Use new argument function validation technique
This commit is contained in:
parent
994fe2ccc7
commit
a2917a50e9
@ -83,7 +83,7 @@ The disturbances are:
|
||||
We first look at the undamped system.
|
||||
The performance of this undamped system will be compared with the damped system using various techniques.
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
@ -97,7 +97,7 @@ The performance of this undamped system will be compared with the damped system
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('active_damping/matlab/sim_nano_station_id.slx')
|
||||
open('active_damping/matlab/sim_nass_active_damping.slx')
|
||||
#+end_src
|
||||
|
||||
** Init
|
||||
@ -114,8 +114,8 @@ The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 1);
|
||||
#+end_src
|
||||
|
||||
All the controllers are set to 0.
|
||||
@ -124,16 +124,321 @@ All the controllers are set to 0.
|
||||
save('./mat/controllers.mat', 'K', '-append');
|
||||
K_iff = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_iff', '-append');
|
||||
K_rmc = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_rmc', '-append');
|
||||
K_dvf = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_dvf', '-append');
|
||||
#+end_src
|
||||
|
||||
** Identification
|
||||
We identify the various transfer functions of the system
|
||||
** Identification of the transfer function from disturbance to position error
|
||||
#+begin_src matlab
|
||||
G = identifyPlant();
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'sim_nass_active_damping';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwx'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwy'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwz'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Compute Error in NASS base'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {'Dwx', 'Dwy', 'Dwz'};
|
||||
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G('Edx', 'Dwx'), freqs, 'Hz'))), 'DisplayName', 'x');
|
||||
plot(freqs, abs(squeeze(freqresp(G('Edy', 'Dwz'), freqs, 'Hz'))), 'DisplayName', 'y');
|
||||
plot(freqs, abs(squeeze(freqresp(G('Edz', 'Dwz'), freqs, 'Hz'))), 'DisplayName', 'z');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
|
||||
legend('location', 'southeast')
|
||||
#+end_src
|
||||
|
||||
** Identification of the plant
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'sim_nass_active_damping';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Fnl'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Compute Error in NASS base'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
load('mat/stages.mat', 'nano_hexapod');
|
||||
G_cart = G*inv(nano_hexapod.J');
|
||||
G_cart.InputName = {'Fnx', 'Fny', 'Fnz', 'Mnx', 'Mny', 'Mnz'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Edx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', '$T_{x}$');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Edy', 'Fny'), freqs, 'Hz'))), 'DisplayName', '$T_{y}$');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Edz', 'Fnz'), freqs, 'Hz'))), 'DisplayName', '$T_{z}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'southwest')
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Edx', 'Fnx'), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Edy', 'Fny'), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Edz', 'Fnz'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Erx', 'Mnx'), freqs, 'Hz'))), 'DisplayName', '$R_{x}$');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Ery', 'Mny'), freqs, 'Hz'))), 'DisplayName', '$R_{y}$');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Erz', 'Mnz'), freqs, 'Hz'))), 'DisplayName', '$R_{z}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'southwest')
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Erx', 'Mnx'), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Ery', 'Mny'), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Erz', 'Mnz'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
** test
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'sim_nass_active_damping';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station/Dy'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Compute Error in NASS base'], 2, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {'Dy'};
|
||||
G.OutputName = {'Edx', 'Edy', 'Edz', 'Erx', 'Ery', 'Erz'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G('Edy', 'Dy(1)'), freqs, 'Hz'))), 'DisplayName', '$T_{x}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'southwest')
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G('Edy', 'Dy(1)'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Erx', 'Mnx'), freqs, 'Hz'))), 'DisplayName', '$R_{x}$');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Ery', 'Mny'), freqs, 'Hz'))), 'DisplayName', '$R_{y}$');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Erz', 'Mnz'), freqs, 'Hz'))), 'DisplayName', '$R_{z}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'southwest')
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Erx', 'Mnx'), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Ery', 'Mny'), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Erz', 'Mnz'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
** test on hexapod
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'test_nano_hexapod';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Fnl'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/x'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
G.OutputName = {'x', 'y', 'z'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'test_nano_hexapod';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Fx'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/x'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/y'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/z'], 1, 'openoutput'); io_i = io_i + 1;
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {'Fx'};
|
||||
G.OutputName = {'x', 'y', 'z'};
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G('Edy', 'Dy(1)'), freqs, 'Hz'))), 'DisplayName', '$T_{x}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'southwest')
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G('Edy', 'Dy(1)'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Erx', 'Mnx'), freqs, 'Hz'))), 'DisplayName', '$R_{x}$');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Ery', 'Mny'), freqs, 'Hz'))), 'DisplayName', '$R_{y}$');
|
||||
plot(freqs, abs(squeeze(freqresp(G_cart('Erz', 'Mnz'), freqs, 'Hz'))), 'DisplayName', '$R_{z}$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'southwest')
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Erx', 'Mnx'), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Ery', 'Mny'), freqs, 'Hz'))));
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_cart('Erz', 'Mnz'), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
** Identification of the dynamics for Active Damping
|
||||
#+begin_src matlab
|
||||
%% Options for Linearized
|
||||
options = linearizeOptions;
|
||||
options.SampleTime = 0;
|
||||
|
||||
%% Name of the Simulink File
|
||||
mdl = 'sim_nass_active_damping';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Fnl'], 1, 'openinput'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Dnlm'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1;
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io, options);
|
||||
G.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
G.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6', ...
|
||||
'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'};
|
||||
#+end_src
|
||||
|
||||
And we save it for further analysis.
|
||||
@ -141,6 +446,63 @@ And we save it for further analysis.
|
||||
save('./active_damping/mat/plants.mat', 'G', '-append');
|
||||
#+end_src
|
||||
|
||||
** Plant for Active Damping
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Fnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G(['Dnlm', num2str(i)], ['Fnl', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to disturbances
|
||||
The sensitivity to disturbances are shown on figure [[fig:sensitivity_dist_undamped]].
|
||||
|
||||
@ -242,6 +604,7 @@ The "plant" (transfer function from forces applied by the nano-hexapod to the me
|
||||
#+CAPTION: Transfer Function from cartesian forces to displacement for the undamped plant ([[./figs/plant_undamped.png][png]], [[./figs/plant_undamped.pdf][pdf]])
|
||||
[[file:figs/plant_undamped.png]]
|
||||
|
||||
** Tomography Experiment
|
||||
* Integral Force Feedback
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/iff.m
|
||||
@ -269,185 +632,6 @@ Integral Force Feedback is applied.
|
||||
In section [[sec:iff_1dof]], IFF is applied on a uni-axial system to understand its behavior.
|
||||
Then, it is applied on the simscape model.
|
||||
|
||||
** One degree-of-freedom example
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle no
|
||||
:END:
|
||||
<<sec:iff_1dof>>
|
||||
*** Equations
|
||||
#+begin_src latex :file iff_1dof.pdf :post pdf2svg(file=*this*, ext="png") :exports results
|
||||
\begin{tikzpicture}
|
||||
% Ground
|
||||
\draw (-1, 0) -- (1, 0);
|
||||
|
||||
% Ground Displacement
|
||||
\draw[dashed] (-1, 0) -- ++(-0.5, 0) coordinate(w);
|
||||
\draw[->] (w) -- ++(0, 0.5) node[left]{$w$};
|
||||
|
||||
% Mass
|
||||
\draw[fill=white] (-1, 1.4) rectangle ++(2, 0.8) node[pos=0.5]{$m$};
|
||||
\node[forcesensor={0.4}{0.4}] (fsensn) at (0, 1){};
|
||||
\draw[] (-0.8, 1) -- (0.8, 1);
|
||||
\node[left] at (fsensn.west) {$F_m$};
|
||||
|
||||
% Displacement of the mass
|
||||
\draw[dashed] (-1, 2.2) -- ++(-0.5, 0) coordinate(x);
|
||||
\draw[->] (x) -- ++(0, 0.5) node[left]{$x$};
|
||||
|
||||
% Spring, Damper, and Actuator
|
||||
\draw[spring] (-0.8, 0) -- (-0.8, 1) node[midway, left=0.1]{$k$};
|
||||
\draw[damper] (0, 0) -- (0, 1) node[midway, left=0.2]{$c$};
|
||||
\draw[actuator={0.4}{0.2}] (0.8, 0) -- (0.8, 1) coordinate[midway, right=0.1](F);
|
||||
|
||||
% Displacements
|
||||
\node[block={0.8cm}{0.6cm}, right=0.6 of F] (Kiff) {$K$};
|
||||
\draw[->] (Kiff.west) -- (F) node[above right]{$F$};
|
||||
\draw[<-] (Kiff.east) -- ++(0.5, 0) |- (fsensn.east);
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:iff_1dof
|
||||
#+caption: Integral Force Feedback applied to a 1dof system
|
||||
#+RESULTS:
|
||||
[[file:figs/iff_1dof.png]]
|
||||
|
||||
The dynamic of the system is described by the following equation:
|
||||
\begin{equation}
|
||||
ms^2x = F_d - kx - csx + kw + csw + F
|
||||
\end{equation}
|
||||
The measured force $F_m$ is:
|
||||
\begin{align}
|
||||
F_m &= F - kx - csx + kw + csw \\
|
||||
&= ms^2 x - F_d
|
||||
\end{align}
|
||||
The Integral Force Feedback controller is $K = -\frac{g}{s}$, and thus the applied force by this controller is:
|
||||
\begin{equation}
|
||||
F_{\text{IFF}} = -\frac{g}{s} F_m = -\frac{g}{s} (ms^2 x - F_d)
|
||||
\end{equation}
|
||||
Once the IFF is applied, the new dynamics of the system is:
|
||||
\begin{equation}
|
||||
ms^2x = F_d + F - kx - csx + kw + csw - \frac{g}{s} (ms^2x - F_d)
|
||||
\end{equation}
|
||||
|
||||
And finally:
|
||||
\begin{equation}
|
||||
x = F_d \frac{1 + \frac{g}{s}}{ms^2 + (mg + c)s + k} + F \frac{1}{ms^2 + (mg + c)s + k} + w \frac{k + cs}{ms^2 + (mg + c)s + k}
|
||||
\end{equation}
|
||||
|
||||
We can see that this:
|
||||
- adds damping to the system by a value $mg$
|
||||
- lower the compliance as low frequency by a factor: $1 + g/s$
|
||||
|
||||
If we want critical damping:
|
||||
\begin{equation}
|
||||
\xi = \frac{1}{2} \frac{c + gm}{\sqrt{km}} = \frac{1}{2}
|
||||
\end{equation}
|
||||
|
||||
This is attainable if we have:
|
||||
\begin{equation}
|
||||
g = \frac{\sqrt{km} - c}{m}
|
||||
\end{equation}
|
||||
|
||||
*** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
*** Matlab Example
|
||||
Let define the system parameters.
|
||||
#+begin_src matlab
|
||||
m = 50; % [kg]
|
||||
k = 1e6; % [N/m]
|
||||
c = 1e3; % [N/(m/s)]
|
||||
#+end_src
|
||||
|
||||
The state space model of the system is defined below.
|
||||
#+begin_src matlab
|
||||
A = [-c/m -k/m;
|
||||
1 0];
|
||||
|
||||
B = [1/m 1/m -1;
|
||||
0 0 0];
|
||||
|
||||
C = [ 0 1;
|
||||
-c -k];
|
||||
|
||||
D = [0 0 0;
|
||||
1 0 0];
|
||||
|
||||
sys = ss(A, B, C, D);
|
||||
sys.InputName = {'F', 'Fd', 'wddot'};
|
||||
sys.OutputName = {'d', 'Fm'};
|
||||
sys.StateName = {'ddot', 'd'};
|
||||
#+end_src
|
||||
|
||||
The controller $K_\text{IFF}$ is:
|
||||
#+begin_src matlab
|
||||
Kiff = -((sqrt(k*m)-c)/m)/s;
|
||||
Kiff.InputName = {'Fm'};
|
||||
Kiff.OutputName = {'F'};
|
||||
#+end_src
|
||||
|
||||
And the closed loop system is computed below.
|
||||
#+begin_src matlab
|
||||
sys_iff = feedback(sys, Kiff, 'name', +1);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
subplot(2, 2, 1);
|
||||
title('Fd to d')
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(sys('d', 'Fd'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(sys_iff('d', 'Fd'), freqs, 'Hz'))));
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
|
||||
subplot(2, 2, 3);
|
||||
title('Fd to x')
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(sys('d', 'Fd'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(sys_iff('d', 'Fd'), freqs, 'Hz'))));
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
|
||||
subplot(2, 2, 2);
|
||||
title('w to d')
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(sys('d', 'wddot')*s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(sys_iff('d', 'wddot')*s^2, freqs, 'Hz'))));
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
|
||||
subplot(2, 2, 4);
|
||||
title('w to x')
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(1+sys('d', 'wddot')*s^2, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(1+sys_iff('d', 'wddot')*s^2, freqs, 'Hz'))));
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/iff_1dof_sensitivitiy.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:iff_1dof_sensitivitiy
|
||||
#+CAPTION: Sensitivity to disturbance when IFF is applied on the 1dof system ([[./figs/iff_1dof_sensitivitiy.png][png]], [[./figs/iff_1dof_sensitivitiy.pdf][pdf]])
|
||||
[[file:figs/iff_1dof_sensitivitiy.png]]
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
@ -566,8 +750,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
All the controllers are set to 0.
|
||||
@ -1106,8 +1290,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
And initialize the controllers.
|
||||
@ -1617,8 +1801,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
And initialize the controllers.
|
||||
|
@ -1,4 +1,4 @@
|
||||
#+TITLE: Active Damping
|
||||
#+TITLE: Active Damping with an uni-axial model
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
|
||||
@ -97,7 +97,7 @@ The performance of this undamped system will be compared with the damped system
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('active_damping/matlab/sim_nano_station_id.slx')
|
||||
open('active_damping_uniaxial/matlab/sim_nano_station_id.slx')
|
||||
#+end_src
|
||||
|
||||
** Init
|
||||
@ -114,8 +114,8 @@ The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
All the controllers are set to 0.
|
||||
@ -138,7 +138,7 @@ We identify the various transfer functions of the system
|
||||
|
||||
And we save it for further analysis.
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G', '-append');
|
||||
save('./active_damping_uniaxial/mat/plants.mat', 'G', '-append');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to disturbances
|
||||
@ -462,13 +462,13 @@ And the closed loop system is computed below.
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('active_damping/matlab/sim_nano_station_id.slx')
|
||||
open('active_damping_uniaxial/matlab/sim_nano_station_id.slx')
|
||||
#+end_src
|
||||
|
||||
** Control Design
|
||||
Let's load the undamped plant:
|
||||
#+begin_src matlab
|
||||
load('./active_damping/mat/plants.mat', 'G');
|
||||
load('./active_damping_uniaxial/mat/plants.mat', 'G');
|
||||
#+end_src
|
||||
|
||||
Let's look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor (figure [[fig:iff_plant]]).
|
||||
@ -566,8 +566,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
All the controllers are set to 0.
|
||||
@ -589,7 +589,7 @@ We identify the system dynamics now that the IFF controller is ON.
|
||||
|
||||
And we save the damped plant for further analysis
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G_iff', '-append');
|
||||
save('./active_damping_uniaxial/mat/plants.mat', 'G_iff', '-append');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to disturbances
|
||||
@ -1001,13 +1001,13 @@ And the closed loop system is computed below.
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('active_damping/matlab/sim_nano_station_id.slx')
|
||||
open('active_damping_uniaxial/matlab/sim_nano_station_id.slx')
|
||||
#+end_src
|
||||
|
||||
** Control Design
|
||||
Let's load the undamped plant:
|
||||
#+begin_src matlab
|
||||
load('./active_damping/mat/plants.mat', 'G');
|
||||
load('./active_damping_uniaxial/mat/plants.mat', 'G');
|
||||
#+end_src
|
||||
|
||||
Let's look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor (figure [[fig:rmc_plant]]).
|
||||
@ -1106,8 +1106,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
And initialize the controllers.
|
||||
@ -1129,7 +1129,7 @@ We identify the system dynamics now that the RMC controller is ON.
|
||||
|
||||
And we save the damped plant for further analysis.
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G_rmc', '-append');
|
||||
save('./active_damping_uniaxial/mat/plants.mat', 'G_rmc', '-append');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to disturbances
|
||||
@ -1514,13 +1514,13 @@ The obtained sensitivity to disturbances is shown in figure [[fig:dvf_1dof_sensi
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('active_damping/matlab/sim_nano_station_id.slx')
|
||||
open('active_damping_uniaxial/matlab/sim_nano_station_id.slx')
|
||||
#+end_src
|
||||
|
||||
** Control Design
|
||||
Let's load the undamped plant:
|
||||
#+begin_src matlab
|
||||
load('./active_damping/mat/plants.mat', 'G');
|
||||
load('./active_damping_uniaxial/mat/plants.mat', 'G');
|
||||
#+end_src
|
||||
|
||||
Let's look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure [[fig:dvf_plant]]).
|
||||
@ -1617,8 +1617,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
And initialize the controllers.
|
||||
@ -1640,7 +1640,7 @@ We identify the system dynamics now that the RMC controller is ON.
|
||||
|
||||
And we save the damped plant for further analysis.
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G_dvf', '-append');
|
||||
save('./active_damping_uniaxial/mat/plants.mat', 'G_dvf', '-append');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to disturbances
|
||||
@ -1812,7 +1812,7 @@ Direct Velocity Feedback:
|
||||
|
||||
** Load the plants
|
||||
#+begin_src matlab
|
||||
load('./active_damping/mat/plants.mat', 'G', 'G_iff', 'G_rmc', 'G_dvf');
|
||||
load('./active_damping_uniaxial/mat/plants.mat', 'G', 'G_iff', 'G_rmc', 'G_dvf');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to Disturbance
|
||||
|
@ -217,8 +217,8 @@ We initialize all the stages.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
* Identification
|
||||
|
@ -93,14 +93,14 @@ We first initialize all the stages.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 1));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 1);
|
||||
#+end_src
|
||||
|
||||
We initialize the reference path for all the stages.
|
||||
All stage is set to its zero position except the Spindle which is rotating at 60rpm.
|
||||
#+begin_src matlab
|
||||
initializeReferences(struct('Rz_type', 'rotating', 'Rz_period', 1));
|
||||
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
|
||||
#+end_src
|
||||
|
||||
* Tomography Experiment with no disturbances
|
||||
@ -110,15 +110,14 @@ All stage is set to its zero position except the Spindle which is rotating at 60
|
||||
** Simulation Setup
|
||||
And we initialize the disturbances to be equal to zero.
|
||||
#+begin_src matlab
|
||||
opts = struct(...
|
||||
initDisturbances(...
|
||||
'Dwx', false, ... % Ground Motion - X direction
|
||||
'Dwy', false, ... % Ground Motion - Y direction
|
||||
'Dwz', false, ... % Ground Motion - Z direction
|
||||
'Fty_x', false, ... % Translation Stage - X direction
|
||||
'Fty_z', false, ... % Translation Stage - Z direction
|
||||
'Frz_z', false ... % Spindle - Z direction
|
||||
);
|
||||
initDisturbances(opts);
|
||||
);
|
||||
#+end_src
|
||||
|
||||
We simulate the model.
|
||||
@ -221,15 +220,14 @@ And we save the obtained data.
|
||||
** Simulation Setup
|
||||
We now activate the disturbances.
|
||||
#+begin_src matlab
|
||||
opts = struct(...
|
||||
initDisturbances(...
|
||||
'Dwx', true, ... % Ground Motion - X direction
|
||||
'Dwy', true, ... % Ground Motion - Y direction
|
||||
'Dwz', true, ... % Ground Motion - Z direction
|
||||
'Fty_x', true, ... % Translation Stage - X direction
|
||||
'Fty_z', true, ... % Translation Stage - Z direction
|
||||
'Frz_z', true ... % Spindle - Z direction
|
||||
);
|
||||
initDisturbances(opts);
|
||||
);
|
||||
#+end_src
|
||||
|
||||
We simulate the model.
|
||||
@ -336,25 +334,24 @@ We first set the wanted translation of the Micro Hexapod.
|
||||
|
||||
We initialize the reference path.
|
||||
#+begin_src matlab
|
||||
initializeReferences(struct('Dh_pos', [P_micro_hexapod; 0; 0; 0], 'Rz_type', 'rotating', 'Rz_period', 1));
|
||||
initializeReferences('Dh_pos', [P_micro_hexapod; 0; 0; 0], 'Rz_type', 'rotating', 'Rz_period', 1);
|
||||
#+end_src
|
||||
|
||||
We initialize the stages.
|
||||
#+begin_src matlab
|
||||
initializeMicroHexapod(struct('AP', P_micro_hexapod));
|
||||
initializeMicroHexapod('AP', P_micro_hexapod);
|
||||
#+end_src
|
||||
|
||||
And we initialize the disturbances to zero.
|
||||
#+begin_src matlab
|
||||
opts = struct(...
|
||||
initDisturbances(...
|
||||
'Dwx', false, ... % Ground Motion - X direction
|
||||
'Dwy', false, ... % Ground Motion - Y direction
|
||||
'Dwz', false, ... % Ground Motion - Z direction
|
||||
'Fty_x', false, ... % Translation Stage - X direction
|
||||
'Fty_z', false, ... % Translation Stage - Z direction
|
||||
'Frz_z', false ... % Spindle - Z direction
|
||||
);
|
||||
initDisturbances(opts);
|
||||
);
|
||||
#+end_src
|
||||
|
||||
We simulate the model.
|
||||
@ -456,7 +453,7 @@ And we save the obtained data.
|
||||
** Simulation Setup
|
||||
We set the reference path.
|
||||
#+begin_src matlab
|
||||
initializeReferences(struct('Dy_type', 'triangular', 'Dy_amplitude', 10e-3, 'Dy_period', 1));
|
||||
initializeReferences('Dy_type', 'triangular', 'Dy_amplitude', 10e-3, 'Dy_period', 1);
|
||||
#+end_src
|
||||
|
||||
We initialize the stages.
|
||||
@ -469,21 +466,20 @@ We initialize the stages.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 1));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 1);
|
||||
#+end_src
|
||||
|
||||
And we initialize the disturbances to zero.
|
||||
#+begin_src matlab
|
||||
opts = struct(...
|
||||
initDisturbances(...
|
||||
'Dwx', false, ... % Ground Motion - X direction
|
||||
'Dwy', false, ... % Ground Motion - Y direction
|
||||
'Dwz', false, ... % Ground Motion - Z direction
|
||||
'Fty_x', false, ... % Translation Stage - X direction
|
||||
'Fty_z', false, ... % Translation Stage - Z direction
|
||||
'Frz_z', false ... % Spindle - Z direction
|
||||
);
|
||||
initDisturbances(opts);
|
||||
);
|
||||
#+end_src
|
||||
|
||||
We simulate the model.
|
||||
|
@ -88,8 +88,8 @@ We initialize all the stages.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
** Compute the transfer functions
|
||||
@ -173,8 +173,8 @@ We initialize all the stages.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
** Identification
|
||||
@ -297,8 +297,8 @@ We initialize all the stages.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
** Estimate the position of the CoM of each solid and compare with the one took for the Measurement Analysis
|
||||
|
@ -177,7 +177,7 @@ We define the wanted position/orientation of the Hexapod under study.
|
||||
ARB = Rz*Ry*Rx;
|
||||
AP = [0.01; 0.02; 0.03]; % [m]
|
||||
|
||||
hexapod = initializeMicroHexapod(struct('AP', AP, 'ARB', ARB));
|
||||
hexapod = initializeMicroHexapod('AP', AP, 'ARB', ARB);
|
||||
#+end_src
|
||||
|
||||
We run the simulation.
|
||||
@ -203,6 +203,7 @@ And we verify that we indeed succeed to go to the wanted position.
|
||||
| -1.2659e-10 | 6.5603e-11 | 6.2183e-10 |
|
||||
| 1.0354e-10 | -5.2439e-11 | -5.2425e-10 |
|
||||
| -5.9816e-10 | 5.532e-10 | -1.7737e-10 |
|
||||
|
||||
* TODO Tests on the transformation from reference to wanted position :noexport:
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :eval no
|
||||
|
@ -102,13 +102,13 @@ We initialize all the stages.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
We setup the reference path to be constant.
|
||||
#+begin_src matlab
|
||||
opts = struct( ...
|
||||
initializeReferences(...
|
||||
'Ts', 1e-3, ... % Sampling Frequency [s]
|
||||
'Dy_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
|
||||
'Dy_amplitude', 5e-3, ... % Amplitude of the displacement [m]
|
||||
@ -125,10 +125,7 @@ We setup the reference path to be constant.
|
||||
'Rm_pos', [0, pi]', ... % Initial position of the two masses
|
||||
'Dn_type', 'constant', ... % For now, only constant is implemented
|
||||
'Dn_pos', [1e-3; 2e-3; 3e-3; 1*pi/180; 0; 1*pi/180] ... % Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
);
|
||||
|
||||
|
||||
initializeReferences(opts);
|
||||
);
|
||||
#+end_src
|
||||
|
||||
No position error for now (perfect positioning).
|
||||
@ -253,13 +250,13 @@ We initialize all the stages.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
We setup the reference path to be constant.
|
||||
#+begin_src matlab
|
||||
opts = struct( ...
|
||||
initializeReferences(...
|
||||
'Ts', 1e-3, ... % Sampling Frequency [s]
|
||||
'Dy_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
|
||||
'Dy_amplitude', 0, ... % Amplitude of the displacement [m]
|
||||
@ -273,9 +270,7 @@ We setup the reference path to be constant.
|
||||
'Rm_pos', [0, pi]', ... % Initial position of the two masses
|
||||
'Dn_type', 'constant', ... % For now, only constant is implemented
|
||||
'Dn_pos', [0; 0; 0; 0; 0; 0] ... % Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
);
|
||||
|
||||
initializeReferences(opts);
|
||||
);
|
||||
#+end_src
|
||||
|
||||
Now we introduce some positioning error.
|
||||
@ -383,8 +378,21 @@ Verify that the pose error corresponds to the positioning error of the stages.
|
||||
** Verify that be imposing the error motion on the nano-hexapod, we indeed have zero error at the end
|
||||
We now keep the wanted pose but we impose a displacement of the nano hexapod corresponding to the measured position error.
|
||||
#+begin_src matlab
|
||||
opts.Dn_pos = [Edx, Edy, Edz, Erx, Ery, Erz]';
|
||||
initializeReferences(opts);
|
||||
initializeReferences(...
|
||||
'Ts', 1e-3, ... % Sampling Frequency [s]
|
||||
'Dy_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
|
||||
'Dy_amplitude', 0, ... % Amplitude of the displacement [m]
|
||||
'Ry_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
|
||||
'Ry_amplitude', 0, ... % Amplitude [rad]
|
||||
'Rz_type', 'constant', ... % Either "constant" / "rotating"
|
||||
'Rz_amplitude', 0*pi/180, ... % Initial angle [rad]
|
||||
'Dh_type', 'constant', ... % For now, only constant is implemented
|
||||
'Dh_pos', [0; 0; 0; 0; 0; 0], ... % Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
'Rm_type', 'constant', ... % For now, only constant is implemented
|
||||
'Rm_pos', [0, pi]', ... % Initial position of the two masses
|
||||
'Dn_type', 'constant', ... % For now, only constant is implemented
|
||||
'Dn_pos', [Edx, Edy, Edz, Erx, Ery, Erz]' ... % Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
);
|
||||
#+end_src
|
||||
|
||||
And we run the simulation.
|
||||
|
@ -53,60 +53,81 @@
|
||||
|
||||
This Matlab function is accessible [[file:../src/initializeInputs.m][here]].
|
||||
|
||||
*** Function Declaration and Documentation
|
||||
#+begin_src matlab
|
||||
function [ref] = initializeReferences(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct( ...
|
||||
'Ts', 1e-3, ... % Sampling Frequency [s]
|
||||
'Tmax', 100, ... % Maximum simulation time [s]
|
||||
'Dy_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
|
||||
'Dy_amplitude', 0, ... % Amplitude of the displacement [m]
|
||||
'Dy_period', 1, ... % Period of the displacement [s]
|
||||
'Ry_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
|
||||
'Ry_amplitude', 0, ... % Amplitude [rad]
|
||||
'Ry_period', 1, ... % Period of the displacement [s]
|
||||
'Rz_type', 'constant', ... % Either "constant" / "rotating"
|
||||
'Rz_amplitude', 0, ... % Initial angle [rad]
|
||||
'Rz_period', 1, ... % Period of the rotating [s]
|
||||
'Dh_type', 'constant', ... % For now, only constant is implemented
|
||||
'Dh_pos', zeros(6, 1), ... % Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
|
||||
'Rm_type', 'constant', ... % For now, only constant is implemented
|
||||
'Rm_pos', [0; pi], ... % Initial position of the two masses
|
||||
'Dn_type', 'constant', ... % For now, only constant is implemented
|
||||
'Dn_pos', zeros(6,1) ... % Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
);
|
||||
function [ref] = initializeReferences(args)
|
||||
#+end_src
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
end
|
||||
*** Optional Parameters
|
||||
#+begin_src matlab
|
||||
arguments
|
||||
% Sampling Frequency [s]
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
|
||||
% Maximum simulation time [s]
|
||||
args.Tmax (1,1) double {mustBeNumeric, mustBePositive} = 100
|
||||
% Either "constant" / "triangular" / "sinusoidal"
|
||||
args.Dy_type char {mustBeMember(args.Dy_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
||||
% Amplitude of the displacement [m]
|
||||
args.Dy_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the displacement [s]
|
||||
args.Dy_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% Either "constant" / "triangular" / "sinusoidal"
|
||||
args.Ry_type char {mustBeMember(args.Ry_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
||||
% Amplitude [rad]
|
||||
args.Ry_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the displacement [s]
|
||||
args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% Either "constant" / "rotating"
|
||||
args.Rz_type char {mustBeMember(args.Rz_type,{'constant', 'rotating'})} = 'constant'
|
||||
% Initial angle [rad]
|
||||
args.Rz_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the rotating [s]
|
||||
args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% For now, only constant is implemented
|
||||
args.Dh_type char {mustBeMember(args.Dh_type,{'constant'})} = 'constant'
|
||||
% Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
|
||||
args.Dh_pos (6,1) double {mustBeNumeric} = zeros(6, 1), ...
|
||||
% For now, only constant is implemented
|
||||
args.Rm_type char {mustBeMember(args.Rm_type,{'constant'})} = 'constant'
|
||||
% Initial position of the two masses
|
||||
args.Rm_pos (2,1) double {mustBeNumeric} = [0; pi]
|
||||
% For now, only constant is implemented
|
||||
args.Dn_type char {mustBeMember(args.Dn_type,{'constant'})} = 'constant'
|
||||
% Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
args.Dn_pos (6,1) double {mustBeNumeric} = zeros(6,1)
|
||||
end
|
||||
#+end_src
|
||||
|
||||
|
||||
*** Initialize Parameters
|
||||
#+begin_src matlab
|
||||
%% Set Sampling Time
|
||||
Ts = opts.Ts;
|
||||
Tmax = opts.Tmax;
|
||||
Ts = args.Ts;
|
||||
Tmax = args.Tmax;
|
||||
|
||||
%% Low Pass Filter to filter out the references
|
||||
s = zpk('s');
|
||||
w0 = 2*pi*100;
|
||||
xi = 1;
|
||||
H_lpf = 1/(1 + 2*xi/w0*s + s^2/w0^2);
|
||||
#+end_src
|
||||
|
||||
*** Translation Stage
|
||||
#+begin_src matlab
|
||||
%% Translation stage - Dy
|
||||
t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Dy = zeros(length(t), 1);
|
||||
Dyd = zeros(length(t), 1);
|
||||
Dydd = zeros(length(t), 1);
|
||||
switch opts.Dy_type
|
||||
switch args.Dy_type
|
||||
case 'constant'
|
||||
Dy(:) = opts.Dy_amplitude;
|
||||
Dy(:) = args.Dy_amplitude;
|
||||
Dyd(:) = 0;
|
||||
Dydd(:) = 0;
|
||||
case 'triangular'
|
||||
% This is done to unsure that we start with no displacement
|
||||
Dy_raw = opts.Dy_amplitude*sawtooth(2*pi*t/opts.Dy_period,1/2);
|
||||
i0 = find(t>=opts.Dy_period/4,1);
|
||||
Dy_raw = args.Dy_amplitude*sawtooth(2*pi*t/args.Dy_period,1/2);
|
||||
i0 = find(t>=args.Dy_period/4,1);
|
||||
Dy(1:end-i0+1) = Dy_raw(i0:end);
|
||||
Dy(end-i0+2:end) = Dy_raw(end); % we fix the last value
|
||||
|
||||
@ -115,29 +136,32 @@ This Matlab function is accessible [[file:../src/initializeInputs.m][here]].
|
||||
Dyd = lsim(H_lpf*s, Dy, t);
|
||||
Dydd = lsim(H_lpf*s^2, Dy, t);
|
||||
case 'sinusoidal'
|
||||
Dy(:) = opts.Dy_amplitude*sin(2*pi/opts.Dy_period*t);
|
||||
Dyd = opts.Dy_amplitude*2*pi/opts.Dy_period*cos(2*pi/opts.Dy_period*t);
|
||||
Dydd = -opts.Dy_amplitude*(2*pi/opts.Dy_period)^2*sin(2*pi/opts.Dy_period*t);
|
||||
Dy(:) = args.Dy_amplitude*sin(2*pi/args.Dy_period*t);
|
||||
Dyd = args.Dy_amplitude*2*pi/args.Dy_period*cos(2*pi/args.Dy_period*t);
|
||||
Dydd = -args.Dy_amplitude*(2*pi/args.Dy_period)^2*sin(2*pi/args.Dy_period*t);
|
||||
otherwise
|
||||
warning('Dy_type is not set correctly');
|
||||
end
|
||||
|
||||
Dy = struct('time', t, 'signals', struct('values', Dy), 'deriv', Dyd, 'dderiv', Dydd);
|
||||
#+end_src
|
||||
|
||||
*** Tilt Stage
|
||||
#+begin_src matlab
|
||||
%% Tilt Stage - Ry
|
||||
t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Ry = zeros(length(t), 1);
|
||||
Ryd = zeros(length(t), 1);
|
||||
Rydd = zeros(length(t), 1);
|
||||
|
||||
switch opts.Ry_type
|
||||
switch args.Ry_type
|
||||
case 'constant'
|
||||
Ry(:) = opts.Ry_amplitude;
|
||||
Ry(:) = args.Ry_amplitude;
|
||||
Ryd(:) = 0;
|
||||
Rydd(:) = 0;
|
||||
case 'triangular'
|
||||
Ry_raw = opts.Ry_amplitude*sawtooth(2*pi*t/opts.Ry_period,1/2);
|
||||
i0 = find(t>=opts.Ry_period/4,1);
|
||||
Ry_raw = args.Ry_amplitude*sawtooth(2*pi*t/args.Ry_period,1/2);
|
||||
i0 = find(t>=args.Ry_period/4,1);
|
||||
Ry(1:end-i0+1) = Ry_raw(i0:end);
|
||||
Ry(end-i0+2:end) = Ry_raw(end); % we fix the last value
|
||||
|
||||
@ -146,29 +170,32 @@ This Matlab function is accessible [[file:../src/initializeInputs.m][here]].
|
||||
Ryd = lsim(H_lpf*s, Ry, t);
|
||||
Rydd = lsim(H_lpf*s^2, Ry, t);
|
||||
case 'sinusoidal'
|
||||
Ry(:) = opts.Ry_amplitude*sin(2*pi/opts.Ry_period*t);
|
||||
Ry(:) = args.Ry_amplitude*sin(2*pi/args.Ry_period*t);
|
||||
|
||||
Ryd = opts.Ry_amplitude*2*pi/opts.Ry_period*cos(2*pi/opts.Ry_period*t);
|
||||
Rydd = -opts.Ry_amplitude*(2*pi/opts.Ry_period)^2*sin(2*pi/opts.Ry_period*t);
|
||||
Ryd = args.Ry_amplitude*2*pi/args.Ry_period*cos(2*pi/args.Ry_period*t);
|
||||
Rydd = -args.Ry_amplitude*(2*pi/args.Ry_period)^2*sin(2*pi/args.Ry_period*t);
|
||||
otherwise
|
||||
warning('Ry_type is not set correctly');
|
||||
end
|
||||
|
||||
Ry = struct('time', t, 'signals', struct('values', Ry), 'deriv', Ryd, 'dderiv', Rydd);
|
||||
#+end_src
|
||||
|
||||
*** Spindle
|
||||
#+begin_src matlab
|
||||
%% Spindle - Rz
|
||||
t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Rz = zeros(length(t), 1);
|
||||
Rzd = zeros(length(t), 1);
|
||||
Rzdd = zeros(length(t), 1);
|
||||
|
||||
switch opts.Rz_type
|
||||
switch args.Rz_type
|
||||
case 'constant'
|
||||
Rz(:) = opts.Rz_amplitude;
|
||||
Rz(:) = args.Rz_amplitude;
|
||||
Rzd(:) = 0;
|
||||
Rzdd(:) = 0;
|
||||
case 'rotating'
|
||||
Rz(:) = opts.Rz_amplitude+2*pi/opts.Rz_period*t;
|
||||
Rz(:) = args.Rz_amplitude+2*pi/args.Rz_period*t;
|
||||
|
||||
% The signal is filtered out
|
||||
Rz = lsim(H_lpf, Rz, t);
|
||||
@ -179,29 +206,32 @@ This Matlab function is accessible [[file:../src/initializeInputs.m][here]].
|
||||
end
|
||||
|
||||
Rz = struct('time', t, 'signals', struct('values', Rz), 'deriv', Rzd, 'dderiv', Rzdd);
|
||||
#+end_src
|
||||
|
||||
*** Micro Hexapod
|
||||
#+begin_src matlab
|
||||
%% Micro-Hexapod
|
||||
t = [0, Ts];
|
||||
Dh = zeros(length(t), 6);
|
||||
Dhl = zeros(length(t), 6);
|
||||
|
||||
switch opts.Dh_type
|
||||
switch args.Dh_type
|
||||
case 'constant'
|
||||
Dh = [opts.Dh_pos, opts.Dh_pos];
|
||||
Dh = [args.Dh_pos, args.Dh_pos];
|
||||
|
||||
load('./mat/stages.mat', 'micro_hexapod');
|
||||
load('mat/stages.mat', 'micro_hexapod');
|
||||
|
||||
AP = [opts.Dh_pos(1) ; opts.Dh_pos(2) ; opts.Dh_pos(3)];
|
||||
AP = [args.Dh_pos(1) ; args.Dh_pos(2) ; args.Dh_pos(3)];
|
||||
|
||||
tx = opts.Dh_pos(4);
|
||||
ty = opts.Dh_pos(5);
|
||||
tz = opts.Dh_pos(6);
|
||||
tx = args.Dh_pos(4);
|
||||
ty = args.Dh_pos(5);
|
||||
tz = args.Dh_pos(6);
|
||||
|
||||
ARB = [cos(tz) -sin(tz) 0;
|
||||
sin(tz) cos(tz) 0;
|
||||
0 0 1]*...
|
||||
[ cos(ty) 0 sin(ty);
|
||||
0 1 0;
|
||||
0 1 0;
|
||||
-sin(ty) 0 cos(ty)]*...
|
||||
[1 0 0;
|
||||
0 cos(tx) -sin(tx);
|
||||
@ -215,28 +245,37 @@ This Matlab function is accessible [[file:../src/initializeInputs.m][here]].
|
||||
|
||||
Dh = struct('time', t, 'signals', struct('values', Dh));
|
||||
Dhl = struct('time', t, 'signals', struct('values', Dhl));
|
||||
#+end_src
|
||||
|
||||
*** Axis Compensation
|
||||
#+begin_src matlab
|
||||
%% Axis Compensation - Rm
|
||||
t = [0, Ts];
|
||||
|
||||
Rm = [opts.Rm_pos, opts.Rm_pos];
|
||||
Rm = [args.Rm_pos, args.Rm_pos];
|
||||
Rm = struct('time', t, 'signals', struct('values', Rm));
|
||||
#+end_src
|
||||
|
||||
*** Nano Hexapod
|
||||
#+begin_src matlab
|
||||
%% Nano-Hexapod
|
||||
t = [0, Ts];
|
||||
Dn = zeros(length(t), 6);
|
||||
|
||||
switch opts.Dn_type
|
||||
switch args.Dn_type
|
||||
case 'constant'
|
||||
Dn = [opts.Dn_pos, opts.Dn_pos];
|
||||
Dn = [args.Dn_pos, args.Dn_pos];
|
||||
otherwise
|
||||
warning('Dn_type is not set correctly');
|
||||
end
|
||||
|
||||
Dn = struct('time', t, 'signals', struct('values', Dn));
|
||||
#+end_src
|
||||
|
||||
*** Save
|
||||
#+begin_src matlab
|
||||
%% Save
|
||||
save('./mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'Rm', 'Dn', 'Ts');
|
||||
save('mat/nass_references.mat', 'Dy', 'Ry', 'Rz', 'Dh', 'Dhl', 'Rm', 'Dn', 'Ts');
|
||||
end
|
||||
#+end_src
|
||||
|
||||
@ -252,36 +291,35 @@ This Matlab function is accessible [[file:src/initDisturbances.m][here]].
|
||||
|
||||
*** Function Declaration and Documentation
|
||||
#+begin_src matlab
|
||||
function [] = initDisturbances(opts_param)
|
||||
function [] = initDisturbances(args)
|
||||
% initDisturbances - Initialize the disturbances
|
||||
%
|
||||
% Syntax: [] = initDisturbances(opts_param)
|
||||
% Syntax: [] = initDisturbances(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - opts_param -
|
||||
% - args -
|
||||
|
||||
#+end_src
|
||||
|
||||
*** Default values for the Options
|
||||
*** Optional Parameters
|
||||
#+begin_src matlab
|
||||
%% Default values for opts
|
||||
opts = struct(...
|
||||
'Dwx', true, ... % Ground Motion - X direction
|
||||
'Dwy', true, ... % Ground Motion - Y direction
|
||||
'Dwz', true, ... % Ground Motion - Z direction
|
||||
'Fty_x', true, ... % Translation Stage - X direction
|
||||
'Fty_z', true, ... % Translation Stage - Z direction
|
||||
'Frz_z', true ... % Spindle - Z direction
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
arguments
|
||||
% Ground Motion - X direction
|
||||
args.Dwx logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - Y direction
|
||||
args.Dwy logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - Z direction
|
||||
args.Dwz logical {mustBeNumericOrLogical} = true
|
||||
% Translation Stage - X direction
|
||||
args.Fty_x logical {mustBeNumericOrLogical} = true
|
||||
% Translation Stage - Z direction
|
||||
args.Fty_z logical {mustBeNumericOrLogical} = true
|
||||
% Spindle - Z direction
|
||||
args.Frz_z logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
#+end_src
|
||||
|
||||
|
||||
*** Load Data
|
||||
#+begin_src matlab
|
||||
load('./disturbances/mat/dist_psd.mat', 'dist_f');
|
||||
@ -317,7 +355,7 @@ We define some parameters that will be used in the algorithm.
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
if opts.Dwx
|
||||
if args.Dwx
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
@ -328,7 +366,7 @@ We define some parameters that will be used in the algorithm.
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
if opts.Dwy
|
||||
if args.Dwy
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
@ -339,7 +377,7 @@ We define some parameters that will be used in the algorithm.
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
if opts.Dwy
|
||||
if args.Dwy
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
@ -351,7 +389,7 @@ We define some parameters that will be used in the algorithm.
|
||||
|
||||
*** Translation Stage - X direction
|
||||
#+begin_src matlab
|
||||
if opts.Fty_x
|
||||
if args.Fty_x
|
||||
phi = dist_f.psd_ty; % TODO - we take here the vertical direction which is wrong but approximate
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
@ -369,7 +407,7 @@ We define some parameters that will be used in the algorithm.
|
||||
|
||||
*** Translation Stage - Z direction
|
||||
#+begin_src matlab
|
||||
if opts.Fty_z
|
||||
if args.Fty_z
|
||||
phi = dist_f.psd_ty;
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
@ -387,7 +425,7 @@ We define some parameters that will be used in the algorithm.
|
||||
|
||||
*** Spindle - Z direction
|
||||
#+begin_src matlab
|
||||
if opts.Frz_z
|
||||
if args.Frz_z
|
||||
phi = dist_f.psd_rz;
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
@ -421,7 +459,7 @@ We define some parameters that will be used in the algorithm.
|
||||
|
||||
*** Save
|
||||
#+begin_src matlab
|
||||
save('./mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't');
|
||||
save('mat/nass_disturbances.mat', 'Dwx', 'Dwy', 'Dwz', 'Fty_x', 'Fty_z', 'Frz_z', 'Fd', 'Ts', 't');
|
||||
#+end_src
|
||||
|
||||
* Initialize Elements
|
||||
@ -462,15 +500,9 @@ end
|
||||
This Matlab function is accessible [[file:../src/initializeGranite.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [granite] = initializeGranite(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct('rigid', false);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [granite] = initializeGranite(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
%%
|
||||
@ -486,7 +518,7 @@ This Matlab function is accessible [[file:../src/initializeGranite.m][here]].
|
||||
granite.mass_top = 4000; % [kg] TODO
|
||||
|
||||
%% Dynamical Properties
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
granite.k.x = 1e12; % [N/m]
|
||||
granite.k.y = 1e12; % [N/m]
|
||||
granite.k.z = 1e12; % [N/m]
|
||||
@ -527,15 +559,9 @@ This Matlab function is accessible [[file:../src/initializeGranite.m][here]].
|
||||
This Matlab function is accessible [[file:../src/initializeTy.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [ty] = initializeTy(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct('rigid', false);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [ty] = initializeTy(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
%%
|
||||
@ -582,7 +608,7 @@ This Matlab function is accessible [[file:../src/initializeTy.m][here]].
|
||||
ty.m = 1000; % TODO [kg]
|
||||
|
||||
%% Y-Translation - Dynamicals Properties
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
ty.k.ax = 1e12; % Axial Stiffness for each of the 4 guidance (y) [N/m]
|
||||
ty.k.rad = 1e12; % Radial Stiffness for each of the 4 guidance (x-z) [N/m]
|
||||
else
|
||||
@ -608,15 +634,9 @@ This Matlab function is accessible [[file:../src/initializeTy.m][here]].
|
||||
This Matlab function is accessible [[file:../src/initializeRy.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [ry] = initializeRy(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct('rigid', false);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [ry] = initializeRy(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
%%
|
||||
@ -643,7 +663,7 @@ This Matlab function is accessible [[file:../src/initializeRy.m][here]].
|
||||
ry.m = 800; % TODO [kg]
|
||||
|
||||
%% Tilt Stage - Dynamical Properties
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
ry.k.tilt = 1e10; % Rotation stiffness around y [N*m/deg]
|
||||
ry.k.h = 1e12; % Stiffness in the direction of the guidance [N/m]
|
||||
ry.k.rad = 1e12; % Stiffness in the top direction [N/m]
|
||||
@ -678,15 +698,9 @@ This Matlab function is accessible [[file:../src/initializeRy.m][here]].
|
||||
This Matlab function is accessible [[file:../src/initializeRz.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [rz] = initializeRz(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct('rigid', false);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [rz] = initializeRz(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
%%
|
||||
@ -711,7 +725,7 @@ This Matlab function is accessible [[file:../src/initializeRz.m][here]].
|
||||
|
||||
%% Spindle - Dynamical Properties
|
||||
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
rz.k.rot = 1e10; % Rotational Stiffness (Rz) [N*m/deg]
|
||||
rz.k.tilt = 1e10; % Rotational Stiffness (Rx, Ry) [N*m/deg]
|
||||
rz.k.ax = 1e12; % Axial Stiffness (Z) [N/m]
|
||||
@ -744,19 +758,11 @@ This Matlab function is accessible [[file:../src/initializeRz.m][here]].
|
||||
This Matlab function is accessible [[file:../src/initializeMicroHexapod.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [micro_hexapod] = initializeMicroHexapod(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct(...
|
||||
'rigid', false, ...
|
||||
'AP', zeros(3, 1), ... % Wanted position in [m] of OB with respect to frame {A}
|
||||
'ARB', eye(3) ... % Rotation Matrix that represent the wanted orientation of frame {B} with respect to frame {A}
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [micro_hexapod] = initializeMicroHexapod(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
%% Stewart Object
|
||||
@ -792,7 +798,7 @@ This Matlab function is accessible [[file:../src/initializeMicroHexapod.m][here]
|
||||
Leg = struct();
|
||||
|
||||
Leg.stroke = 10e-3; % Maximum Stroke of each leg [m]
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
Leg.k.ax = 1e12; % Stiffness of each leg [N/m]
|
||||
else
|
||||
Leg.k.ax = 2e7; % Stiffness of each leg [N/m]
|
||||
@ -844,7 +850,7 @@ This Matlab function is accessible [[file:../src/initializeMicroHexapod.m][here]
|
||||
micro_hexapod = initializeParameters(micro_hexapod);
|
||||
|
||||
%% Setup equilibrium position of each leg
|
||||
micro_hexapod.L0 = inverseKinematicsHexapod(micro_hexapod, opts.AP, opts.ARB);
|
||||
micro_hexapod.L0 = inverseKinematicsHexapod(micro_hexapod, args.AP, args.ARB);
|
||||
|
||||
%% Save
|
||||
save('./mat/stages.mat', 'micro_hexapod', '-append');
|
||||
@ -1003,18 +1009,10 @@ This Matlab function is accessible [[file:../src/initializeAxisc.m][here]].
|
||||
This Matlab function is accessible [[file:../src/initializeMirror.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [] = initializeMirror(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct(...
|
||||
'shape', 'spherical', ... % spherical or conical
|
||||
'angle', 45 ...
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [] = initializeMirror(args)
|
||||
arguments
|
||||
args.shape char {mustBeMember(args.shape,{'spherical', 'conical'})} = 'spherical'
|
||||
args.angle (1,1) double {mustBeNumeric, mustBePositive} = 45
|
||||
end
|
||||
|
||||
%%
|
||||
@ -1029,7 +1027,7 @@ This Matlab function is accessible [[file:../src/initializeMirror.m][here]].
|
||||
mirror.density = 2400; % Density of the mirror [kg/m3]
|
||||
mirror.color = [0.4 1.0 1.0]; % Color of the mirror
|
||||
|
||||
mirror.cone_length = mirror.rad*tand(opts.angle)+mirror.h+mirror.jacobian; % Distance from Apex point of the cone to jacobian point
|
||||
mirror.cone_length = mirror.rad*tand(args.angle)+mirror.h+mirror.jacobian; % Distance from Apex point of the cone to jacobian point
|
||||
|
||||
%% Shape
|
||||
mirror.shape = [...
|
||||
@ -1039,14 +1037,14 @@ This Matlab function is accessible [[file:../src/initializeMirror.m][here]].
|
||||
mirror.rad 0 ...
|
||||
];
|
||||
|
||||
if strcmp(opts.shape, 'spherical')
|
||||
if strcmp(args.shape, 'spherical')
|
||||
mirror.sphere_radius = sqrt((mirror.jacobian+mirror.h)^2+mirror.rad^2); % Radius of the sphere [mm]
|
||||
|
||||
for z = linspace(0, mirror.h, 101)
|
||||
mirror.shape = [mirror.shape; sqrt(mirror.sphere_radius^2-(z-mirror.jacobian-mirror.h)^2) z];
|
||||
end
|
||||
elseif strcmp(opts.shape, 'conical')
|
||||
mirror.shape = [mirror.shape; mirror.rad+mirror.h/tand(opts.angle) mirror.h];
|
||||
elseif strcmp(args.shape, 'conical')
|
||||
mirror.shape = [mirror.shape; mirror.rad+mirror.h/tand(args.angle) mirror.h];
|
||||
else
|
||||
error('Shape should be either conical or spherical');
|
||||
end
|
||||
@ -1068,22 +1066,17 @@ This Matlab function is accessible [[file:../src/initializeMirror.m][here]].
|
||||
This Matlab function is accessible [[file:../src/initializeNanoHexapod.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [nano_hexapod] = initializeNanoHexapod(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct('actuator', 'piezo');
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [nano_hexapod] = initializeNanoHexapod(args)
|
||||
arguments
|
||||
args.actuator char {mustBeMember(args.actuator,{'piezo', 'lorentz'})} = 'piezo'
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
%% Stewart Object
|
||||
nano_hexapod = struct();
|
||||
nano_hexapod.h = 90; % Total height of the platform [mm]
|
||||
nano_hexapod.jacobian = 175; % Point where the Jacobian is computed => Center of rotation [mm]
|
||||
% nano_hexapod.jacobian = 174.26; % Point where the Jacobian is computed => Center of rotation [mm]
|
||||
|
||||
%% Bottom Plate
|
||||
BP = struct();
|
||||
@ -1113,12 +1106,12 @@ This Matlab function is accessible [[file:../src/initializeNanoHexapod.m][here]]
|
||||
Leg = struct();
|
||||
|
||||
Leg.stroke = 80e-6; % Maximum Stroke of each leg [m]
|
||||
if strcmp(opts.actuator, 'piezo')
|
||||
if strcmp(args.actuator, 'piezo')
|
||||
Leg.k.ax = 1e7; % Stiffness of each leg [N/m]
|
||||
elseif strcmp(opts.actuator, 'lorentz')
|
||||
elseif strcmp(args.actuator, 'lorentz')
|
||||
Leg.k.ax = 1e4; % Stiffness of each leg [N/m]
|
||||
else
|
||||
error('opts.actuator should be piezo or lorentz');
|
||||
error('args.actuator should be piezo or lorentz');
|
||||
end
|
||||
Leg.ksi.ax = 10; % Maximum amplification at resonance []
|
||||
Leg.rad.bottom = 12; % Radius of the cylinder of the bottom part [mm]
|
||||
@ -1167,6 +1160,9 @@ This Matlab function is accessible [[file:../src/initializeNanoHexapod.m][here]]
|
||||
%%
|
||||
nano_hexapod = initializeParameters(nano_hexapod);
|
||||
|
||||
%% Setup equilibrium position of each leg
|
||||
nano_hexapod.L0 = inverseKinematicsHexapod(nano_hexapod, args.AP, args.ARB);
|
||||
|
||||
%% Save
|
||||
save('./mat/stages.mat', 'nano_hexapod', '-append');
|
||||
|
||||
@ -1284,17 +1280,7 @@ This Matlab function is accessible [[file:../src/initializeNanoHexapod.m][here]]
|
||||
This Matlab function is accessible [[file:../src/initializeCedratPiezo.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [cedrat] = initializeCedratPiezo(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct();
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
end
|
||||
|
||||
function [cedrat] = initializeCedratPiezo()
|
||||
%% Stewart Object
|
||||
cedrat = struct();
|
||||
cedrat.k = 10e7; % Linear Stiffness of each "blade" [N/m]
|
||||
@ -1323,20 +1309,13 @@ This Matlab function is accessible [[file:../src/initializeCedratPiezo.m][here]]
|
||||
This Matlab function is accessible [[file:../src/initializeSample.m][here]].
|
||||
|
||||
#+begin_src matlab
|
||||
function [sample] = initializeSample(opts_param)
|
||||
%% Default values for opts
|
||||
sample = struct('radius', 100, ...
|
||||
'height', 300, ...
|
||||
'mass', 50, ...
|
||||
'offset', 0, ...
|
||||
'color', [0.45, 0.45, 0.45] ...
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
sample.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [sample] = initializeSample(sample)
|
||||
arguments
|
||||
sample.radius (1,1) double {mustBeNumeric, mustBePositive} = 100
|
||||
sample.height (1,1) double {mustBeNumeric, mustBePositive} = 300
|
||||
sample.mass (1,1) double {mustBeNumeric, mustBePositive} = 50
|
||||
sample.offset (1,1) double {mustBeNumeric} = 0
|
||||
sample.color (1,3) double {mustBeNumeric} = [0.45, 0.45, 0.45]
|
||||
end
|
||||
|
||||
%%
|
||||
|
@ -1,26 +1,24 @@
|
||||
function [] = initDisturbances(opts_param)
|
||||
function [] = initDisturbances(args)
|
||||
% initDisturbances - Initialize the disturbances
|
||||
%
|
||||
% Syntax: [] = initDisturbances(opts_param)
|
||||
% Syntax: [] = initDisturbances(args)
|
||||
%
|
||||
% Inputs:
|
||||
% - opts_param -
|
||||
% - args -
|
||||
|
||||
%% Default values for opts
|
||||
opts = struct(...
|
||||
'Dwx', true, ... % Ground Motion - X direction
|
||||
'Dwy', true, ... % Ground Motion - Y direction
|
||||
'Dwz', true, ... % Ground Motion - Z direction
|
||||
'Fty_x', true, ... % Translation Stage - X direction
|
||||
'Fty_z', true, ... % Translation Stage - Z direction
|
||||
'Frz_z', true ... % Spindle - Z direction
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
arguments
|
||||
% Ground Motion - X direction
|
||||
args.Dwx logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - Y direction
|
||||
args.Dwy logical {mustBeNumericOrLogical} = true
|
||||
% Ground Motion - Z direction
|
||||
args.Dwz logical {mustBeNumericOrLogical} = true
|
||||
% Translation Stage - X direction
|
||||
args.Fty_x logical {mustBeNumericOrLogical} = true
|
||||
% Translation Stage - Z direction
|
||||
args.Fty_z logical {mustBeNumericOrLogical} = true
|
||||
% Spindle - Z direction
|
||||
args.Frz_z logical {mustBeNumericOrLogical} = true
|
||||
end
|
||||
|
||||
load('./disturbances/mat/dist_psd.mat', 'dist_f');
|
||||
@ -44,7 +42,7 @@ for i = 1:N/2
|
||||
C(i) = sqrt(phi(i)*df);
|
||||
end
|
||||
|
||||
if opts.Dwx
|
||||
if args.Dwx
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
@ -53,7 +51,7 @@ else
|
||||
Dwx = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if opts.Dwy
|
||||
if args.Dwy
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
@ -62,7 +60,7 @@ else
|
||||
Dwy = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if opts.Dwy
|
||||
if args.Dwy
|
||||
theta = 2*pi*rand(N/2,1); % Generate random phase [rad]
|
||||
Cx = [0 ; C.*complex(cos(theta),sin(theta))];
|
||||
Cx = [Cx; flipud(conj(Cx(2:end)))];;
|
||||
@ -71,7 +69,7 @@ else
|
||||
Dwz = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if opts.Fty_x
|
||||
if args.Fty_x
|
||||
phi = dist_f.psd_ty; % TODO - we take here the vertical direction which is wrong but approximate
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
@ -86,7 +84,7 @@ else
|
||||
Fty_x = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if opts.Fty_z
|
||||
if args.Fty_z
|
||||
phi = dist_f.psd_ty;
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
@ -101,7 +99,7 @@ else
|
||||
Fty_z = zeros(length(t), 1);
|
||||
end
|
||||
|
||||
if opts.Frz_z
|
||||
if args.Frz_z
|
||||
phi = dist_f.psd_rz;
|
||||
C = zeros(N/2,1);
|
||||
for i = 1:N/2
|
||||
|
@ -1,14 +1,4 @@
|
||||
function [cedrat] = initializeCedratPiezo(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct();
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
end
|
||||
|
||||
function [cedrat] = initializeCedratPiezo()
|
||||
%% Stewart Object
|
||||
cedrat = struct();
|
||||
cedrat.k = 10e7; % Linear Stiffness of each "blade" [N/m]
|
||||
|
@ -1,12 +1,6 @@
|
||||
function [granite] = initializeGranite(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct('rigid', false);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [granite] = initializeGranite(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
%%
|
||||
@ -22,7 +16,7 @@ function [granite] = initializeGranite(opts_param)
|
||||
granite.mass_top = 4000; % [kg] TODO
|
||||
|
||||
%% Dynamical Properties
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
granite.k.x = 1e12; % [N/m]
|
||||
granite.k.y = 1e12; % [N/m]
|
||||
granite.k.z = 1e12; % [N/m]
|
||||
|
@ -1,16 +1,8 @@
|
||||
function [micro_hexapod] = initializeMicroHexapod(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct(...
|
||||
'rigid', false, ...
|
||||
'AP', zeros(3, 1), ... % Wanted position in [m] of OB with respect to frame {A}
|
||||
'ARB', eye(3) ... % Rotation Matrix that represent the wanted orientation of frame {B} with respect to frame {A}
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [micro_hexapod] = initializeMicroHexapod(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
%% Stewart Object
|
||||
@ -46,7 +38,7 @@ function [micro_hexapod] = initializeMicroHexapod(opts_param)
|
||||
Leg = struct();
|
||||
|
||||
Leg.stroke = 10e-3; % Maximum Stroke of each leg [m]
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
Leg.k.ax = 1e12; % Stiffness of each leg [N/m]
|
||||
else
|
||||
Leg.k.ax = 2e7; % Stiffness of each leg [N/m]
|
||||
@ -98,7 +90,7 @@ function [micro_hexapod] = initializeMicroHexapod(opts_param)
|
||||
micro_hexapod = initializeParameters(micro_hexapod);
|
||||
|
||||
%% Setup equilibrium position of each leg
|
||||
micro_hexapod.L0 = inverseKinematicsHexapod(micro_hexapod, opts.AP, opts.ARB);
|
||||
micro_hexapod.L0 = inverseKinematicsHexapod(micro_hexapod, args.AP, args.ARB);
|
||||
|
||||
%% Save
|
||||
save('./mat/stages.mat', 'micro_hexapod', '-append');
|
||||
|
@ -1,15 +1,7 @@
|
||||
function [] = initializeMirror(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct(...
|
||||
'shape', 'spherical', ... % spherical or conical
|
||||
'angle', 45 ...
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [] = initializeMirror(args)
|
||||
arguments
|
||||
args.shape char {mustBeMember(args.shape,{'spherical', 'conical'})} = 'spherical'
|
||||
args.angle (1,1) double {mustBeNumeric, mustBePositive} = 45
|
||||
end
|
||||
|
||||
%%
|
||||
@ -24,7 +16,7 @@ function [] = initializeMirror(opts_param)
|
||||
mirror.density = 2400; % Density of the mirror [kg/m3]
|
||||
mirror.color = [0.4 1.0 1.0]; % Color of the mirror
|
||||
|
||||
mirror.cone_length = mirror.rad*tand(opts.angle)+mirror.h+mirror.jacobian; % Distance from Apex point of the cone to jacobian point
|
||||
mirror.cone_length = mirror.rad*tand(args.angle)+mirror.h+mirror.jacobian; % Distance from Apex point of the cone to jacobian point
|
||||
|
||||
%% Shape
|
||||
mirror.shape = [...
|
||||
@ -34,14 +26,14 @@ function [] = initializeMirror(opts_param)
|
||||
mirror.rad 0 ...
|
||||
];
|
||||
|
||||
if strcmp(opts.shape, 'spherical')
|
||||
if strcmp(args.shape, 'spherical')
|
||||
mirror.sphere_radius = sqrt((mirror.jacobian+mirror.h)^2+mirror.rad^2); % Radius of the sphere [mm]
|
||||
|
||||
for z = linspace(0, mirror.h, 101)
|
||||
mirror.shape = [mirror.shape; sqrt(mirror.sphere_radius^2-(z-mirror.jacobian-mirror.h)^2) z];
|
||||
end
|
||||
elseif strcmp(opts.shape, 'conical')
|
||||
mirror.shape = [mirror.shape; mirror.rad+mirror.h/tand(opts.angle) mirror.h];
|
||||
elseif strcmp(args.shape, 'conical')
|
||||
mirror.shape = [mirror.shape; mirror.rad+mirror.h/tand(args.angle) mirror.h];
|
||||
else
|
||||
error('Shape should be either conical or spherical');
|
||||
end
|
||||
|
@ -1,16 +1,8 @@
|
||||
function [nano_hexapod] = initializeNanoHexapod(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct(...
|
||||
'actuator', 'piezo', ...
|
||||
'AP', zeros(3, 1), ... % Wanted position in [m] of OB with respect to frame {A}
|
||||
'ARB', eye(3) ... % Rotation Matrix that represent the wanted orientation of frame {B} with respect to frame {A}
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [nano_hexapod] = initializeNanoHexapod(args)
|
||||
arguments
|
||||
args.actuator char {mustBeMember(args.actuator,{'piezo', 'lorentz'})} = 'piezo'
|
||||
args.AP (3,1) double {mustBeNumeric} = zeros(3,1)
|
||||
args.ARB (3,3) double {mustBeNumeric} = eye(3)
|
||||
end
|
||||
|
||||
%% Stewart Object
|
||||
@ -46,12 +38,12 @@ function [nano_hexapod] = initializeNanoHexapod(opts_param)
|
||||
Leg = struct();
|
||||
|
||||
Leg.stroke = 80e-6; % Maximum Stroke of each leg [m]
|
||||
if strcmp(opts.actuator, 'piezo')
|
||||
if strcmp(args.actuator, 'piezo')
|
||||
Leg.k.ax = 1e7; % Stiffness of each leg [N/m]
|
||||
elseif strcmp(opts.actuator, 'lorentz')
|
||||
elseif strcmp(args.actuator, 'lorentz')
|
||||
Leg.k.ax = 1e4; % Stiffness of each leg [N/m]
|
||||
else
|
||||
error('opts.actuator should be piezo or lorentz');
|
||||
error('args.actuator should be piezo or lorentz');
|
||||
end
|
||||
Leg.ksi.ax = 10; % Maximum amplification at resonance []
|
||||
Leg.rad.bottom = 12; % Radius of the cylinder of the bottom part [mm]
|
||||
@ -101,7 +93,7 @@ function [nano_hexapod] = initializeNanoHexapod(opts_param)
|
||||
nano_hexapod = initializeParameters(nano_hexapod);
|
||||
|
||||
%% Setup equilibrium position of each leg
|
||||
nano_hexapod.L0 = inverseKinematicsHexapod(nano_hexapod, opts.AP, opts.ARB);
|
||||
nano_hexapod.L0 = inverseKinematicsHexapod(nano_hexapod, args.AP, args.ARB);
|
||||
|
||||
%% Save
|
||||
save('./mat/stages.mat', 'nano_hexapod', '-append');
|
||||
|
@ -1,36 +1,45 @@
|
||||
function [ref] = initializeReferences(opts_param)
|
||||
function [ref] = initializeReferences(args)
|
||||
|
||||
%% Default values for opts
|
||||
opts = struct( ...
|
||||
'Ts', 1e-3, ... % Sampling Frequency [s]
|
||||
'Tmax', 100, ... % Maximum simulation time [s]
|
||||
'Dy_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
|
||||
'Dy_amplitude', 0, ... % Amplitude of the displacement [m]
|
||||
'Dy_period', 1, ... % Period of the displacement [s]
|
||||
'Ry_type', 'constant', ... % Either "constant" / "triangular" / "sinusoidal"
|
||||
'Ry_amplitude', 0, ... % Amplitude [rad]
|
||||
'Ry_period', 1, ... % Period of the displacement [s]
|
||||
'Rz_type', 'constant', ... % Either "constant" / "rotating"
|
||||
'Rz_amplitude', 0, ... % Initial angle [rad]
|
||||
'Rz_period', 1, ... % Period of the rotating [s]
|
||||
'Dh_type', 'constant', ... % For now, only constant is implemented
|
||||
'Dh_pos', zeros(6, 1), ... % Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
|
||||
'Rm_type', 'constant', ... % For now, only constant is implemented
|
||||
'Rm_pos', [0; pi], ... % Initial position of the two masses
|
||||
'Dn_type', 'constant', ... % For now, only constant is implemented
|
||||
'Dn_pos', zeros(6,1) ... % Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
arguments
|
||||
% Sampling Frequency [s]
|
||||
args.Ts (1,1) double {mustBeNumeric, mustBePositive} = 1e-3
|
||||
% Maximum simulation time [s]
|
||||
args.Tmax (1,1) double {mustBeNumeric, mustBePositive} = 100
|
||||
% Either "constant" / "triangular" / "sinusoidal"
|
||||
args.Dy_type char {mustBeMember(args.Dy_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
||||
% Amplitude of the displacement [m]
|
||||
args.Dy_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the displacement [s]
|
||||
args.Dy_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% Either "constant" / "triangular" / "sinusoidal"
|
||||
args.Ry_type char {mustBeMember(args.Ry_type,{'constant', 'triangular', 'sinusoidal'})} = 'constant'
|
||||
% Amplitude [rad]
|
||||
args.Ry_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the displacement [s]
|
||||
args.Ry_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% Either "constant" / "rotating"
|
||||
args.Rz_type char {mustBeMember(args.Rz_type,{'constant', 'rotating'})} = 'constant'
|
||||
% Initial angle [rad]
|
||||
args.Rz_amplitude (1,1) double {mustBeNumeric} = 0
|
||||
% Period of the rotating [s]
|
||||
args.Rz_period (1,1) double {mustBeNumeric, mustBePositive} = 1
|
||||
% For now, only constant is implemented
|
||||
args.Dh_type char {mustBeMember(args.Dh_type,{'constant'})} = 'constant'
|
||||
% Initial position [m,m,m,rad,rad,rad] of the top platform (Pitch-Roll-Yaw Euler angles)
|
||||
args.Dh_pos (6,1) double {mustBeNumeric} = zeros(6, 1), ...
|
||||
% For now, only constant is implemented
|
||||
args.Rm_type char {mustBeMember(args.Rm_type,{'constant'})} = 'constant'
|
||||
% Initial position of the two masses
|
||||
args.Rm_pos (2,1) double {mustBeNumeric} = [0; pi]
|
||||
% For now, only constant is implemented
|
||||
args.Dn_type char {mustBeMember(args.Dn_type,{'constant'})} = 'constant'
|
||||
% Initial position [m,m,m,rad,rad,rad] of the top platform
|
||||
args.Dn_pos (6,1) double {mustBeNumeric} = zeros(6,1)
|
||||
end
|
||||
|
||||
%% Set Sampling Time
|
||||
Ts = opts.Ts;
|
||||
Tmax = opts.Tmax;
|
||||
Ts = args.Ts;
|
||||
Tmax = args.Tmax;
|
||||
|
||||
%% Low Pass Filter to filter out the references
|
||||
s = zpk('s');
|
||||
@ -43,15 +52,15 @@ t = 0:Ts:Tmax; % Time Vector [s]
|
||||
Dy = zeros(length(t), 1);
|
||||
Dyd = zeros(length(t), 1);
|
||||
Dydd = zeros(length(t), 1);
|
||||
switch opts.Dy_type
|
||||
switch args.Dy_type
|
||||
case 'constant'
|
||||
Dy(:) = opts.Dy_amplitude;
|
||||
Dy(:) = args.Dy_amplitude;
|
||||
Dyd(:) = 0;
|
||||
Dydd(:) = 0;
|
||||
case 'triangular'
|
||||
% This is done to unsure that we start with no displacement
|
||||
Dy_raw = opts.Dy_amplitude*sawtooth(2*pi*t/opts.Dy_period,1/2);
|
||||
i0 = find(t>=opts.Dy_period/4,1);
|
||||
Dy_raw = args.Dy_amplitude*sawtooth(2*pi*t/args.Dy_period,1/2);
|
||||
i0 = find(t>=args.Dy_period/4,1);
|
||||
Dy(1:end-i0+1) = Dy_raw(i0:end);
|
||||
Dy(end-i0+2:end) = Dy_raw(end); % we fix the last value
|
||||
|
||||
@ -60,9 +69,9 @@ switch opts.Dy_type
|
||||
Dyd = lsim(H_lpf*s, Dy, t);
|
||||
Dydd = lsim(H_lpf*s^2, Dy, t);
|
||||
case 'sinusoidal'
|
||||
Dy(:) = opts.Dy_amplitude*sin(2*pi/opts.Dy_period*t);
|
||||
Dyd = opts.Dy_amplitude*2*pi/opts.Dy_period*cos(2*pi/opts.Dy_period*t);
|
||||
Dydd = -opts.Dy_amplitude*(2*pi/opts.Dy_period)^2*sin(2*pi/opts.Dy_period*t);
|
||||
Dy(:) = args.Dy_amplitude*sin(2*pi/args.Dy_period*t);
|
||||
Dyd = args.Dy_amplitude*2*pi/args.Dy_period*cos(2*pi/args.Dy_period*t);
|
||||
Dydd = -args.Dy_amplitude*(2*pi/args.Dy_period)^2*sin(2*pi/args.Dy_period*t);
|
||||
otherwise
|
||||
warning('Dy_type is not set correctly');
|
||||
end
|
||||
@ -75,14 +84,14 @@ Ry = zeros(length(t), 1);
|
||||
Ryd = zeros(length(t), 1);
|
||||
Rydd = zeros(length(t), 1);
|
||||
|
||||
switch opts.Ry_type
|
||||
switch args.Ry_type
|
||||
case 'constant'
|
||||
Ry(:) = opts.Ry_amplitude;
|
||||
Ry(:) = args.Ry_amplitude;
|
||||
Ryd(:) = 0;
|
||||
Rydd(:) = 0;
|
||||
case 'triangular'
|
||||
Ry_raw = opts.Ry_amplitude*sawtooth(2*pi*t/opts.Ry_period,1/2);
|
||||
i0 = find(t>=opts.Ry_period/4,1);
|
||||
Ry_raw = args.Ry_amplitude*sawtooth(2*pi*t/args.Ry_period,1/2);
|
||||
i0 = find(t>=args.Ry_period/4,1);
|
||||
Ry(1:end-i0+1) = Ry_raw(i0:end);
|
||||
Ry(end-i0+2:end) = Ry_raw(end); % we fix the last value
|
||||
|
||||
@ -91,10 +100,10 @@ switch opts.Ry_type
|
||||
Ryd = lsim(H_lpf*s, Ry, t);
|
||||
Rydd = lsim(H_lpf*s^2, Ry, t);
|
||||
case 'sinusoidal'
|
||||
Ry(:) = opts.Ry_amplitude*sin(2*pi/opts.Ry_period*t);
|
||||
Ry(:) = args.Ry_amplitude*sin(2*pi/args.Ry_period*t);
|
||||
|
||||
Ryd = opts.Ry_amplitude*2*pi/opts.Ry_period*cos(2*pi/opts.Ry_period*t);
|
||||
Rydd = -opts.Ry_amplitude*(2*pi/opts.Ry_period)^2*sin(2*pi/opts.Ry_period*t);
|
||||
Ryd = args.Ry_amplitude*2*pi/args.Ry_period*cos(2*pi/args.Ry_period*t);
|
||||
Rydd = -args.Ry_amplitude*(2*pi/args.Ry_period)^2*sin(2*pi/args.Ry_period*t);
|
||||
otherwise
|
||||
warning('Ry_type is not set correctly');
|
||||
end
|
||||
@ -107,13 +116,13 @@ Rz = zeros(length(t), 1);
|
||||
Rzd = zeros(length(t), 1);
|
||||
Rzdd = zeros(length(t), 1);
|
||||
|
||||
switch opts.Rz_type
|
||||
switch args.Rz_type
|
||||
case 'constant'
|
||||
Rz(:) = opts.Rz_amplitude;
|
||||
Rz(:) = args.Rz_amplitude;
|
||||
Rzd(:) = 0;
|
||||
Rzdd(:) = 0;
|
||||
case 'rotating'
|
||||
Rz(:) = opts.Rz_amplitude+2*pi/opts.Rz_period*t;
|
||||
Rz(:) = args.Rz_amplitude+2*pi/args.Rz_period*t;
|
||||
|
||||
% The signal is filtered out
|
||||
Rz = lsim(H_lpf, Rz, t);
|
||||
@ -130,17 +139,17 @@ t = [0, Ts];
|
||||
Dh = zeros(length(t), 6);
|
||||
Dhl = zeros(length(t), 6);
|
||||
|
||||
switch opts.Dh_type
|
||||
switch args.Dh_type
|
||||
case 'constant'
|
||||
Dh = [opts.Dh_pos, opts.Dh_pos];
|
||||
Dh = [args.Dh_pos, args.Dh_pos];
|
||||
|
||||
load('mat/stages.mat', 'micro_hexapod');
|
||||
|
||||
AP = [opts.Dh_pos(1) ; opts.Dh_pos(2) ; opts.Dh_pos(3)];
|
||||
AP = [args.Dh_pos(1) ; args.Dh_pos(2) ; args.Dh_pos(3)];
|
||||
|
||||
tx = opts.Dh_pos(4);
|
||||
ty = opts.Dh_pos(5);
|
||||
tz = opts.Dh_pos(6);
|
||||
tx = args.Dh_pos(4);
|
||||
ty = args.Dh_pos(5);
|
||||
tz = args.Dh_pos(6);
|
||||
|
||||
ARB = [cos(tz) -sin(tz) 0;
|
||||
sin(tz) cos(tz) 0;
|
||||
@ -164,16 +173,16 @@ Dhl = struct('time', t, 'signals', struct('values', Dhl));
|
||||
%% Axis Compensation - Rm
|
||||
t = [0, Ts];
|
||||
|
||||
Rm = [opts.Rm_pos, opts.Rm_pos];
|
||||
Rm = [args.Rm_pos, args.Rm_pos];
|
||||
Rm = struct('time', t, 'signals', struct('values', Rm));
|
||||
|
||||
%% Nano-Hexapod
|
||||
t = [0, Ts];
|
||||
Dn = zeros(length(t), 6);
|
||||
|
||||
switch opts.Dn_type
|
||||
switch args.Dn_type
|
||||
case 'constant'
|
||||
Dn = [opts.Dn_pos, opts.Dn_pos];
|
||||
Dn = [args.Dn_pos, args.Dn_pos];
|
||||
otherwise
|
||||
warning('Dn_type is not set correctly');
|
||||
end
|
||||
|
@ -1,12 +1,6 @@
|
||||
function [ry] = initializeRy(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct('rigid', false);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [ry] = initializeRy(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
%%
|
||||
@ -33,7 +27,7 @@ function [ry] = initializeRy(opts_param)
|
||||
ry.m = 800; % TODO [kg]
|
||||
|
||||
%% Tilt Stage - Dynamical Properties
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
ry.k.tilt = 1e10; % Rotation stiffness around y [N*m/deg]
|
||||
ry.k.h = 1e12; % Stiffness in the direction of the guidance [N/m]
|
||||
ry.k.rad = 1e12; % Stiffness in the top direction [N/m]
|
||||
|
@ -1,12 +1,6 @@
|
||||
function [rz] = initializeRz(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct('rigid', false);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [rz] = initializeRz(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
%%
|
||||
@ -31,7 +25,7 @@ function [rz] = initializeRz(opts_param)
|
||||
|
||||
%% Spindle - Dynamical Properties
|
||||
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
rz.k.rot = 1e10; % Rotational Stiffness (Rz) [N*m/deg]
|
||||
rz.k.tilt = 1e10; % Rotational Stiffness (Rx, Ry) [N*m/deg]
|
||||
rz.k.ax = 1e12; % Axial Stiffness (Z) [N/m]
|
||||
|
@ -1,17 +1,10 @@
|
||||
function [sample] = initializeSample(opts_param)
|
||||
%% Default values for opts
|
||||
sample = struct('radius', 100, ...
|
||||
'height', 300, ...
|
||||
'mass', 50, ...
|
||||
'offset', 0, ...
|
||||
'color', [0.45, 0.45, 0.45] ...
|
||||
);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
sample.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [sample] = initializeSample(sample)
|
||||
arguments
|
||||
sample.radius (1,1) double {mustBeNumeric, mustBePositive} = 100
|
||||
sample.height (1,1) double {mustBeNumeric, mustBePositive} = 300
|
||||
sample.mass (1,1) double {mustBeNumeric, mustBePositive} = 50
|
||||
sample.offset (1,1) double {mustBeNumeric} = 0
|
||||
sample.color (1,3) double {mustBeNumeric} = [0.45, 0.45, 0.45]
|
||||
end
|
||||
|
||||
%%
|
||||
|
@ -1,12 +1,6 @@
|
||||
function [ty] = initializeTy(opts_param)
|
||||
%% Default values for opts
|
||||
opts = struct('rigid', false);
|
||||
|
||||
%% Populate opts with input parameters
|
||||
if exist('opts_param','var')
|
||||
for opt = fieldnames(opts_param)'
|
||||
opts.(opt{1}) = opts_param.(opt{1});
|
||||
end
|
||||
function [ty] = initializeTy(args)
|
||||
arguments
|
||||
args.rigid logical {mustBeNumericOrLogical} = false
|
||||
end
|
||||
|
||||
%%
|
||||
@ -53,7 +47,7 @@ function [ty] = initializeTy(opts_param)
|
||||
ty.m = 1000; % TODO [kg]
|
||||
|
||||
%% Y-Translation - Dynamicals Properties
|
||||
if opts.rigid
|
||||
if args.rigid
|
||||
ty.k.ax = 1e12; % Axial Stiffness for each of the 4 guidance (y) [N/m]
|
||||
ty.k.rad = 1e12; % Radial Stiffness for each of the 4 guidance (x-z) [N/m]
|
||||
else
|
||||
|
@ -659,8 +659,8 @@ The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
All the controllers are set to 0 (Open Loop).
|
||||
@ -1159,8 +1159,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
All the controllers are set to 0.
|
||||
@ -1586,8 +1586,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
And initialize the controllers.
|
||||
@ -2017,8 +2017,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
And initialize the controllers.
|
||||
@ -2250,9 +2250,9 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeCedratPiezo();
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
And initialize the controllers.
|
||||
@ -2386,9 +2386,9 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeCedratPiezo();
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
All the controllers are set to 0.
|
||||
@ -2847,8 +2847,8 @@ The nano-hexapod is an hexapod with voice coils and the sample has a mass of 50k
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'lorentz'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'lorentz');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
All the controllers are set to 0 (Open Loop).
|
||||
@ -3118,8 +3118,8 @@ Let's initialize the system prior to identification.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'lorentz'));
|
||||
initializeSample(struct('mass', 50));
|
||||
initializeNanoHexapod('actuator', 'lorentz');
|
||||
initializeSample('mass', 50);
|
||||
#+end_src
|
||||
|
||||
All the controllers are set to 0.
|
||||
|
Loading…
Reference in New Issue
Block a user