nass-simscape/simscape_subsystems/index.org

41 KiB

Subsystems used for the Simscape Models

General Subsystems

<<sec:helping functions>>

Generate Reference Signals

<<sec:initializeReferences>>

This Matlab function is accessible here.

  function [ref] = initializeReferences(opts_param)
      %% Default values for opts
      opts = struct(   ...
          'Ts',           1e-3, ...       % Sampling Frequency [s]
          'Dy_type',      'constant', ... % Either "constant" / "triangular" / "sinusoidal"
          'Dy_amplitude', 0, ...       % Amplitude of the displacement [m]
          'Dy_period',    1, ...          % Period of the displacement [s]
          'Ry_type',      'constant', ... % Either "constant" / "triangular" / "sinusoidal"
          'Ry_amplitude', 0, ...          % Amplitude [rad]
          'Ry_period',    10, ...         % Period of the displacement [s]
          'Rz_type',      'constant', ... % Either "constant" / "rotating"
          'Rz_amplitude', 0, ...          % Initial angle [rad]
          'Rz_period',    1, ...          % Period of the rotating [s]
          'Dh_type',      'constant', ... % For now, only constant is implemented
          'Dh_pos',       [0; 0; 0; 0; 0; 0], ...  % Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
          'Rm_type',      'constant', ... % For now, only constant is implemented
          'Rm_pos',       [0; pi],  ...   % Initial position of the two masses
          'Dn_type',      'constant', ... % For now, only constant is implemented
          'Dn_pos',       [0; 0; 0; 0; 0; 0]  ...  % Initial position [m,m,m,rad,rad,rad] of the top platform
      );

      %% Populate opts with input parameters
      if exist('opts_param','var')
          for opt = fieldnames(opts_param)'
              opts.(opt{1}) = opts_param.(opt{1});
          end
      end

      %% Set Sampling Time
      Ts = opts.Ts;

      %% Translation stage - Dy
      t = 0:Ts:opts.Dy_period-Ts; % Time Vector [s]
      Dy = zeros(length(t), 1);
      switch opts.Dy_type
        case 'constant'
          Dy(:) = opts.Dy_amplitude;
        case 'triangular'
          Dy(:)                     = -4*opts.Dy_amplitude + 4*opts.Dy_amplitude/opts.Dy_period*t;
          Dy(t<0.75*opts.Dy_period) =  2*opts.Dy_amplitude - 4*opts.Dy_amplitude/opts.Dy_period*t(t<0.75*opts.Dy_period);
          Dy(t<0.25*opts.Dy_period) =  4*opts.Dy_amplitude/opts.Dy_period*t(t<0.25*opts.Dy_period);
        case 'sinusoidal'
          Dy(:) = opts.Dy_amplitude*sin(2*pi/opts.Dy_period*t);
        otherwise
          warning('Dy_type is not set correctly');
      end
      Dy = struct('time', t, 'signals', struct('values', Dy));


      %% Tilt Stage - Ry
      t = 0:Ts:opts.Ry_period-Ts;
      Ry = zeros(length(t), 1);

      switch opts.Ry_type
        case 'constant'
          Ry(:) = opts.Ry_amplitude;
        case 'triangular'
          Ry(:)                     = -4*opts.Ry_amplitude + 4*opts.Ry_amplitude/opts.Ry_period*t;
          Ry(t<0.75*opts.Ry_period) =  2*opts.Ry_amplitude - 4*opts.Ry_amplitude/opts.Ry_period*t(t<0.75*opts.Ry_period);
          Ry(t<0.25*opts.Ry_period) =  4*opts.Ry_amplitude/opts.Ry_period*t(t<0.25*opts.Ry_period);
        case 'sinusoidal'

        otherwise
          warning('Ry_type is not set correctly');
      end
      Ry = struct('time', t, 'signals', struct('values', Ry));

      %% Spindle - Rz
      t = 0:Ts:opts.Rz_period-Ts;
      Rz = zeros(length(t), 1);

      switch opts.Rz_type
        case 'constant'
          Rz(:) = opts.Rz_amplitude;
        case 'rotating'
          Rz(:) = opts.Rz_amplitude+2*pi/opts.Rz_period*t;
        otherwise
          warning('Rz_type is not set correctly');
      end
      Rz = struct('time', t, 'signals', struct('values', Rz));

      %% Micro-Hexapod
      t = [0, Ts];
      Dh = zeros(length(t), 6);
      Dhl = zeros(length(t), 6);

      switch opts.Dh_type
        case 'constant'
          Dh = [opts.Dh_pos, opts.Dh_pos];

          load('./mat/stages.mat', 'micro_hexapod');

          AP = [opts.Dh_pos(1) ; opts.Dh_pos(2) ; opts.Dh_pos(3)];

          tx = opts.Dh_pos(4);
          ty = opts.Dh_pos(5);
          tz = opts.Dh_pos(6);

          ARB = [cos(tz) -sin(tz) 0;
                 sin(tz)  cos(tz) 0;
                 0        0       1]*...
                [ cos(ty) 0 sin(ty);
                 0        1 0;
                 -sin(ty) 0 cos(ty)]*...
                [1 0        0;
                 0 cos(tx) -sin(tx);
                 0 sin(tx)  cos(tx)];

          [Dhl] = inverseKinematicsHexapod(micro_hexapod, AP, ARB);
          Dhl = [Dhl, Dhl];
        otherwise
          warning('Dh_type is not set correctly');
      end
      Dh = struct('time', t, 'signals', struct('values', Dh));
      Dhl = struct('time', t, 'signals', struct('values', Dhl));

      %% Axis Compensation - Rm
      t = [0, Ts];
      Rm = [opts.Rm_pos, opts.Rm_pos];
      Rm = struct('time', t, 'signals', struct('values', Rm));

      %% Nano-Hexapod
      t = [0, Ts];
      Dn = zeros(length(t), 6);

      switch opts.Dn_type
        case 'constant'
          Dn = [opts.Dn_pos, opts.Dn_pos];
        otherwise
          warning('Dn_type is not set correctly');
      end
      Dn = struct('time', t, 'signals', struct('values', Dn));

      %% Save
      save('./mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'Rm', 'Dn', 'Ts');
  end

Initialize Elements

<<sec:initialize_elements>>

Ground

<<sec:initializeGround>>

This Matlab function is accessible here.

function [ground] = initializeGround()
    %%
    ground = struct();

    ground.shape = [2, 2, 0.5]; % [m]
    ground.density = 2800; % [kg/m3]
    ground.color = [0.5, 0.5, 0.5];

    %% Save
    save('./mat/stages.mat', 'ground', '-append');
end

Granite

<<sec:initializeGranite>>

This Matlab function is accessible here.

  function [granite] = initializeGranite(opts_param)
      %% Default values for opts
      opts = struct('rigid', false);

      %% Populate opts with input parameters
      if exist('opts_param','var')
        for opt = fieldnames(opts_param)'
          opts.(opt{1}) = opts_param.(opt{1});
        end
      end

      %%
      granite = struct();

      %% Static Properties
      granite.density = 2800; % [kg/m3]
      granite.volume  = 0.749; % [m3] TODO - should
      granite.mass    = granite.density*granite.volume; % [kg]
      granite.color   = [1 1 1];
      granite.STEP    = './STEPS/granite/granite.STEP';

      granite.mass_top = 4000; % [kg] TODO

      %% Dynamical Properties
      if opts.rigid
        granite.k.x = 1e12; % [N/m]
        granite.k.y = 1e12; % [N/m]
        granite.k.z = 1e12; % [N/m]
        granite.k.rx = 1e10; % [N*m/deg]
        granite.k.ry = 1e10; % [N*m/deg]
        granite.k.rz = 1e10; % [N*m/deg]
      else
        granite.k.x = 4e9; % [N/m]
        granite.k.y = 3e8; % [N/m]
        granite.k.z = 8e8; % [N/m]
        granite.k.rx = 1e4; % [N*m/deg]
        granite.k.ry = 1e4; % [N*m/deg]
        granite.k.rz = 1e6; % [N*m/deg]
      end

      granite.c.x = 0.1*sqrt(granite.mass_top*granite.k.x); % [N/(m/s)]
      granite.c.y = 0.1*sqrt(granite.mass_top*granite.k.y); % [N/(m/s)]
      granite.c.z = 0.5*sqrt(granite.mass_top*granite.k.z); % [N/(m/s)]
      granite.c.rx = 0.1*sqrt(granite.mass_top*granite.k.rx); % [N*m/(deg/s)]
      granite.c.ry = 0.1*sqrt(granite.mass_top*granite.k.ry); % [N*m/(deg/s)]
      granite.c.rz = 0.1*sqrt(granite.mass_top*granite.k.rz); % [N*m/(deg/s)]

      %% Positioning parameters
      granite.sample_pos = 0.8; % Z-offset for the initial position of the sample [m]

      %% Save
      save('./mat/stages.mat', 'granite', '-append');
  end

Translation Stage

<<sec:initializeTy>>

This Matlab function is accessible here.

  function [ty] = initializeTy(opts_param)
      %% Default values for opts
      opts = struct('rigid', false);

      %% Populate opts with input parameters
      if exist('opts_param','var')
        for opt = fieldnames(opts_param)'
          opts.(opt{1}) = opts_param.(opt{1});
        end
      end

      %%
      ty = struct();

      %% Y-Translation - Static Properties
      % Ty Granite frame
      ty.granite_frame.density = 7800; % [kg/m3]
      ty.granite_frame.color   = [0.753 1 0.753];
      ty.granite_frame.STEP    = './STEPS/Ty/Ty_Granite_Frame.STEP';
      % Guide Translation Ty
      ty.guide.density         = 7800; % [kg/m3]
      ty.guide.color           = [0.792 0.820 0.933];
      ty.guide.STEP            = './STEPS/ty/Ty_Guide.STEP';
      % Ty - Guide_Translation12
      ty.guide12.density       = 7800; % [kg/m3]
      ty.guide12.color         = [0.792 0.820 0.933];
      ty.guide12.STEP          = './STEPS/Ty/Ty_Guide_12.STEP';
      % Ty - Guide_Translation11
      ty.guide11.density       = 7800; % [kg/m3]
      ty.guide11.color         = [0.792 0.820 0.933];
      ty.guide11.STEP          = './STEPS/ty/Ty_Guide_11.STEP';
      % Ty - Guide_Translation22
      ty.guide22.density       = 7800; % [kg/m3]
      ty.guide22.color         = [0.792 0.820 0.933];
      ty.guide22.STEP          = './STEPS/ty/Ty_Guide_22.STEP';
      % Ty - Guide_Translation21
      ty.guide21.density       = 7800; % [kg/m3]
      ty.guide21.color         = [0.792 0.820 0.933];
      ty.guide21.STEP          = './STEPS/Ty/Ty_Guide_21.STEP';
      % Ty - Plateau translation
      ty.frame.density         = 7800; % [kg/m3]
      ty.frame.color           = [0.792 0.820 0.933];
      ty.frame.STEP            = './STEPS/ty/Ty_Stage.STEP';
      % Ty Stator Part
      ty.stator.density        = 5400; % [kg/m3]
      ty.stator.color          = [0.792 0.820 0.933];
      ty.stator.STEP           = './STEPS/ty/Ty_Motor_Stator.STEP';
      % Ty Rotor Part
      ty.rotor.density         = 5400; % [kg/m3]
      ty.rotor.color           = [0.792 0.820 0.933];
      ty.rotor.STEP            = './STEPS/ty/Ty_Motor_Rotor.STEP';

      ty.m = 1000; % TODO [kg]

      %% Y-Translation - Dynamicals Properties
      if opts.rigid
        ty.k.ax  = 1e12; % Axial Stiffness for each of the 4 guidance (y) [N/m]
        ty.k.rad = 1e12; % Radial Stiffness for each of the 4 guidance (x-z) [N/m]
      else
        ty.k.ax  = 5e8; % Axial Stiffness for each of the 4 guidance (y) [N/m]
        ty.k.rad = 5e7; % Radial Stiffness for each of the 4 guidance (x-z) [N/m]
      end

      ty.c.ax  = 0.1*sqrt(ty.k.ax*ty.m);
      ty.c.rad = 0.1*sqrt(ty.k.rad*ty.m);

      %% Save
      save('./mat/stages.mat', 'ty', '-append');
  end

Tilt Stage

<<sec:initializeRy>>

This Matlab function is accessible here.

  function [ry] = initializeRy(opts_param)
      %% Default values for opts
      opts = struct('rigid', false);

      %% Populate opts with input parameters
      if exist('opts_param','var')
        for opt = fieldnames(opts_param)'
          opts.(opt{1}) = opts_param.(opt{1});
        end
      end

      %%
      ry = struct();

      %% Tilt Stage - Static Properties
      % Ry - Guide for the tilt stage
      ry.guide.density = 7800; % [kg/m3]
      ry.guide.color   = [0.792 0.820 0.933];
      ry.guide.STEP    = './STEPS/ry/Tilt_Guide.STEP';
      % Ry - Rotor of the motor
      ry.rotor.density = 2400; % [kg/m3]
      ry.rotor.color   = [0.792 0.820 0.933];
      ry.rotor.STEP    = './STEPS/ry/Tilt_Motor_Axis.STEP';
      % Ry - Motor
      ry.motor.density = 3200; % [kg/m3]
      ry.motor.color   = [0.792 0.820 0.933];
      ry.motor.STEP    = './STEPS/ry/Tilt_Motor.STEP';
      % Ry - Plateau Tilt
      ry.stage.density = 7800; % [kg/m3]
      ry.stage.color   = [0.792 0.820 0.933];
      ry.stage.STEP    = './STEPS/ry/Tilt_Stage.STEP';

      ry.m = 800; % TODO [kg]

      %% Tilt Stage - Dynamical Properties
      if opts.rigid
        ry.k.tilt = 1e10; % Rotation stiffness around y [N*m/deg]
        ry.k.h    = 1e12; % Stiffness in the direction of the guidance [N/m]
        ry.k.rad  = 1e12; % Stiffness in the top direction [N/m]
        ry.k.rrad = 1e12; % Stiffness in the side direction [N/m]
      else
        ry.k.tilt = 1e4; % Rotation stiffness around y [N*m/deg]
        ry.k.h    = 1e8; % Stiffness in the direction of the guidance [N/m]
        ry.k.rad  = 1e8; % Stiffness in the top direction [N/m]
        ry.k.rrad = 1e8; % Stiffness in the side direction [N/m]
      end

      ry.c.h    = 0.1*sqrt(ry.k.h*ry.m);
      ry.c.rad  = 0.1*sqrt(ry.k.rad*ry.m);
      ry.c.rrad = 0.1*sqrt(ry.k.rrad*ry.m);
      ry.c.tilt = 0.1*sqrt(ry.k.tilt*ry.m);

      %% Positioning parameters
      ry.z_offset = 0.58178; % Z-Offset so that the center of rotation matches the sample center [m]

      %% Save
      save('./mat/stages.mat', 'ry', '-append');
  end

Spindle

<<sec:initializeRz>>

This Matlab function is accessible here.

  function [rz] = initializeRz(opts_param)
      %% Default values for opts
      opts = struct('rigid', false);

      %% Populate opts with input parameters
      if exist('opts_param','var')
        for opt = fieldnames(opts_param)'
          opts.(opt{1}) = opts_param.(opt{1});
        end
      end

      %%
      rz = struct();

      %% Spindle - Static Properties
      % Spindle - Slip Ring
      rz.slipring.density = 7800; % [kg/m3]
      rz.slipring.color   = [0.792 0.820 0.933];
      rz.slipring.STEP    = './STEPS/rz/Spindle_Slip_Ring.STEP';
      % Spindle - Rotor
      rz.rotor.density    = 7800; % [kg/m3]
      rz.rotor.color      = [0.792 0.820 0.933];
      rz.rotor.STEP       = './STEPS/rz/Spindle_Rotor.STEP';
      % Spindle - Stator
      rz.stator.density   = 7800; % [kg/m3]
      rz.stator.color     = [0.792 0.820 0.933];
      rz.stator.STEP      = './STEPS/rz/Spindle_Stator.STEP';

      % Estimated mass of the mooving part
      rz.m = 250; % [kg]

      %% Spindle - Dynamical Properties

      if opts.rigid
        rz.k.rot  = 1e10; % Rotational Stiffness (Rz) [N*m/deg]
        rz.k.tilt = 1e10; % Rotational Stiffness (Rx, Ry) [N*m/deg]
        rz.k.ax   = 1e12; % Axial Stiffness (Z) [N/m]
        rz.k.rad  = 1e12; % Radial Stiffness (X, Y) [N/m]
      else
        rz.k.rot  = 1e6; % TODO - Rotational Stiffness (Rz) [N*m/deg]
        rz.k.tilt = 1e6; % Rotational Stiffness (Rx, Ry) [N*m/deg]
        rz.k.ax   = 2e9; % Axial Stiffness (Z) [N/m]
        rz.k.rad  = 7e8; % Radial Stiffness (X, Y) [N/m]
      end

      % Damping
      rz.c.ax   = 0.1*sqrt(rz.k.ax*rz.m);
      rz.c.rad  = 0.1*sqrt(rz.k.rad*rz.m);
      rz.c.tilt = 0.1*sqrt(rz.k.tilt*rz.m);
      rz.c.rot  = 0.1*sqrt(rz.k.rot*rz.m);

      %% Save
      save('./mat/stages.mat', 'rz', '-append');
  end

Micro Hexapod

<<sec:initializeMicroHexapod>>

This Matlab function is accessible here.

  function [micro_hexapod] = initializeMicroHexapod(opts_param)
      %% Default values for opts
      opts = struct(...
        'rigid', false, ...
        'AP',    zeros(3, 1), ... % Wanted position in [m] of OB with respect to frame {A}
        'ARB',   eye(3) ...       % Rotation Matrix that represent the wanted orientation of frame {B} with respect to frame {A}
      );

      %% Populate opts with input parameters
      if exist('opts_param','var')
        for opt = fieldnames(opts_param)'
          opts.(opt{1}) = opts_param.(opt{1});
        end
      end

      %% Stewart Object
      micro_hexapod = struct();
      micro_hexapod.h        = 350; % Total height of the platform [mm]
      micro_hexapod.jacobian = 270; % Distance from the top of the mobile platform to the Jacobian point [mm]

      %% Bottom Plate - Mechanical Design
      BP = struct();

      BP.rad.int   = 110;   % Internal Radius [mm]
      BP.rad.ext   = 207.5; % External Radius [mm]
      BP.thickness = 26;    % Thickness [mm]
      BP.leg.rad   = 175.5; % Radius where the legs articulations are positionned [mm]
      BP.leg.ang   = 9.5;   % Angle Offset [deg]
      BP.density   = 8000;  % Density of the material [kg/m^3]
      BP.color     = [0.6 0.6 0.6]; % Color [rgb]
      BP.shape     = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];

      %% Top Plate - Mechanical Design
      TP = struct();

      TP.rad.int   = 82;   % Internal Radius [mm]
      TP.rad.ext   = 150;  % Internal Radius [mm]
      TP.thickness = 26;   % Thickness [mm]
      TP.leg.rad   = 118;  % Radius where the legs articulations are positionned [mm]
      TP.leg.ang   = 12.1; % Angle Offset [deg]
      TP.density   = 8000; % Density of the material [kg/m^3]
      TP.color     = [0.6 0.6 0.6]; % Color [rgb]
      TP.shape     = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];

      %% Struts
      Leg = struct();

      Leg.stroke     = 10e-3; % Maximum Stroke of each leg [m]
      if opts.rigid
        Leg.k.ax     = 1e12; % Stiffness of each leg [N/m]
      else
        Leg.k.ax     = 2e7; % Stiffness of each leg [N/m]
      end
      Leg.ksi.ax     = 0.1;   % Modal damping ksi = 1/2*c/sqrt(km) []
      Leg.rad.bottom = 25;    % Radius of the cylinder of the bottom part [mm]
      Leg.rad.top    = 17;    % Radius of the cylinder of the top part [mm]
      Leg.density    = 8000;  % Density of the material [kg/m^3]
      Leg.color.bottom  = [0.5 0.5 0.5]; % Color [rgb]
      Leg.color.top     = [0.5 0.5 0.5]; % Color [rgb]

      Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm]
      Leg.sphere.top    = Leg.rad.top; % Size of the sphere at the end of the leg [mm]
      Leg.m             = TP.density*((pi*(TP.rad.ext/1000)^2)*(TP.thickness/1000)-(pi*(TP.rad.int/1000^2))*(TP.thickness/1000))/6; % TODO [kg]
      Leg = updateDamping(Leg);


      %% Sphere
      SP = struct();

      SP.height.bottom  = 27; % [mm]
      SP.height.top     = 27; % [mm]
      SP.density.bottom = 8000; % [kg/m^3]
      SP.density.top    = 8000; % [kg/m^3]
      SP.color.bottom   = [0.6 0.6 0.6]; % [rgb]
      SP.color.top      = [0.6 0.6 0.6]; % [rgb]
      SP.k.ax           = 0; % [N*m/deg]
      SP.ksi.ax         = 10;

      SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm]
      SP.thickness.top    = SP.height.top-Leg.sphere.top; % [mm]
      SP.rad.bottom       = Leg.sphere.bottom; % [mm]
      SP.rad.top          = Leg.sphere.top; % [mm]
      SP.m                = SP.density.bottom*2*pi*((SP.rad.bottom*1e-3)^2)*(SP.height.bottom*1e-3); % TODO [kg]

      SP = updateDamping(SP);

      %%
      Leg.support.bottom = [0 SP.thickness.bottom; 0 0; SP.rad.bottom 0; SP.rad.bottom SP.height.bottom];
      Leg.support.top    = [0 SP.thickness.top; 0 0; SP.rad.top 0; SP.rad.top SP.height.top];

      %%
      micro_hexapod.BP = BP;
      micro_hexapod.TP = TP;
      micro_hexapod.Leg = Leg;
      micro_hexapod.SP = SP;

      %%
      micro_hexapod = initializeParameters(micro_hexapod);

      %% Setup equilibrium position of each leg
      micro_hexapod.L0 = inverseKinematicsHexapod(micro_hexapod, opts.AP, opts.ARB);

      %% Save
      save('./mat/stages.mat', 'micro_hexapod', '-append');

      %%
      function [element] = updateDamping(element)
        field = fieldnames(element.k);
        for i = 1:length(field)
          element.c.(field{i}) = 2*element.ksi.(field{i})*sqrt(element.k.(field{i})*element.m);
        end
      end

      %%
      function [stewart] = initializeParameters(stewart)
          %% Connection points on base and top plate w.r.t. World frame at the center of the base plate
          stewart.pos_base = zeros(6, 3);
          stewart.pos_top = zeros(6, 3);

          alpha_b = stewart.BP.leg.ang*pi/180; % angle de décalage par rapport à 120 deg (pour positionner les supports bases)
          alpha_t = stewart.TP.leg.ang*pi/180; % +- offset angle from 120 degree spacing on top

          height = (stewart.h-stewart.BP.thickness-stewart.TP.thickness-stewart.Leg.sphere.bottom-stewart.Leg.sphere.top-stewart.SP.thickness.bottom-stewart.SP.thickness.top)*0.001; % TODO

          radius_b = stewart.BP.leg.rad*0.001; % rayon emplacement support base
          radius_t = stewart.TP.leg.rad*0.001; % top radius in meters

          for i = 1:3
            % base points
            angle_m_b = (2*pi/3)* (i-1) - alpha_b;
            angle_p_b = (2*pi/3)* (i-1) + alpha_b;
            stewart.pos_base(2*i-1,:) =  [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
            stewart.pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];

            % top points
            % Top points are 60 degrees offset
            angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6;
            angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
            stewart.pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
            stewart.pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
          end

          % permute pos_top points so that legs are end points of base and top points
          stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
          stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)];

          %% leg vectors
          legs = stewart.pos_top - stewart.pos_base;
          leg_length = zeros(6, 1);
          leg_vectors = zeros(6, 3);
          for i = 1:6
            leg_length(i) = norm(legs(i,:));
            leg_vectors(i,:)  = legs(i,:) / leg_length(i);
          end

          stewart.Leg.lenght = 1000*leg_length(1)/1.5;
          stewart.Leg.shape.bot = [0 0; ...
                                  stewart.Leg.rad.bottom 0; ...
                                  stewart.Leg.rad.bottom stewart.Leg.lenght; ...
                                  stewart.Leg.rad.top stewart.Leg.lenght; ...
                                  stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ...
                                  0 0.2*stewart.Leg.lenght];

          %% Calculate revolute and cylindrical axes
          rev1 = zeros(6, 3);
          rev2 = zeros(6, 3);
          cyl1 = zeros(6, 3);
          for i = 1:6
            rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]);
            rev1(i,:) = rev1(i,:) / norm(rev1(i,:));

            rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
            rev2(i,:) = rev2(i,:) / norm(rev2(i,:));

            cyl1(i,:) = leg_vectors(i,:);
          end


          %% Coordinate systems
          stewart.lower_leg = struct('rotation', eye(3));
          stewart.upper_leg = struct('rotation', eye(3));

          for i = 1:6
            stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
            stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
          end

          %% Position Matrix
          stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.thickness+stewart.Leg.sphere.top+stewart.SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];

          %% Compute Jacobian Matrix
          aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.thickness - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
          stewart.J  = getJacobianMatrix(leg_vectors', aa');
      end

      %%
      function J  = getJacobianMatrix(RM, M_pos_base)
          % RM: [3x6] unit vector of each leg in the fixed frame
          % M_pos_base: [3x6] vector of the leg connection at the top platform location in the fixed frame
          J = zeros(6);
          J(:, 1:3) = RM';
          J(:, 4:6) = cross(M_pos_base, RM)';
      end
  end

Center of gravity compensation

<<sec:initializeAxisc>>

This Matlab function is accessible here.

  function [axisc] = initializeAxisc()
      %%
      axisc = struct();

      %% Axis Compensator - Static Properties
      % Structure
      axisc.structure.density = 3400; % [kg/m3]
      axisc.structure.color   = [0.792 0.820 0.933];
      axisc.structure.STEP    = './STEPS/axisc/axisc_structure.STEP';
      % Wheel
      axisc.wheel.density     = 2700; % [kg/m3]
      axisc.wheel.color       = [0.753 0.753 0.753];
      axisc.wheel.STEP        = './STEPS/axisc/axisc_wheel.STEP';
      % Mass
      axisc.mass.density      = 7800; % [kg/m3]
      axisc.mass.color        = [0.792 0.820 0.933];
      axisc.mass.STEP         = './STEPS/axisc/axisc_mass.STEP';
      % Gear
      axisc.gear.density      = 7800; % [kg/m3]
      axisc.gear.color        = [0.792 0.820 0.933];
      axisc.gear.STEP         = './STEPS/axisc/axisc_gear.STEP';

      axisc.m      = 40; % TODO [kg]

      %% Axis Compensator - Dynamical Properties
      % axisc.k.ax   = 1; % TODO [N*m/deg)]
      % axisc.c.ax   = (1/1)*sqrt(axisc.k.ax/axisc.m);

      %% Save
      save('./mat/stages.mat', 'axisc', '-append');
  end

Mirror

<<sec:initializeMirror>>

This Matlab function is accessible here.

  function [] = initializeMirror(opts_param)
      %% Default values for opts
      opts = struct(...
          'shape', 'spherical', ... % spherical or conical
          'angle', 45 ...
      );

      %% Populate opts with input parameters
      if exist('opts_param','var')
          for opt = fieldnames(opts_param)'
              opts.(opt{1}) = opts_param.(opt{1});
          end
      end

      %%
      mirror = struct();
      mirror.h = 50; % height of the mirror [mm]
      mirror.thickness = 25; % Thickness of the plate supporting the sample [mm]
      mirror.hole_rad = 120; % radius of the hole in the mirror [mm]
      mirror.support_rad = 100; % radius of the support plate [mm]
      mirror.jacobian = 150; % point of interest offset in z (above the top surfave) [mm]
      mirror.rad = 180; % radius of the mirror (at the bottom surface) [mm]

      mirror.density = 2400; % Density of the mirror [kg/m3]
      mirror.color = [0.4 1.0 1.0]; % Color of the mirror

      mirror.cone_length = mirror.rad*tand(opts.angle)+mirror.h+mirror.jacobian; % Distance from Apex point of the cone to jacobian point

      %% Shape
      mirror.shape = [...
          0 mirror.h-mirror.thickness
          mirror.hole_rad mirror.h-mirror.thickness; ...
          mirror.hole_rad 0; ...
          mirror.rad 0 ...
      ];

      if strcmp(opts.shape, 'spherical')
          mirror.sphere_radius = sqrt((mirror.jacobian+mirror.h)^2+mirror.rad^2); % Radius of the sphere [mm]

          for z = linspace(0, mirror.h, 101)
              mirror.shape = [mirror.shape; sqrt(mirror.sphere_radius^2-(z-mirror.jacobian-mirror.h)^2) z];
          end
      elseif strcmp(opts.shape, 'conical')
          mirror.shape = [mirror.shape; mirror.rad+mirror.h/tand(opts.angle) mirror.h];
      else
          error('Shape should be either conical or spherical');
      end

      mirror.shape = [mirror.shape; 0 mirror.h];

      %% Save
      save('./mat/stages.mat', 'mirror', '-append');
  end

Nano Hexapod

<<sec:initializeNanoHexapod>>

This Matlab function is accessible here.

  function [nano_hexapod] = initializeNanoHexapod(opts_param)
      %% Default values for opts
      opts = struct('actuator', 'piezo');

      %% Populate opts with input parameters
      if exist('opts_param','var')
          for opt = fieldnames(opts_param)'
              opts.(opt{1}) = opts_param.(opt{1});
          end
      end

      %% Stewart Object
      nano_hexapod = struct();
      nano_hexapod.h        = 90;  % Total height of the platform [mm]
      nano_hexapod.jacobian = 175; % Point where the Jacobian is computed => Center of rotation [mm]
  %     nano_hexapod.jacobian = 174.26; % Point where the Jacobian is computed => Center of rotation [mm]

      %% Bottom Plate
      BP = struct();

      BP.rad.int   = 0;   % Internal Radius [mm]
      BP.rad.ext   = 150; % External Radius [mm]
      BP.thickness = 10;  % Thickness [mm]
      BP.leg.rad   = 100; % Radius where the legs articulations are positionned [mm]
      BP.leg.ang   = 5;   % Angle Offset [deg]
      BP.density   = 8000;% Density of the material [kg/m^3]
      BP.color     = [0.7 0.7 0.7]; % Color [rgb]
      BP.shape     = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];

      %% Top Plate
      TP = struct();

      TP.rad.int   = 0;   % Internal Radius [mm]
      TP.rad.ext   = 100; % Internal Radius [mm]
      TP.thickness = 10;  % Thickness [mm]
      TP.leg.rad   = 90;  % Radius where the legs articulations are positionned [mm]
      TP.leg.ang   = 5;   % Angle Offset [deg]
      TP.density   = 8000;% Density of the material [kg/m^3]
      TP.color     = [0.7 0.7 0.7]; % Color [rgb]
      TP.shape     = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];

      %% Leg
      Leg = struct();

      Leg.stroke     = 80e-6; % Maximum Stroke of each leg [m]
      if strcmp(opts.actuator, 'piezo')
          Leg.k.ax   = 1e7;   % Stiffness of each leg [N/m]
      elseif strcmp(opts.actuator, 'lorentz')
          Leg.k.ax   = 1e4;   % Stiffness of each leg [N/m]
      else
          error('opts.actuator should be piezo or lorentz');
      end
      Leg.ksi.ax     = 10;    % Maximum amplification at resonance []
      Leg.rad.bottom = 12;    % Radius of the cylinder of the bottom part [mm]
      Leg.rad.top    = 10;    % Radius of the cylinder of the top part [mm]
      Leg.density    = 8000;  % Density of the material [kg/m^3]
      Leg.color.bottom  = [0.5 0.5 0.5]; % Color [rgb]
      Leg.color.top     = [0.5 0.5 0.5]; % Color [rgb]

      Leg.sphere.bottom = Leg.rad.bottom; % Size of the sphere at the end of the leg [mm]
      Leg.sphere.top    = Leg.rad.top; % Size of the sphere at the end of the leg [mm]
      Leg.m             = TP.density*((pi*(TP.rad.ext/1000)^2)*(TP.thickness/1000)-(pi*(TP.rad.int/1000^2))*(TP.thickness/1000))/6; % TODO [kg]

      Leg = updateDamping(Leg);


      %% Sphere
      SP = struct();

      SP.height.bottom  = 15; % [mm]
      SP.height.top     = 15; % [mm]
      SP.density.bottom = 8000; % [kg/m^3]
      SP.density.top    = 8000; % [kg/m^3]
      SP.color.bottom   = [0.7 0.7 0.7]; % [rgb]
      SP.color.top      = [0.7 0.7 0.7]; % [rgb]
      SP.k.ax           = 0; % [N*m/deg]
      SP.ksi.ax         = 0;

      SP.thickness.bottom = SP.height.bottom-Leg.sphere.bottom; % [mm]
      SP.thickness.top    = SP.height.top-Leg.sphere.top; % [mm]
      SP.rad.bottom       = Leg.sphere.bottom; % [mm]
      SP.rad.top          = Leg.sphere.top; % [mm]
      SP.m                = SP.density.bottom*2*pi*((SP.rad.bottom*1e-3)^2)*(SP.height.bottom*1e-3); % TODO [kg]

      SP = updateDamping(SP);

      %%
      Leg.support.bottom = [0 SP.thickness.bottom; 0 0; SP.rad.bottom 0; SP.rad.bottom SP.height.bottom];
      Leg.support.top    = [0 SP.thickness.top; 0 0; SP.rad.top 0; SP.rad.top SP.height.top];

      %%
      nano_hexapod.BP = BP;
      nano_hexapod.TP = TP;
      nano_hexapod.Leg = Leg;
      nano_hexapod.SP = SP;

      %%
      nano_hexapod = initializeParameters(nano_hexapod);

      %% Save
      save('./mat/stages.mat', 'nano_hexapod', '-append');

      %%
      function [element] = updateDamping(element)
          field = fieldnames(element.k);
          for i = 1:length(field)
              if element.ksi.(field{i}) > 0
                element.c.(field{i}) = 1/element.ksi.(field{i})*sqrt(element.k.(field{i})/element.m);
              else
                element.c.(field{i}) = 0;
              end
          end
      end

      %%
      function [stewart] = initializeParameters(stewart)
          %% Connection points on base and top plate w.r.t. World frame at the center of the base plate
          stewart.pos_base = zeros(6, 3);
          stewart.pos_top = zeros(6, 3);

          alpha_b = stewart.BP.leg.ang*pi/180; % angle de décalage par rapport à 120 deg (pour positionner les supports bases)
          alpha_t = stewart.TP.leg.ang*pi/180; % +- offset angle from 120 degree spacing on top

          height = (stewart.h-stewart.BP.thickness-stewart.TP.thickness-stewart.Leg.sphere.bottom-stewart.Leg.sphere.top-stewart.SP.thickness.bottom-stewart.SP.thickness.top)*0.001; % TODO

          radius_b = stewart.BP.leg.rad*0.001; % rayon emplacement support base
          radius_t = stewart.TP.leg.rad*0.001; % top radius in meters

          for i = 1:3
            % base points
            angle_m_b = (2*pi/3)* (i-1) - alpha_b;
            angle_p_b = (2*pi/3)* (i-1) + alpha_b;
            stewart.pos_base(2*i-1,:) =  [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
            stewart.pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];

            % top points
            % Top points are 60 degrees offset
            angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6;
            angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
            stewart.pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
            stewart.pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
          end

          % permute pos_top points so that legs are end points of base and top points
          stewart.pos_top = [stewart.pos_top(6,:); stewart.pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
          stewart.pos_top_tranform = stewart.pos_top - height*[zeros(6, 2),ones(6, 1)];

          %% leg vectors
          legs = stewart.pos_top - stewart.pos_base;
          leg_length = zeros(6, 1);
          leg_vectors = zeros(6, 3);
          for i = 1:6
            leg_length(i) = norm(legs(i,:));
            leg_vectors(i,:)  = legs(i,:) / leg_length(i);
          end

          stewart.Leg.lenght = 1000*leg_length(1)/1.5;
          stewart.Leg.shape.bot = [0 0; ...
                                  stewart.Leg.rad.bottom 0; ...
                                  stewart.Leg.rad.bottom stewart.Leg.lenght; ...
                                  stewart.Leg.rad.top stewart.Leg.lenght; ...
                                  stewart.Leg.rad.top 0.2*stewart.Leg.lenght; ...
                                  0 0.2*stewart.Leg.lenght];

          %% Calculate revolute and cylindrical axes
          rev1 = zeros(6, 3);
          rev2 = zeros(6, 3);
          cyl1 = zeros(6, 3);
          for i = 1:6
            rev1(i,:) = cross(leg_vectors(i,:), [0 0 1]);
            rev1(i,:) = rev1(i,:) / norm(rev1(i,:));

            rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
            rev2(i,:) = rev2(i,:) / norm(rev2(i,:));

            cyl1(i,:) = leg_vectors(i,:);
          end


          %% Coordinate systems
          stewart.lower_leg = struct('rotation', eye(3));
          stewart.upper_leg = struct('rotation', eye(3));

          for i = 1:6
            stewart.lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
            stewart.upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
          end

          %% Position Matrix
          stewart.M_pos_base = stewart.pos_base + (height+(stewart.TP.thickness+stewart.Leg.sphere.top+stewart.SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];

          %% Compute Jacobian Matrix
          aa = stewart.pos_top_tranform + (stewart.jacobian - stewart.TP.thickness - stewart.SP.height.top)*1e-3*[zeros(6, 2),ones(6, 1)];
          stewart.J  = getJacobianMatrix(leg_vectors', aa');
      end

      function J  = getJacobianMatrix(RM,M_pos_base)
          % RM: [3x6] unit vector of each leg in the fixed frame
          % M_pos_base: [3x6] vector of the leg connection at the top platform location in the fixed frame
          J = zeros(6);
          J(:, 1:3) = RM';
          J(:, 4:6) = cross(M_pos_base, RM)';
      end
  end

Cedrat Actuator

<<sec:initializeCedratPiezo>>

This Matlab function is accessible here.

  function [cedrat] = initializeCedratPiezo(opts_param)
    %% Default values for opts
    opts = struct();

    %% Populate opts with input parameters
    if exist('opts_param','var')
        for opt = fieldnames(opts_param)'
            opts.(opt{1}) = opts_param.(opt{1});
        end
    end

    %% Stewart Object
    cedrat = struct();
    cedrat.k = 10e7; % Linear Stiffness of each "blade" [N/m]
    cedrat.ka = 10e7; % Linear Stiffness of the stack [N/m]

    cedrat.c = 0.1*sqrt(1*cedrat.k); % [N/(m/s)]
    cedrat.ca = 0.1*sqrt(1*cedrat.ka); % [N/(m/s)]

    cedrat.L = 80; % Total Width of the Actuator[mm]
    cedrat.H = 45; % Total Height of the Actuator [mm]
    cedrat.L2 = sqrt((cedrat.L/2)^2 + (cedrat.H/2)^2); % Length of the elipsoidal sections [mm]
    cedrat.alpha = 180/pi*atan2(cedrat.L/2, cedrat.H/2); % [deg]

    %% Save
    save('./mat/stages.mat', 'cedrat', '-append');
  end

Sample

<<sec:initializeSample>>

This Matlab function is accessible here.

  function [sample] = initializeSample(opts_param)
      %% Default values for opts
      sample = struct('radius', 100, ...
                      'height', 300, ...
                      'mass',   50,  ...
                      'offset', 0,   ...
                      'color',  [0.45, 0.45, 0.45] ...
      );

      %% Populate opts with input parameters
      if exist('opts_param','var')
          for opt = fieldnames(opts_param)'
              sample.(opt{1}) = opts_param.(opt{1});
          end
      end

      %%
      sample.k.x = 1e8;
      sample.c.x = 0.1*sqrt(sample.k.x*sample.mass);

      sample.k.y = 1e8;
      sample.c.y = 0.1*sqrt(sample.k.y*sample.mass);

      sample.k.z = 1e8;
      sample.c.z = 0.1*sqrt(sample.k.z*sample.mass);

      %% Save
      save('./mat/stages.mat', 'sample', '-append');
  end