-(args.FOc-args.Hc/2))./CSi(3,:)).*CSi;
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.platform_F.Fa = Fa;
|
|
stewart.platform_M.Mb = Mb;
|
|
#+end_src
|
|
|
|
* =computeJacobian=: Compute the Jacobian Matrix
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/computeJacobian.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:computeJacobian>>
|
|
|
|
This Matlab function is accessible [[file:../src/computeJacobian.m][here]].
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [stewart] = computeJacobian(stewart)
|
|
% computeJacobian -
|
|
%
|
|
% Syntax: [stewart] = computeJacobian(stewart)
|
|
%
|
|
% Inputs:
|
|
% - stewart - With at least the following fields:
|
|
% - geometry.As [3x6] - The 6 unit vectors for each strut expressed in {A}
|
|
% - geometry.Ab [3x6] - The 6 position of the joints bi expressed in {A}
|
|
% - actuators.K [6x1] - Total stiffness of the actuators
|
|
%
|
|
% Outputs:
|
|
% - stewart - With the 3 added field:
|
|
% - kinematics.J [6x6] - The Jacobian Matrix
|
|
% - kinematics.K [6x6] - The Stiffness Matrix
|
|
% - kinematics.C [6x6] - The Compliance Matrix
|
|
#+end_src
|
|
|
|
** Check the =stewart= structure elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
assert(isfield(stewart.geometry, 'As'), 'stewart.geometry should have attribute As')
|
|
As = stewart.geometry.As;
|
|
|
|
assert(isfield(stewart.geometry, 'Ab'), 'stewart.geometry should have attribute Ab')
|
|
Ab = stewart.geometry.Ab;
|
|
|
|
assert(isfield(stewart.actuators, 'K'), 'stewart.actuators should have attribute K')
|
|
Ki = stewart.actuators.K;
|
|
#+end_src
|
|
|
|
|
|
** Compute Jacobian Matrix
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
J = [As' , cross(Ab, As)'];
|
|
#+end_src
|
|
|
|
** Compute Stiffness Matrix
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
K = J'*diag(Ki)*J;
|
|
#+end_src
|
|
|
|
** Compute Compliance Matrix
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
C = inv(K);
|
|
#+end_src
|
|
|
|
** Populate the =stewart= structure
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
stewart.kinematics.J = J;
|
|
stewart.kinematics.K = K;
|
|
stewart.kinematics.C = C;
|
|
#+end_src
|
|
|
|
|
|
* =inverseKinematics=: Compute Inverse Kinematics
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/inverseKinematics.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:inverseKinematics>>
|
|
|
|
This Matlab function is accessible [[file:../src/inverseKinematics.m][here]].
|
|
|
|
** Theory
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
For inverse kinematic analysis, it is assumed that the position ${}^A\bm{P}$ and orientation of the moving platform ${}^A\bm{R}_B$ are given and the problem is to obtain the joint variables, namely, $\bm{L} = [l_1, l_2, \dots, l_6]^T$.
|
|
|
|
From the geometry of the manipulator, the loop closure for each limb, $i = 1, 2, \dots, 6$ can be written as
|
|
\begin{align*}
|
|
l_i {}^A\hat{\bm{s}}_i &= {}^A\bm{A} + {}^A\bm{b}_i - {}^A\bm{a}_i \\
|
|
&= {}^A\bm{A} + {}^A\bm{R}_b {}^B\bm{b}_i - {}^A\bm{a}_i
|
|
\end{align*}
|
|
|
|
To obtain the length of each actuator and eliminate $\hat{\bm{s}}_i$, it is sufficient to dot multiply each side by itself:
|
|
\begin{equation}
|
|
l_i^2 \left[ {}^A\hat{\bm{s}}_i^T {}^A\hat{\bm{s}}_i \right] = \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]^T \left[ {}^A\bm{P} + {}^A\bm{R}_B {}^B\bm{b}_i - {}^A\bm{a}_i \right]
|
|
\end{equation}
|
|
|
|
Hence, for $i = 1, 2, \dots, 6$, each limb length can be uniquely determined by:
|
|
\begin{equation}
|
|
l_i = \sqrt{{}^A\bm{P}^T {}^A\bm{P} + {}^B\bm{b}_i^T {}^B\bm{b}_i + {}^A\bm{a}_i^T {}^A\bm{a}_i - 2 {}^A\bm{P}^T {}^A\bm{a}_i + 2 {}^A\bm{P}^T \left[{}^A\bm{R}_B {}^B\bm{b}_i\right] - 2 \left[{}^A\bm{R}_B {}^B\bm{b}_i\right]^T {}^A\bm{a}_i}
|
|
\end{equation}
|
|
|
|
If the position and orientation of the moving platform lie in the feasible workspace of the manipulator, one unique solution to the limb length is determined by the above equation.
|
|
Otherwise, when the limbs' lengths derived yield complex numbers, then the position or orientation of the moving platform is not reachable.
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [Li, dLi] = inverseKinematics(stewart, args)
|
|
% inverseKinematics - Compute the needed length of each strut to have the wanted position and orientation of {B} with respect to {A}
|
|
%
|
|
% Syntax: [stewart] = inverseKinematics(stewart)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - geometry.Aa [3x6] - The positions ai expressed in {A}
|
|
% - geometry.Bb [3x6] - The positions bi expressed in {B}
|
|
% - geometry.l [6x1] - Length of each strut
|
|
% - args - Can have the following fields:
|
|
% - AP [3x1] - The wanted position of {B} with respect to {A}
|
|
% - ARB [3x3] - The rotation matrix that gives the wanted orientation of {B} with respect to {A}
|
|
%
|
|
% Outputs:
|
|
% - Li [6x1] - The 6 needed length of the struts in [m] to have the wanted pose of {B} w.r.t. {A}
|
|
% - dLi [6x1] - The 6 needed displacement of the struts from the initial position in [m] to have the wanted pose of {B} w.r.t. {A}
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
|
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
|
end
|
|
#+end_src
|
|
|
|
** Check the =stewart= structure elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
assert(isfield(stewart.geometry, 'Aa'), 'stewart.geometry should have attribute Aa')
|
|
Aa = stewart.geometry.Aa;
|
|
|
|
assert(isfield(stewart.geometry, 'Bb'), 'stewart.geometry should have attribute Bb')
|
|
Bb = stewart.geometry.Bb;
|
|
|
|
assert(isfield(stewart.geometry, 'l'), 'stewart.geometry should have attribute l')
|
|
l = stewart.geometry.l;
|
|
#+end_src
|
|
|
|
|
|
** Compute
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
Li = sqrt(args.AP'*args.AP + diag(Bb'*Bb) + diag(Aa'*Aa) - (2*args.AP'*Aa)' + (2*args.AP'*(args.ARB*Bb))' - diag(2*(args.ARB*Bb)'*Aa));
|
|
#+end_src
|
|
|
|
#+begin_src matlab
|
|
dLi = Li-l;
|
|
#+end_src
|
|
|
|
* =forwardKinematicsApprox=: Compute the Approximate Forward Kinematics
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle ../src/forwardKinematicsApprox.m
|
|
:header-args:matlab+: :comments none :mkdirp yes :eval no
|
|
:END:
|
|
<<sec:forwardKinematicsApprox>>
|
|
|
|
This Matlab function is accessible [[file:../src/forwardKinematicsApprox.m][here]].
|
|
|
|
** Function description
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
function [P, R] = forwardKinematicsApprox(stewart, args)
|
|
% forwardKinematicsApprox - Computed the approximate pose of {B} with respect to {A} from the length of each strut and using
|
|
% the Jacobian Matrix
|
|
%
|
|
% Syntax: [P, R] = forwardKinematicsApprox(stewart, args)
|
|
%
|
|
% Inputs:
|
|
% - stewart - A structure with the following fields
|
|
% - kinematics.J [6x6] - The Jacobian Matrix
|
|
% - args - Can have the following fields:
|
|
% - dL [6x1] - Displacement of each strut [m]
|
|
%
|
|
% Outputs:
|
|
% - P [3x1] - The estimated position of {B} with respect to {A}
|
|
% - R [3x3] - The estimated rotation matrix that gives the orientation of {B} with respect to {A}
|
|
#+end_src
|
|
|
|
** Optional Parameters
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
arguments
|
|
stewart
|
|
args.dL (6,1) double {mustBeNumeric} = zeros(6,1)
|
|
end
|
|
#+end_src
|
|
|
|
** Check the =stewart= structure elements
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
#+begin_src matlab
|
|
assert(isfield(stewart.kinematics, 'J'), 'stewart.kinematics should have attribute J')
|
|
J = stewart.kinematics.J;
|
|
#+end_src
|
|
|
|
** Computation
|
|
:PROPERTIES:
|
|
:UNNUMBERED: t
|
|
:END:
|
|
From a small displacement of each strut $d\bm{\mathcal{L}}$, we can compute the
|
|
position and orientation of {B} with respect to {A} using the following formula:
|
|
\[ d \bm{\mathcal{X}} = \bm{J}^{-1} d\bm{\mathcal{L}} \]
|
|
#+begin_src matlab
|
|
X = J\args.dL;
|
|
#+end_src
|
|
|
|
The position vector corresponds to the first 3 elements.
|
|
#+begin_src matlab
|
|
P = X(1:3);
|
|
#+end_src
|
|
|
|
The next 3 elements are the orientation of {B} with respect to {A} expressed
|
|
using the screw axis.
|
|
#+begin_src matlab
|
|
theta = norm(X(4:6));
|
|
s = X(4:6)/theta;
|
|
#+end_src
|
|
|
|
We then compute the corresponding rotation matrix.
|
|
#+begin_src matlab
|
|
R = [s(1)^2*(1-cos(theta)) + cos(theta) , s(1)*s(2)*(1-cos(theta)) - s(3)*sin(theta), s(1)*s(3)*(1-cos(theta)) + s(2)*sin(theta);
|
|
s(2)*s(1)*(1-cos(theta)) + s(3)*sin(theta), s(2)^2*(1-cos(theta)) + cos(theta), s(2)*s(3)*(1-cos(theta)) - s(1)*sin(theta);
|
|
s(3)*s(1)*(1-cos(theta)) - s(2)*sin(theta), s(3)*s(2)*(1-cos(theta)) + s(1)*sin(theta), s(3)^2*(1-cos(theta)) + cos(theta)];
|
|
#+end_src
|