Reworked the compensation of gravity forces
This commit is contained in:
parent
dce2934bec
commit
e1cde2bd5b
@ -34,114 +34,56 @@ In order to start the simulation at steady state in presence of gravity:
|
||||
- section [[sec:compensation]]: Then, the equilibrium position of each joint is modified in such a way that at t=0, the forces in each joints exactly compensate the forces due to gravity forces
|
||||
|
||||
* Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
simulinkproject('../');
|
||||
#+END_SRC
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no
|
||||
simulinkproject('../');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('nass_model.slx')
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
open('nass_model.slx')
|
||||
#+END_SRC
|
||||
|
||||
* Initialization of the Experimental Conditions
|
||||
We don't inject any perturbations and no reference tracking.
|
||||
#+begin_src matlab
|
||||
initializeReferences();
|
||||
initializeDisturbances('enable', false);
|
||||
initializeController();
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
initializeReferences();
|
||||
initializeDisturbances('enable', false);
|
||||
initializeController();
|
||||
#+END_SRC
|
||||
|
||||
We include the gravity and log all the signals to display.
|
||||
#+begin_src matlab
|
||||
initializeSimscapeConfiguration('gravity', true);
|
||||
initializeLoggingConfiguration('log', 'all');
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
initializeSimscapeConfiguration('gravity', true);
|
||||
initializeLoggingConfiguration('log', 'all');
|
||||
#+END_SRC
|
||||
|
||||
* Without compensation
|
||||
<<sec:no_compensation>>
|
||||
Let's simulate the system without any compensation of gravity forces.
|
||||
|
||||
#+begin_src matlab
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod();
|
||||
initializeSample();
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod();
|
||||
initializeSample();
|
||||
#+END_SRC
|
||||
|
||||
#+begin_src matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
set_param(conf_simulink, 'StopTime', '0.5');
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
set_param(conf_simulink, 'StopTime', '0.5');
|
||||
#+END_SRC
|
||||
|
||||
#+begin_src matlab
|
||||
sim('nass_model');
|
||||
sim_no_compensation = simout;
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
sim('nass_model');
|
||||
sim_no_compensation = simout;
|
||||
#+END_SRC
|
||||
|
||||
And we can observe on Figure [[fig:transient_phase_gravity_no_compensation]] that there are some motion in the system.
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
ax1 = subplot(2, 3, 1);
|
||||
hold on;
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 1))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Dx [m]');
|
||||
|
||||
ax2 = subplot(2, 3, 2);
|
||||
hold on;
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 2))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Dy [m]');
|
||||
|
||||
ax3 = subplot(2, 3, 3);
|
||||
hold on;
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 3))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Dz [m]');
|
||||
|
||||
ax4 = subplot(2, 3, 4);
|
||||
hold on;
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 4))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Rx [rad]');
|
||||
|
||||
ax5 = subplot(2, 3, 5);
|
||||
hold on;
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 5))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Ry [rad]');
|
||||
|
||||
ax6 = subplot(2, 3, 6);
|
||||
hold on;
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 6))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Rz [rad]');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/transient_phase_gravity_no_compensation.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:transient_phase_gravity_no_compensation
|
||||
#+caption: Motion of the sample at the start of the simulation in presence of gravity ([[./figs/transient_phase_gravity_no_compensation.png][png]], [[./figs/transient_phase_gravity_no_compensation.pdf][pdf]])
|
||||
[[file:figs/transient_phase_gravity_no_compensation.png]]
|
||||
@ -150,41 +92,41 @@ And we can observe on Figure [[fig:transient_phase_gravity_no_compensation]] tha
|
||||
<<sec:compute_forces>>
|
||||
We here wish to simulate the system in order to compute the required force in each joint to compensate the gravity forces.
|
||||
|
||||
#+begin_src matlab
|
||||
initializeGround();
|
||||
initializeGranite('type', 'init');
|
||||
initializeTy('type', 'init');
|
||||
initializeRy('type', 'init');
|
||||
initializeRz('type', 'init');
|
||||
initializeMicroHexapod('type', 'init');
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod('type', 'init');
|
||||
initializeSample('type', 'init');
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
initializeGround();
|
||||
initializeGranite('type', 'init');
|
||||
initializeTy('type', 'init');
|
||||
initializeRy('type', 'init');
|
||||
initializeRz('type', 'init');
|
||||
initializeMicroHexapod('type', 'init');
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod('type', 'init');
|
||||
initializeSample('type', 'init');
|
||||
#+END_SRC
|
||||
|
||||
We simulate for a short time period (all the bodies are solid, so nothing should move).
|
||||
#+begin_src matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
set_param(conf_simulink, 'StopTime', '0.1');
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
set_param(conf_simulink, 'StopTime', '0.1');
|
||||
#+END_SRC
|
||||
|
||||
#+begin_src matlab
|
||||
sim('nass_model');
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
sim('nass_model');
|
||||
#+END_SRC
|
||||
|
||||
Verification that nothing is moving by looking at the maximum displacement of the sample:
|
||||
#+begin_src matlab :results value replace
|
||||
max(max(simout.Em.En.Data))
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
max(max(simout.Em.En.Data))
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
: 1.0681e-15
|
||||
|
||||
We here show the measured total force/torque applied at the location of each joint.
|
||||
#+begin_src matlab :results value table replace :tangle no :post addhdr(*this*)
|
||||
data2orgtable([Fgm 0 0 0; Ftym; Fym; Fsm], {'Granite', 'Translation Stage', 'Tilt Stage', 'Sample'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}, ' %.1e ');
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
data2orgtable([Fgm 0 0 0; Ftym; Fym; Fsm], {'Granite', 'Translation Stage', 'Tilt Stage', 'Sample'}, {'Fx', 'Fy', 'Fz', 'Mx', 'My', 'Mz'}, ' %.1e ');
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
| | Fx | Fy | Fz | Mx | My | Mz |
|
||||
@ -194,9 +136,9 @@ We here show the measured total force/torque applied at the location of each joi
|
||||
| Tilt Stage | -7.6e-12 | 1.2e-11 | -8800.0 | 33.0 | -0.52 | 6.6e-13 |
|
||||
| Sample | -5.7e-12 | 1.3e-11 | -490.0 | -2.5e-12 | -8.1e-13 | 2.7e-13 |
|
||||
|
||||
#+begin_src matlab :results value table replace :tangle no :post addhdr(*this*)
|
||||
data2orgtable([Fhm; Fnm], {'Micro-Hexapod', 'Nano-Hexapod'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}, ' %.1e ');
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
data2orgtable([Fhm; Fnm], {'Micro-Hexapod', 'Nano-Hexapod'}, {'F1', 'F2', 'F3', 'F4', 'F5', 'F6'}, ' %.1e ');
|
||||
#+END_SRC
|
||||
|
||||
#+RESULTS:
|
||||
| | F1 | F2 | F3 | F4 | F5 | F6 |
|
||||
@ -205,97 +147,38 @@ We here show the measured total force/torque applied at the location of each joi
|
||||
| Nano-Hexapod | -160.0 | -160.0 | -160.0 | -160.0 | -160.0 | -160.0 |
|
||||
|
||||
We save these forces in =Foffset.mat=.
|
||||
#+begin_src matlab
|
||||
save('mat/Foffset.mat', 'Fgm', 'Ftym', 'Fym', 'Fzm', 'Fhm', 'Fnm', 'Fsm');
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
save('mat/Foffset.mat', 'Fgm', 'Ftym', 'Fym', 'Fzm', 'Fhm', 'Fnm', 'Fsm');
|
||||
#+END_SRC
|
||||
|
||||
* New simulation with compensation of gravity forces
|
||||
<<sec:compensation>>
|
||||
We now initialize the stages with the option =Foffset=.
|
||||
#+begin_src matlab
|
||||
initializeGround();
|
||||
initializeGranite('Foffset', true);
|
||||
initializeTy('Foffset', true);
|
||||
initializeRy('Foffset', true);
|
||||
initializeRz('Foffset', true);
|
||||
initializeMicroHexapod('Foffset', true);
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod('Foffset', true);
|
||||
initializeSample('Foffset', true);
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
initializeGround();
|
||||
initializeGranite('Foffset', true);
|
||||
initializeTy('Foffset', true);
|
||||
initializeRy('Foffset', true);
|
||||
initializeRz('Foffset', true);
|
||||
initializeMicroHexapod('Foffset', true);
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod('Foffset', true);
|
||||
initializeSample('Foffset', true);
|
||||
#+END_SRC
|
||||
|
||||
And we simulate the system for 0.5 seconds.
|
||||
#+begin_src matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
set_param(conf_simulink, 'StopTime', '0.5');
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
set_param(conf_simulink, 'StopTime', '0.5');
|
||||
#+END_SRC
|
||||
|
||||
#+begin_src matlab
|
||||
sim('nass_model');
|
||||
sim_compensation = simout;
|
||||
#+end_src
|
||||
#+BEGIN_SRC matlab
|
||||
sim('nass_model');
|
||||
sim_compensation = simout;
|
||||
#+END_SRC
|
||||
|
||||
Verification that nothing is moving
|
||||
#+begin_src matlab :exports none
|
||||
figure;
|
||||
ax1 = subplot(2, 3, 1);
|
||||
hold on;
|
||||
plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 1))
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 1))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Dx [m]');
|
||||
|
||||
ax2 = subplot(2, 3, 2);
|
||||
hold on;
|
||||
plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 2))
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 2))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Dy [m]');
|
||||
|
||||
ax3 = subplot(2, 3, 3);
|
||||
hold on;
|
||||
plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 3))
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 3))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Dz [m]');
|
||||
|
||||
ax4 = subplot(2, 3, 4);
|
||||
hold on;
|
||||
plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 4))
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 4))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Rx [rad]');
|
||||
|
||||
ax5 = subplot(2, 3, 5);
|
||||
hold on;
|
||||
plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 5))
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 5))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Ry [rad]');
|
||||
|
||||
ax6 = subplot(2, 3, 6);
|
||||
hold on;
|
||||
plot(sim_compensation.Em.En.Time, sim_compensation.Em.En.Data(:, 6))
|
||||
plot(sim_no_compensation.Em.En.Time, sim_no_compensation.Em.En.Data(:, 6))
|
||||
hold off;
|
||||
xlabel('Time [s]');
|
||||
ylabel('Rz [rad]');
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4,ax5,ax6],'x');
|
||||
xlim([sim_compensation.Em.En.Time(1), sim_compensation.Em.En.Time(end)])
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/transient_phase_gravity_compensation.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:transient_phase_gravity_compensation
|
||||
#+caption: Motion of the sample at the start of the simulation in presence of gravity when compensating the gravity forces ([[./figs/transient_phase_gravity_compensation.png][png]], [[./figs/transient_phase_gravity_compensation.pdf][pdf]])
|
||||
[[file:figs/transient_phase_gravity_compensation.png]]
|
||||
|
Loading…
Reference in New Issue
Block a user