Remove stewart-simscape to use submodules

This commit is contained in:
Thomas Dehaeze 2018-06-04 09:28:07 +02:00
parent cdc9f9ca70
commit 9f4bf3dfaa
3 changed files with 0 additions and 173 deletions

View File

@ -1,18 +0,0 @@
function J = getJacobianMatrix(RM,M_pos_base)
J = zeros(6);
J(:, 1:3) = RM;
for i = 1:6
J(i, 4:6) = -RM(i, :)*getCrossProductMatrix(M_pos_base(i, :));
end
function M = getCrossProductMatrix(v)
M = zeros(3);
M(1, 2) = -v(3);
M(1, 3) = v(2);
M(2, 3) = -v(1);
M(2, 1) = -M(1, 2);
M(3, 1) = -M(1, 3);
M(3, 2) = -M(2, 3);
end
end

View File

@ -1,89 +0,0 @@
%% Define some constant values
deg2rad = pi/180;
x_axis = [1 0 0];
y_axis = [0 1 0];
z_axis = [0 0 1];
%% Connection points on base and top plate w.r.t. World frame at the center of the base plate
pos_base = zeros(6, 3);
pos_top = zeros(6, 3);
alpha_b = BP.leg.ang*deg2rad; % angle de décalage par rapport à 120 deg (pour positionner les supports bases)
alpha_t = TP.leg.ang*deg2rad; % +- offset angle from 120 degree spacing on top
height = (stewart.h-BP.thickness-TP.thickness-Leg.sphere.bottom-Leg.sphere.top-SP.thickness.bottom-SP.thickness.top)*0.001; % 2 meter height in home configuration
radius_b = BP.leg.rad*0.001; % rayon emplacement support base
radius_t = TP.leg.rad*0.001; % top radius in meters
for i = 1:3
% base points
angle_m_b = (2*pi/3)* (i-1) - alpha_b;
angle_p_b = (2*pi/3)* (i-1) + alpha_b;
pos_base(2*i-1,:) = [radius_b*cos(angle_m_b), radius_b*sin(angle_m_b), 0.0];
pos_base(2*i,:) = [radius_b*cos(angle_p_b), radius_b*sin(angle_p_b), 0.0];
% top points
% Top points are 60 degrees offset
angle_m_t = (2*pi/3)* (i-1) - alpha_t + 2*pi/6;
angle_p_t = (2*pi/3)* (i-1) + alpha_t + 2*pi/6;
pos_top(2*i-1,:) = [radius_t*cos(angle_m_t), radius_t*sin(angle_m_t), height];
pos_top(2*i,:) = [radius_t*cos(angle_p_t), radius_t*sin(angle_p_t), height];
end
% permute pos_top points so that legs are end points of base and top points
pos_top = [pos_top(6,:); pos_top(1:5,:)]; %6th point on top connects to 1st on bottom
pos_top_tranform = pos_top - height*[zeros(6, 2),ones(6, 1)];
%% Compute points w.r.t. to the body frame in a 3x6 matrix
body_pts = pos_top' - height*[zeros(2,6);ones(1,6)];
%% leg vectors
legs = pos_top - pos_base;
leg_length = zeros(6, 1);
leg_vectors = zeros(6, 3);
for i = 1:6
leg_length(i) = norm(legs(i,:));
leg_vectors(i,:) = legs(i,:) / leg_length(i);
end
Leg.lenght = 1000*leg_length(1)/1.5;
%% Calculate revolute and cylindrical axes
rev1 = zeros(6, 3);
rev2 = zeros(6, 3);
rev3 = zeros(6, 3);
rev4 = zeros(6, 3);
cyl1 = zeros(6, 3);
for i = 1:6
rev1(i,:) = cross(leg_vectors(i,:), z_axis);
rev1(i,:) = rev1(i,:) / norm(rev1(i,:));
rev3(i,:) = rev1(i,:);
rev2(i,:) = - cross(rev1(i,:), leg_vectors(i,:));
rev2(i,:) = rev2(i,:) / norm(rev2(i,:));
rev4(i,:) = rev2(i,:);
cyl1(i,:) = leg_vectors(i,:);
end
%% Coordinate systems
lower_leg = struct('origin', [0 0 0], 'rotation', eye(3), 'end_point', [0 0 0]);
upper_leg = struct('origin', [0 0 0], 'rotation', eye(3), 'end_point', [0 0 0]);
for i = 1:6
lower_leg(i).origin = pos_base(i,:) + (3/8)*legs(i,:);
lower_leg(i).end_point = pos_base(i,:) + (3/4)*legs(i,:);
lower_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
upper_leg(i).origin = pos_base(i,:) + (1-3/8)*legs(i,:);
upper_leg(i).end_point = pos_base(i,:) + (1/4)*legs(i,:);
upper_leg(i).rotation = [rev1(i,:)', rev2(i,:)', cyl1(i,:)'];
end
%% Position Matrix
M_pos_base = pos_base + (height+(TP.thickness+Leg.sphere.top+SP.thickness.top+stewart.jacobian)*1e-3)*[zeros(6, 2),ones(6, 1)];
%% Compute Jacobian Matrix
J = getJacobianMatrix(leg_vectors, M_pos_base);

View File

@ -1,66 +0,0 @@
%% Nass height
stewart = struct();
stewart.h = 90; %mm
stewart.jacobian = 174.5; %mm
%% Bottom Plate
BP = struct();
BP.rad.int = 0; %mm
BP.rad.ext = 150; %mm
BP.thickness = 10; % mm
BP.leg.rad = 100; %mm
BP.leg.ang = 5; %deg
BP.density = 8000; %kg/m^3
BP.color = [0.5 0.5 0.5]; %rgb
%% TOP Plate
TP = struct();
TP.rad.int = 0;%mm
TP.rad.ext = 100; %mm
TP.thickness = 10; % mm
TP.leg.rad = 90; %mm
TP.leg.ang = 5; %deg
TP.density = 8000; %kg/m^3
TP.color = [0.5 0.5 0.5]; %rgb
%% Leg
Leg = struct();
Leg.stroke = 80e-6; % m
Leg.rad.bottom = 8; %mm
Leg.rad.top = 5; %mm
Leg.sphere.bottom = 10; % mm
Leg.sphere.top = 8; % mm
Leg.density = 8000; %kg/m^3
Leg.lenght = stewart.h; % mm (approximate)
Leg.m = Leg.density*2*pi*((Leg.rad.bottom*1e-3)^2)*(Leg.lenght*1e-3); %kg
Leg.color.bottom = [0.5 0.5 0.5]; %rgb
Leg.color.top = [0.5 0.5 0.5]; %rgb
Leg.k.ax = 5e7; % N/m
Leg.ksi.ax = 10;
Leg = updateDamping(Leg);
%% Sphere
SP = struct();
SP.thickness.bottom = 1; %mm
SP.thickness.top = 1; %mm
SP.rad.bottom = Leg.sphere.bottom; %mm
SP.rad.top = Leg.sphere.top; %mm
SP.height.bottom = 5; %mm
SP.height.top = 5; %mm
SP.density.bottom = 8000; %kg/m^3
SP.density.top = 8000; %kg/m^3
SP.m = SP.density.bottom*2*pi*((SP.rad.bottom*1e-3)^2)*(SP.height.bottom*1e-3); %kg
SP.color.bottom = [0.5 0.5 0.5]; %rgb
SP.color.top = [0.5 0.5 0.5]; %rgb
SP.k.ax = 0; % N*m/deg
SP.ksi.ax = 10;
SP = updateDamping(SP);
%%
function element = updateDamping(element)
field = fieldnames(element.k);
for i = 1:length(field)
element.c.(field{i}) = 1/element.ksi.(field{i})*sqrt(element.k.(field{i})/element.m);
end
end