Update nano-hexapod parameters

This commit is contained in:
Thomas Dehaeze 2021-06-30 22:46:03 +02:00
parent 571dfbffb4
commit f6194333a6
6 changed files with 89 additions and 63 deletions

View File

@ -3436,28 +3436,32 @@ function [nano_hexapod] = initializeNanoHexapodFinal(args)
arguments arguments
%% Bottom Flexible Joints %% Bottom Flexible Joints
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof' args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad] args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad] args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad] args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m] args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)] args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)] args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)] args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)] args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
%% Top Flexible Joints %% Top Flexible Joints
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof' args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad] args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad] args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad] args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m] args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)] args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)] args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)] args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)] args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
%% Jacobian - Location of frame {A} and {B} %% Jacobian - Location of frame {A} and {B}
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m] args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
%% Relative Motion Sensor %% Relative Motion Sensor
args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts' args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts'
%% Actuators %% Actuators
args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible' args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible'
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V] args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
@ -3473,10 +3477,13 @@ arguments
% For Flexible Frame % For Flexible Frame
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m] args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m] args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m]
% Misalignment
args.actuator_d_align (6,3) double {mustBeNumeric} = zeros(6,3) % [m]
args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
%% Controller %% Controller
args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf'})} = 'none' args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf', 'hac-iff-struts'})} = 'none'
end end
#+end_src #+end_src
@ -3613,8 +3620,10 @@ else
end end
#+end_src #+end_src
2dof Mechanical characteristics:
#+begin_src matlab #+begin_src matlab
switch args.actuator_type
case '2dof'
nano_hexapod.actuator.k = args.actuator_k; % [N/m] nano_hexapod.actuator.k = args.actuator_k; % [N/m]
nano_hexapod.actuator.ke = args.actuator_ke; % [N/m] nano_hexapod.actuator.ke = args.actuator_ke; % [N/m]
nano_hexapod.actuator.ka = args.actuator_ka; % [N/m] nano_hexapod.actuator.ka = args.actuator_ka; % [N/m]
@ -3624,25 +3633,26 @@ nano_hexapod.actuator.ce = args.actuator_ce; % [N/(m/s)]
nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)] nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)]
nano_hexapod.actuator.Leq = args.actuator_Leq; % [m] nano_hexapod.actuator.Leq = args.actuator_Leq; % [m]
#+end_src
Flexible frame and fully flexible
#+begin_src matlab
switch args.actuator_type
case 'flexible frame' case 'flexible frame'
nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m] nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m]
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
case 'flexible' case 'flexible'
nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m] nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
end
nano_hexapod.actuator.d_align = args.actuator_d_align; % Misalignment
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m] end
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
#+end_src #+end_src
** Geometry ** Geometry
@ -3744,6 +3754,8 @@ switch args.controller_type
nano_hexapod.controller.type = 2; nano_hexapod.controller.type = 2;
case 'dvf' case 'dvf'
nano_hexapod.controller.type = 3; nano_hexapod.controller.type = 3;
case 'hac-iff-struts'
nano_hexapod.controller.type = 4;
end end
#+end_src #+end_src

View File

@ -3,28 +3,32 @@ function [nano_hexapod] = initializeNanoHexapodFinal(args)
arguments arguments
%% Bottom Flexible Joints %% Bottom Flexible Joints
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof' args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad] args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad] args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad] args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m] args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)] args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)] args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)] args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)] args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
%% Top Flexible Joints %% Top Flexible Joints
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof' args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad] args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad] args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad] args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m] args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*7e7 % Axial Stiffness [N/m]
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)] args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % X bending Damping [Nm/(rad/s)]
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)] args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Y bending Damping [Nm/(rad/s)]
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)] args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Torsionnal Damping [Nm/(rad/s)]
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)] args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0.001 % Axial Damping [N/(m/s)]
%% Jacobian - Location of frame {A} and {B} %% Jacobian - Location of frame {A} and {B}
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m] args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
%% Relative Motion Sensor %% Relative Motion Sensor
args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts' args.motion_sensor_type char {mustBeMember(args.motion_sensor_type,{'struts', 'plates'})} = 'struts'
%% Actuators %% Actuators
args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible' args.actuator_type char {mustBeMember(args.actuator_type,{'2dof', 'flexible frame', 'flexible'})} = 'flexible'
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V] args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
@ -40,10 +44,13 @@ arguments
% For Flexible Frame % For Flexible Frame
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m] args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m] args.actuator_cs (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % Stiffness of one stack [N/m]
% Misalignment
args.actuator_d_align (6,3) double {mustBeNumeric} = zeros(6,3) % [m]
args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio args.actuator_xi (1,1) double {mustBeNumeric} = 0.01 % Damping Ratio
%% Controller %% Controller
args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf'})} = 'none' args.controller_type char {mustBeMember(args.controller_type,{'none', 'iff', 'dvf', 'hac-iff-struts'})} = 'none'
end end
nano_hexapod = struct(); nano_hexapod = struct();
@ -142,6 +149,8 @@ else
nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m] nano_hexapod.actuator.Gs = args.actuator_Gs; % Sensor gain [V/m]
end end
switch args.actuator_type
case '2dof'
nano_hexapod.actuator.k = args.actuator_k; % [N/m] nano_hexapod.actuator.k = args.actuator_k; % [N/m]
nano_hexapod.actuator.ke = args.actuator_ke; % [N/m] nano_hexapod.actuator.ke = args.actuator_ke; % [N/m]
nano_hexapod.actuator.ka = args.actuator_ka; % [N/m] nano_hexapod.actuator.ka = args.actuator_ka; % [N/m]
@ -152,21 +161,24 @@ nano_hexapod.actuator.ca = args.actuator_ca; % [N/(m/s)]
nano_hexapod.actuator.Leq = args.actuator_Leq; % [m] nano_hexapod.actuator.Leq = args.actuator_Leq; % [m]
switch args.actuator_type
case 'flexible frame' case 'flexible frame'
nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix nano_hexapod.actuator.K = readmatrix('APA300ML_b_mat_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix nano_hexapod.actuator.M = readmatrix('APA300ML_b_mat_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m] nano_hexapod.actuator.P = extractNodes('APA300ML_b_out_nodes_3D.txt'); % Node coordinates [m]
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m]
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
case 'flexible' case 'flexible'
nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix nano_hexapod.actuator.K = readmatrix('full_APA300ML_K.CSV'); % Stiffness Matrix
nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix nano_hexapod.actuator.M = readmatrix('full_APA300ML_M.CSV'); % Mass Matrix
nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m] nano_hexapod.actuator.P = extractNodes('full_APA300ML_out_nodes_3D.txt'); % Node coordiantes [m]
end
nano_hexapod.actuator.d_align = args.actuator_d_align; % Misalignment
nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio nano_hexapod.actuator.xi = args.actuator_xi; % Damping ratio
nano_hexapod.actuator.ks = args.actuator_ks; % Stiffness of one stack [N/m] end
nano_hexapod.actuator.cs = args.actuator_cs; % Damping of one stack [N/m]
nano_hexapod.geometry = struct(); nano_hexapod.geometry = struct();
@ -224,6 +236,8 @@ switch args.controller_type
nano_hexapod.controller.type = 2; nano_hexapod.controller.type = 2;
case 'dvf' case 'dvf'
nano_hexapod.controller.type = 3; nano_hexapod.controller.type = 3;
case 'hac-iff-struts'
nano_hexapod.controller.type = 4;
end end
if nargout == 0 if nargout == 0