Add analysis about Cascade Control
BIN
docs/figs/cascade_control_architecture.pdf
Normal file
BIN
docs/figs/cascade_control_architecture.png
Normal file
After Width: | Height: | Size: 43 KiB |
BIN
docs/figs/cascade_hac_joint_loop_gain.pdf
Normal file
BIN
docs/figs/cascade_hac_joint_loop_gain.png
Normal file
After Width: | Height: | Size: 105 KiB |
BIN
docs/figs/cascade_hac_joint_plant.pdf
Normal file
BIN
docs/figs/cascade_hac_joint_plant.png
Normal file
After Width: | Height: | Size: 187 KiB |
BIN
docs/figs/cascade_iff_loop_gain.pdf
Normal file
BIN
docs/figs/cascade_iff_loop_gain.png
Normal file
After Width: | Height: | Size: 122 KiB |
BIN
docs/figs/cascade_iff_plant.pdf
Normal file
BIN
docs/figs/cascade_iff_plant.png
Normal file
After Width: | Height: | Size: 163 KiB |
BIN
docs/figs/cascade_iff_root_locus.pdf
Normal file
BIN
docs/figs/cascade_iff_root_locus.png
Normal file
After Width: | Height: | Size: 52 KiB |
BIN
docs/figs/cascade_primary_loop_gain.pdf
Normal file
BIN
docs/figs/cascade_primary_loop_gain.png
Normal file
After Width: | Height: | Size: 129 KiB |
BIN
docs/figs/cascade_primary_plant.pdf
Normal file
BIN
docs/figs/cascade_primary_plant.png
Normal file
After Width: | Height: | Size: 224 KiB |
658
org/control_cascade.org
Normal file
@ -0,0 +1,658 @@
|
||||
#+TITLE: Cascade Control applied on the Simscape Model
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+LANGUAGE: en
|
||||
#+EMAIL: dehaeze.thomas@gmail.com
|
||||
#+AUTHOR: Dehaeze Thomas
|
||||
|
||||
#+HTML_LINK_HOME: ./index.html
|
||||
#+HTML_LINK_UP: ./index.html
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="./js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="./js/readtheorg.js"></script>
|
||||
|
||||
#+HTML_MATHJAX: align: center tagside: right font: TeX
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :results none
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
#+PROPERTY: header-args:matlab+ :tangle no
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
|
||||
#+PROPERTY: header-args:shell :eval no-export
|
||||
|
||||
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/thesis/latex/org/}{config.tex}")
|
||||
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
|
||||
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
|
||||
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
|
||||
#+PROPERTY: header-args:latex+ :results file raw replace
|
||||
#+PROPERTY: header-args:latex+ :buffer no
|
||||
#+PROPERTY: header-args:latex+ :eval no-export
|
||||
#+PROPERTY: header-args:latex+ :exports results
|
||||
#+PROPERTY: header-args:latex+ :mkdirp yes
|
||||
#+PROPERTY: header-args:latex+ :output-dir figs
|
||||
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
||||
:END:
|
||||
|
||||
* Introduction :ignore:
|
||||
The control architecture we wish here to study is shown in Figure [[fig:cascade_control_architecture]].
|
||||
|
||||
#+begin_src latex :file cascade_control_architecture.pdf
|
||||
\begin{tikzpicture}
|
||||
% Blocs
|
||||
\node[block={3.0cm}{3.0cm}] (P) {Plant};
|
||||
\coordinate[] (inputF) at ($(P.south west)!0.5!(P.north west)$);
|
||||
\coordinate[] (outputF) at ($(P.south east)!0.8!(P.north east)$);
|
||||
\coordinate[] (outputX) at ($(P.south east)!0.5!(P.north east)$);
|
||||
\coordinate[] (outputL) at ($(P.south east)!0.2!(P.north east)$);
|
||||
|
||||
\node[block, above=0.4 of P] (Kiff) {$\bm{K}_\text{IFF}$};
|
||||
\node[addb={+}{}{-}{}{}, left= of inputF] (addF) {};
|
||||
\node[block, left= of addF] (K) {$\bm{K}_{\mathcal{L}}$};
|
||||
\node[addb={+}{}{}{}{-}, left= of K] (subr) {};
|
||||
\node[block, align=center, left= of subr] (J) {Inverse\\Kinematics};
|
||||
\node[block, left= of J] (Kx) {$\bm{K}_\mathcal{X}$};
|
||||
|
||||
\node[block, align=center, left= of Kx] (Ex) {Compute\\Pos. Error};
|
||||
|
||||
% Connections and labels
|
||||
\draw[->] (outputF) -- ++(1.0, 0);
|
||||
\draw[->] ($(outputF) + (0.6, 0)$)node[branch](taum){} node[below]{$\bm{\tau}_m$} |- (Kiff.east);
|
||||
\draw[->] (Kiff.west) -| (addF.north);
|
||||
\draw[->] (addF.east) -- (inputF) node[above left]{$\bm{\tau}$};
|
||||
|
||||
\draw[->] (outputL) -- ++(1.8, 0);
|
||||
\draw[->] ($(outputL) + (1.4, 0)$)node[branch]{} node[above]{$d\bm{\mathcal{L}}$} -- ++(0, -1.2) node(Plinse){} -| (subr.south);
|
||||
\draw[->] (subr.east) -- (K.west) node[above left]{$\bm{\epsilon}_{d\mathcal{L}}$};
|
||||
\draw[->] (K.east) -- (addF.west) node[above left=0 and 8pt]{$\bm{\tau}^\prime$};
|
||||
|
||||
\draw[->] (outputX) -- ++(2.6, 0);
|
||||
\draw[->] ($(outputX) + (2.2, 0)$)node[branch]{} node[above]{$\bm{\mathcal{X}}$} -- ++(0, -3.0) -| (Ex.south);
|
||||
|
||||
\draw[<-] (Ex.west)node[above left]{$\bm{r}_{\mathcal{X}}$} -- ++(-1, 0);
|
||||
\draw[->] (Ex.east) -- (Kx.west) node[above left]{$\bm{r}_{\mathcal{X}}$};
|
||||
\draw[->] (Kx.east) -- (J.west) node[above left=0 and 6pt]{$\bm{r}_{\mathcal{X}_n}$};
|
||||
\draw[->] (J.east) -- (subr.west) node[above left]{$\bm{r}_{d\mathcal{L}}$};
|
||||
|
||||
\begin{scope}[on background layer]
|
||||
\node[fit={(P.south-|addF.west) (taum.east|-Kiff.north)}, opacity=0, inner sep=10pt] (Pdamped) {};
|
||||
|
||||
\node[fit={(Pdamped.north-|J.west) (Plinse)}, fill=black!20!white, draw, dashed, inner sep=8pt] (Plin) {};
|
||||
\node[anchor={north west}] at (Plin.north west){$P_\text{lin}$};
|
||||
|
||||
\node[fit={(P.south-|addF.west) (taum.east|-Kiff.north)}, fill=black!40!white, draw, dashed, inner sep=10pt] (Pdamped) {};
|
||||
\node[anchor={north west}] at (Pdamped.north west){$P_\text{damped}$};
|
||||
\end{scope}
|
||||
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:cascade_control_architecture
|
||||
#+caption: Cascaded Control consisting of (from inner to outer loop): IFF, Linearization Loop, Tracking Control in the frame of the Legs
|
||||
#+RESULTS:
|
||||
[[file:figs/cascade_control_architecture.png]]
|
||||
|
||||
This cascade control is designed in three steps:
|
||||
- In section [[sec:lac_iff]]: an active damping controller is designed.
|
||||
This is based on the Integral Force Feedback and applied in a decentralized way
|
||||
- In section [[sec:hac_joint_space]]: a decentralized tracking control is designed in the frame of the legs.
|
||||
This controller is based on the displacement of each of the legs
|
||||
- In section [[sec:primary_controller]]: a controller is designed in the task space in order to follow the wanted reference path corresponding to the sample position with respect to the granite
|
||||
|
||||
* Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no
|
||||
simulinkproject('../');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
open('nass_model.slx')
|
||||
#+end_src
|
||||
|
||||
* Initialization
|
||||
We initialize all the stages with the default parameters.
|
||||
#+begin_src matlab
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
#+end_src
|
||||
|
||||
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
|
||||
#+begin_src matlab
|
||||
initializeNanoHexapod('actuator', 'piezo');
|
||||
initializeSample('mass', 1);
|
||||
#+end_src
|
||||
|
||||
We set the references that corresponds to a tomography experiment.
|
||||
#+begin_src matlab
|
||||
initializeReferences('Rz_type', 'rotating', 'Rz_period', 1);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
initializeDisturbances();
|
||||
#+end_src
|
||||
|
||||
Open Loop.
|
||||
#+begin_src matlab
|
||||
initializeController('type', 'cascade-hac-lac');
|
||||
#+end_src
|
||||
|
||||
And we put some gravity.
|
||||
#+begin_src matlab
|
||||
initializeSimscapeConfiguration('gravity', true);
|
||||
#+end_src
|
||||
|
||||
We log the signals.
|
||||
#+begin_src matlab
|
||||
initializeLoggingConfiguration('log', 'all');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
Kx = tf(zeros(6));
|
||||
Kl = tf(zeros(6));
|
||||
Kiff = tf(zeros(6));
|
||||
#+end_src
|
||||
|
||||
* Low Authority Control - Integral Force Feedback $\bm{K}_\text{IFF}$
|
||||
<<sec:lac_iff>>
|
||||
** Identification
|
||||
Let's first identify the plant for the IFF controller.
|
||||
#+begin_src matlab
|
||||
%% Name of the Simulink File
|
||||
mdl = 'nass_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'openinput'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'openoutput', [], 'Fnlm'); io_i = io_i + 1; % Force Sensors
|
||||
|
||||
%% Run the linearization
|
||||
G_iff = linearize(mdl, io, 0);
|
||||
G_iff.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
G_iff.OutputName = {'Fnlm1', 'Fnlm2', 'Fnlm3', 'Fnlm4', 'Fnlm5', 'Fnlm6'};
|
||||
#+end_src
|
||||
|
||||
** Plant
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff(i, i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Diagonal elements of the Plant');
|
||||
|
||||
ax2 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$\\tau_{m,%i}/\\tau_%i$', i, i));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
ax3 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Off-Diagonal elements of the Plant');
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/cascade_iff_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:cascade_iff_plant
|
||||
#+caption: IFF Plant ([[./figs/cascade_iff_plant.png][png]], [[./figs/cascade_iff_plant.pdf][pdf]])
|
||||
[[file:figs/cascade_iff_plant.png]]
|
||||
|
||||
** Root Locus
|
||||
#+begin_src matlab :exports none
|
||||
gains = logspace(0, 4, 500);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(real(pole(G_iff)), imag(pole(G_iff)), 'x');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(real(tzero(G_iff)), imag(tzero(G_iff)), 'o');
|
||||
for i = 1:length(gains)
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
cl_poles = pole(feedback(G_iff, -(gains(i)/s)*eye(6)));
|
||||
plot(real(cl_poles), imag(cl_poles), '.');
|
||||
end
|
||||
ylim([0, 2*pi*500]);
|
||||
xlim([-2*pi*500,0]);
|
||||
xlabel('Real Part')
|
||||
ylabel('Imaginary Part')
|
||||
axis square
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/cascade_iff_root_locus.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:cascade_iff_root_locus
|
||||
#+caption: Root Locus for the IFF control ([[./figs/cascade_iff_root_locus.png][png]], [[./figs/cascade_iff_root_locus.pdf][pdf]])
|
||||
[[file:figs/cascade_iff_root_locus.png]]
|
||||
|
||||
The maximum damping is obtained for a control gain of $\approx 3000$.
|
||||
|
||||
** Controller and Loop Gain
|
||||
We create the $6 \times 6$ diagonal Integral Force Feedback controller.
|
||||
The obtained loop gain is shown in Figure [[fig:cascade_iff_loop_gain]].
|
||||
#+begin_src matlab
|
||||
w0 = 2*pi*50;
|
||||
Kiff = -3000/s*eye(6);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Kiff(i,i)*G_iff(i,i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Kiff(i,i)*G_iff(i,i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/cascade_iff_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:cascade_iff_loop_gain
|
||||
#+caption: Obtained Loop gain the IFF Control ([[./figs/cascade_iff_loop_gain.png][png]], [[./figs/cascade_iff_loop_gain.pdf][pdf]])
|
||||
[[file:figs/cascade_iff_loop_gain.png]]
|
||||
|
||||
* High Authority Control in the joint space - $\bm{K}_\mathcal{L}$
|
||||
<<sec:hac_joint_space>>
|
||||
** Identification of the damped plant
|
||||
We now identify the transfer function from $\tau^\prime$ to $d\bm{\mathcal{L}}$ as shown in Figure [[fig:cascade_control_architecture]].
|
||||
#+begin_src matlab
|
||||
%% Name of the Simulink File
|
||||
mdl = 'nass_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller'], 1, 'input'); io_i = io_i + 1; % Actuator Inputs
|
||||
io(io_i) = linio([mdl, '/Micro-Station'], 3, 'output', [], 'Dnlm'); io_i = io_i + 1; % Leg Displacement
|
||||
|
||||
%% Run the linearization
|
||||
Gl = linearize(mdl, io, 0);
|
||||
Gl.InputName = {'Fnl1', 'Fnl2', 'Fnl3', 'Fnl4', 'Fnl5', 'Fnl6'};
|
||||
Gl.OutputName = {'Dnlm1', 'Dnlm2', 'Dnlm3', 'Dnlm4', 'Dnlm5', 'Dnlm6'};
|
||||
#+end_src
|
||||
|
||||
There are some unstable poles in the Plant with very small imaginary parts.
|
||||
These unstable poles are probably not physical, and they disappear when taking the minimum realization of the plant.
|
||||
#+begin_src matlab
|
||||
isstable(Gl)
|
||||
Gl = minreal(Gl);
|
||||
isstable(Gl)
|
||||
#+end_src
|
||||
|
||||
** Obtained Plant
|
||||
The obtain plant is shown in Figure [[fig:cascade_hac_joint_plant]].
|
||||
|
||||
We can see that the plant is quite well decoupled.
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gl(i, i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Diagonal elements of the Plant');
|
||||
|
||||
ax2 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(i, i), freqs, 'Hz'))), 'DisplayName', sprintf('$d\\mathcal{L}_%i/\\tau_%i$', i, i));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend();
|
||||
|
||||
ax3 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gl(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gl(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Off-Diagonal elements of the Plant');
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/cascade_hac_joint_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:cascade_hac_joint_plant
|
||||
#+caption: Plant for the High Authority Control in the Joint Space ([[./figs/cascade_hac_joint_plant.png][png]], [[./figs/cascade_hac_joint_plant.pdf][pdf]])
|
||||
[[file:figs/cascade_hac_joint_plant.png]]
|
||||
|
||||
|
||||
** Controller Design and Loop Gain
|
||||
The controller consists of:
|
||||
- A pure integrator
|
||||
- A Second integrator up to half the wanted bandwidth
|
||||
- A Lead around the cross-over frequency
|
||||
- A low pass filter with a cut-off equal to two times the wanted bandwidth
|
||||
|
||||
#+begin_src matlab
|
||||
wc = 2*pi*400; % Bandwidth Bandwidth [rad/s]
|
||||
|
||||
h = 2; % Lead parameter
|
||||
|
||||
% Kl = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * wc/s * ((s/wc*2 + 1)/(s/wc*2)) * (1/(1 + s/wc/2));
|
||||
Kl = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * wc/s;
|
||||
|
||||
% Normalization of the gain of have a loop gain of 1 at frequency wc
|
||||
Kl = Kl.*diag(1./diag(abs(freqresp(Gl*Kl, wc))));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gl(i, i)*Kl(i,i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gl(i, i)*Kl(i,i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/cascade_hac_joint_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:cascade_hac_joint_loop_gain
|
||||
#+caption: Loop Gain for the High Autority Control in the joint space ([[./figs/cascade_hac_joint_loop_gain.png][png]], [[./figs/cascade_hac_joint_loop_gain.pdf][pdf]])
|
||||
[[file:figs/cascade_hac_joint_loop_gain.png]]
|
||||
|
||||
#+begin_src matlab :exports none :tangle no
|
||||
isstable(feedback(Gl*Kl, eye(6), -1))
|
||||
#+end_src
|
||||
|
||||
* Primary Controller in the task space - $\bm{K}_\mathcal{X}$
|
||||
<<sec:primary_controller>>
|
||||
** Identification of the linearized plant
|
||||
We know identify the dynamics between $\bm{r}_{\mathcal{X}_n}$ and $\bm{r}_\mathcal{X}$.
|
||||
#+begin_src matlab
|
||||
%% Name of the Simulink File
|
||||
mdl = 'nass_model';
|
||||
|
||||
%% Input/Output definition
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Controller/Cascade-HAC-LAC/Kx'], 1, 'input'); io_i = io_i + 1;
|
||||
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
|
||||
|
||||
%% Run the linearization
|
||||
Gx = linearize(mdl, io, 0);
|
||||
Gx.InputName = {'rL1', 'rL2', 'rL3', 'rL4', 'rL5', 'rL6'};
|
||||
Gx.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
||||
#+end_src
|
||||
|
||||
As before, we take the minimum realization.
|
||||
#+begin_src matlab
|
||||
isstable(Gx)
|
||||
Gx = minreal(Gx);
|
||||
isstable(Gx)
|
||||
#+end_src
|
||||
|
||||
** Obtained Plant
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 4, 1000);
|
||||
|
||||
labels = {'$\epsilon_x/r_{xn}$', '$\epsilon_y/r_{yn}$', '$\epsilon_z/r_{zn}$', '$\epsilon_{R_x}/r_{R_xn}$', '$\epsilon_{R_y}/r_{R_yn}$', '$\epsilon_{R_z}/r_{R_zn}$'};
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Diagonal elements of the Plant');
|
||||
|
||||
ax2 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i), freqs, 'Hz'))), 'DisplayName', labels{i});
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend();
|
||||
|
||||
ax3 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
title('Off-Diagonal elements of the Plant');
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(1, 1), freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/cascade_primary_plant.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:cascade_primary_plant
|
||||
#+caption: Plant for the Primary Controller ([[./figs/cascade_primary_plant.png][png]], [[./figs/cascade_primary_plant.pdf][pdf]])
|
||||
[[file:figs/cascade_primary_plant.png]]
|
||||
|
||||
** Controller Design
|
||||
#+begin_src matlab
|
||||
wc = 2*pi*10; % Bandwidth Bandwidth [rad/s]
|
||||
|
||||
h = 2; % Lead parameter
|
||||
|
||||
Kx = (1/h) * (1 + s/wc*h)/(1 + s/wc/h) * wc/s * (s + 2*pi*5)/s * 1/(1+s/2/pi/20);
|
||||
|
||||
% Normalization of the gain of have a loop gain of 1 at frequency wc
|
||||
Kx = -Kx.*diag(1./diag(abs(freqresp(Gx*Kx, wc))));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, abs(squeeze(freqresp(Gx(i, i)*Kx(i,i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Loop Gain'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i = 1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(Gx(i, i)*Kx(i,i), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+header: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/cascade_primary_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+name: fig:cascade_primary_loop_gain
|
||||
#+caption: Loop Gain for the primary controller (outer loop) ([[./figs/cascade_primary_loop_gain.png][png]], [[./figs/cascade_primary_loop_gain.pdf][pdf]])
|
||||
[[file:figs/cascade_primary_loop_gain.png]]
|
||||
|
||||
* Simulation
|
||||
#+begin_src matlab
|
||||
load('mat/conf_simulink.mat');
|
||||
set_param(conf_simulink, 'StopTime', '2');
|
||||
#+end_src
|
||||
|
||||
And we simulate the system.
|
||||
#+begin_src matlab
|
||||
sim('nass_model');
|
||||
#+end_src
|