Analysis: effect of DVF on disturbance sensibility

This commit is contained in:
Thomas Dehaeze 2020-04-15 14:13:11 +02:00
parent 4973abb742
commit 8e6a41d686
24 changed files with 11894 additions and 45 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 238 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 150 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 89 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 164 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 224 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 192 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 226 KiB

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 250 KiB

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -50,7 +50,6 @@
#+end_src
** Initialization
We initialize all the stages with the default parameters.
#+begin_src matlab
initializeGround();
initializeGranite();
@ -60,15 +59,11 @@ We initialize all the stages with the default parameters.
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
#+end_src
#+begin_src matlab
initializeSimscapeConfiguration();
initializeDisturbances('enable', false);
initializeLoggingConfiguration('log', 'none');
#+end_src
#+begin_src matlab
initializeController('type', 'hac-dvf');
#+end_src
@ -121,6 +116,12 @@ The nano-hexapod has the following leg's stiffness and damping.
#+end_src
** Controller Design
The obtain dynamics from actuators forces $\tau_i$ to the relative motion of the legs $d\mathcal{L}_i$ is shown in Figure [[fig:opt_stiff_dvf_plant]] for the three considered payload masses.
The Root Locus is shown in Figure [[fig:opt_stiff_dvf_root_locus]] and wee see that we have unconditional stability.
In order to choose the gain such that we obtain good damping for all the three payload masses, we plot the damping ration of the modes as a function of the gain for all three payload masses in Figure [[fig:opt_stiff_dvf_damping_gain]].
#+begin_src matlab :exports none
freqs = logspace(-1, 3, 1000);
@ -151,11 +152,19 @@ The nano-hexapod has the following leg's stiffness and damping.
linkaxes([ax1,ax2],'x');
#+end_src
Root Locus
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_stiff_dvf_plant.pdf', 'width', 'full', 'height', 'full')
#+end_src
#+name: fig:opt_stiff_dvf_plant
#+caption: Dynamics for the Direct Velocity Feedback active damping for three payload masses
#+RESULTS:
[[file:figs/opt_stiff_dvf_plant.png]]
#+begin_src matlab :exports none :post
figure;
gains = logspace(1, 4, 300);
gains = logspace(2, 5, 300);
hold on;
for i = 1:length(Ms)
@ -181,13 +190,13 @@ Root Locus
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_stdvf_dvf_root_locus.pdf', 'width', 'wide', 'height', 'tall');
exportFig('figs/opt_stiff_dvf_root_locus.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:opt_stdvf_dvf_root_locus
#+caption: Root Locus for the
#+name: fig:opt_stiff_dvf_root_locus
#+caption: Root Locus for the DVF controll for three payload masses
#+RESULTS:
[[file:figs/opt_stdvf_dvf_root_locus.png]]
[[file:figs/opt_stiff_dvf_root_locus.png]]
Damping as function of the gain
#+begin_src matlab :exports none
@ -218,22 +227,35 @@ Damping as function of the gain
ylim([0, 1]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_stiff_dvf_damping_gain.pdf', 'width', 'full', 'height', 'full')
#+end_src
#+name: fig:opt_stiff_dvf_damping_gain
#+caption: Damping ratio of the poles as a function of the DVF gain
#+RESULTS:
[[file:figs/opt_stiff_dvf_damping_gain.png]]
Finally, we use the following controller for the Decentralized Direct Velocity Feedback:
#+begin_src matlab
Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6);
#+end_src
* Identification of the dynamics for the Primary controller
** Introduction :ignore:
** Effect of the Low Authority Control on the Primary Plant
*** Introduction :ignore:
Let's identify the dynamics from actuator forces $\bm{\tau}$ to displacement as measured by the metrology $\bm{\mathcal{X}}$:
\[ \bm{G}(s) = \frac{\bm{\mathcal{X}}}{\bm{\tau}} \]
We do so both when the DVF is applied and when it is not applied.
Then, we compute both the transfer function from forces applied by the actuators $\bm{\mathcal{F}}$ to the measured position error in the frame of the nano-hexapod $\bm{\epsilon}_{\mathcal{X}_n}$:
Then, we compute the transfer function from forces applied by the actuators $\bm{\mathcal{F}}$ to the measured position error in the frame of the nano-hexapod $\bm{\epsilon}_{\mathcal{X}_n}$:
\[ \bm{G}_\mathcal{X}(s) = \frac{\bm{\epsilon}_{\mathcal{X}_n}}{\bm{\mathcal{F}}} = \bm{G}(s) \bm{J}^{-T} \]
The obtained dynamics is shown in Figure [[fig:opt_stiff_primary_plant_damped_X]].
and from actuator forces $\bm{\tau}$ to position error of each leg $\bm{\epsilon}_\mathcal{L}$:
And we compute the transfer function from actuator forces $\bm{\tau}$ to position error of each leg $\bm{\epsilon}_\mathcal{L}$:
\[ \bm{G}_\mathcal{L} = \frac{\bm{\epsilon}_\mathcal{L}}{\bm{\tau}} = \bm{J} \bm{G}(s) \]
We identify these dynamics with and without using the DVF controller.
The obtained dynamics is shown in Figure [[fig:opt_stiff_primary_plant_damped_L]].
#+begin_src matlab :exports none
%% Name of the Simulink File
@ -249,7 +271,7 @@ We identify these dynamics with and without using the DVF controller.
load('mat/stages.mat', 'nano_hexapod');
#+end_src
** Identification of the undamped plant :ignore:
*** Identification of the undamped plant :ignore:
#+begin_src matlab :exports none
Kdvf_backup = Kdvf;
Kdvf = tf(zeros(6));
@ -263,7 +285,7 @@ We identify these dynamics with and without using the DVF controller.
#+begin_src matlab :exports none
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
%% Run the linearization
G = linearize(mdl, io);
@ -284,7 +306,7 @@ We identify these dynamics with and without using the DVF controller.
Kdvf = Kdvf_backup;
#+end_src
** Identification of the damped plant :ignore:
*** Identification of the damped plant :ignore:
#+begin_src matlab :exports none
Gm_x = {zeros(length(Ms), 1)};
Gm_l = {zeros(length(Ms), 1)};
@ -310,7 +332,7 @@ We identify these dynamics with and without using the DVF controller.
end
#+end_src
** Obtained dynamics for the Undamped plant :ignore:
*** Effect of the Damping on the plant diagonal dynamics :ignore:
#+begin_src matlab :exports none
freqs = logspace(0, 3, 5000);
@ -323,6 +345,10 @@ We identify these dynamics with and without using the DVF controller.
plot(freqs, abs(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(1, 1), freqs, 'Hz'))), '--');
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(2, 2), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@ -334,6 +360,8 @@ We identify these dynamics with and without using the DVF controller.
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(3, 3), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@ -347,6 +375,10 @@ We identify these dynamics with and without using the DVF controller.
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(1, 1), freqs, 'Hz')))), '--');
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(2, 2), freqs, 'Hz')))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
@ -360,6 +392,9 @@ We identify these dynamics with and without using the DVF controller.
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(3, 3), freqs, 'Hz')))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
@ -371,6 +406,15 @@ We identify these dynamics with and without using the DVF controller.
linkaxes([ax1,ax2,ax3,ax4],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_stiff_primary_plant_damped_X.pdf', 'width', 'full', 'height', 'full')
#+end_src
#+name: fig:opt_stiff_primary_plant_damped_X
#+caption: Primary plant in the task space with (dashed) and without (solid) Direct Velocity Feedback
#+RESULTS:
[[file:figs/opt_stiff_primary_plant_damped_X.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 5000);
@ -381,6 +425,8 @@ We identify these dynamics with and without using the DVF controller.
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_l{i}(1, 1), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@ -392,6 +438,9 @@ We identify these dynamics with and without using the DVF controller.
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_l{i}(1, 1), freqs, 'Hz')))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
@ -403,6 +452,226 @@ We identify these dynamics with and without using the DVF controller.
linkaxes([ax1,ax2],'x');
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_stiff_primary_plant_damped_L.pdf', 'width', 'full', 'height', 'full')
#+end_src
#+name: fig:opt_stiff_primary_plant_damped_L
#+caption: Primary plant in the space of the legs with (dashed) and without (solid) Direct Velocity Feedback
#+RESULTS:
[[file:figs/opt_stiff_primary_plant_damped_L.png]]
*** Effect of the Damping on the coupling dynamics :ignore:
The coupling (off diagonal elements) of $\bm{G}_\mathcal{X}$ are shown in Figure [[fig:opt_stiff_primary_plant_damped_coupling_X]] both when DVF is applied and when it is not.
The coupling does not change a lot with DVF.
The coupling in the space of the legs $\bm{G}_\mathcal{L}$ are shown in Figure [[fig:opt_stiff_primary_plant_damped_coupling_L]].
The magnitude of the coupling around the resonance of the nano-hexapod (where the coupling is the highest) is considerably reduced when DVF is applied.
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(G_x{1}(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
plot(freqs, abs(squeeze(freqresp(Gm_x{1}(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_x{1}(1, 1), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gm_x{1}(1, 1), freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ylim([1e-12, inf]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_stiff_primary_plant_damped_coupling_X.pdf', 'width', 'full', 'height', 'tall')
#+end_src
#+name: fig:opt_stiff_primary_plant_damped_coupling_X
#+caption: Coupling in the primary plant in the task with (dashed) and without (solid) Direct Velocity Feedback
#+RESULTS:
[[file:figs/opt_stiff_primary_plant_damped_coupling_X.png]]
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);
figure;
hold on;
for i = 1:5
for j = i+1:6
plot(freqs, abs(squeeze(freqresp(G_l{1}(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
plot(freqs, abs(squeeze(freqresp(Gm_l{1}(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]);
end
end
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(G_l{1}(1, 1), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',1);
plot(freqs, abs(squeeze(freqresp(Gm_l{1}(1, 1), freqs, 'Hz'))), '--');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
ylim([1e-9, inf]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_stiff_primary_plant_damped_coupling_L.pdf', 'width', 'full', 'height', 'tall')
#+end_src
#+name: fig:opt_stiff_primary_plant_damped_coupling_L
#+caption: Coupling in the primary plant in the space of the legs with (dashed) and without (solid) Direct Velocity Feedback
#+RESULTS:
[[file:figs/opt_stiff_primary_plant_damped_coupling_L.png]]
** Effect of the Low Authority Control on the Sensibility to Disturbances
*** Introduction :ignore:
We may now see how Decentralized Direct Velocity Feedback changes the sensibility to disturbances, namely:
- Ground motion
- Spindle and Translation stage vibrations
- Direct forces applied to the sample
To simplify the analysis, we here only consider the vertical direction, thus, we will look at the transfer functions:
- from vertical ground motion $D_{w,z}$ to the vertical position error of the sample $E_z$
- from vertical vibration forces of the spindle $F_{R_z,z}$ to $E_z$
- from vertical vibration forces of the translation stage $F_{T_y,z}$ to $E_z$
- from vertical direct forces (such as cable forces) $F_{d,z}$ to $E_z$
The norm of these transfer functions are shown in Figure [[fig:opt_stiff_sensibility_dist_dvf]].
*** Identification :ignore:
#+begin_src matlab :exports none
%% Name of the Simulink File
mdl = 'nass_model';
%% Micro-Hexapod
clear io; io_i = 1;
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwz'); io_i = io_i + 1; % Z Ground motion
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fty_z'); io_i = io_i + 1; % Parasitic force Ty - Z
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Frz_z'); io_i = io_i + 1; % Parasitic force Rz - Z
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fd'); io_i = io_i + 1; % Direct forces
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
#+end_src
#+begin_src matlab :exports none
Kdvf_backup = Kdvf;
Kdvf = tf(zeros(6));
#+end_src
#+begin_src matlab :exports none
Gd = {zeros(length(Ms), 1)};
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'Dwz', 'Fty_z', 'Frz_z', 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gd(i) = {G};
end
#+end_src
#+begin_src matlab :exports none
Kdvf = Kdvf_backup;
#+end_src
#+begin_src matlab :exports none
Gd_dvf = {zeros(length(Ms), 1)};
for i = 1:length(Ms)
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
%% Run the linearization
G = linearize(mdl, io);
G.InputName = {'Dwz', 'Fty_z', 'Frz_z', 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
Gd_dvf(i) = {G};
end
#+end_src
*** Results :ignore:
#+begin_src matlab :exports none
freqs = logspace(0, 3, 5000);
figure;
subplot(2, 2, 1);
title('$D_{w,z}$ to $E_z$');
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'), freqs, 'Hz'))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd_dvf{i}('Ez', 'Dwz'), freqs, 'Hz'))), '--', ...
'HandleVisibility', 'off');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/m]'); set(gca, 'XTickLabel',[]);
legend('location', 'southeast');
subplot(2, 2, 2);
title('$F_{dz}$ to $E_z$');
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Fdz'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd_dvf{i}('Ez', 'Fdz'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
subplot(2, 2, 3);
title('$F_{T_y,z}$ to $E_z$');
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Fty_z'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd_dvf{i}('Ez', 'Fty_z'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
subplot(2, 2, 4);
title('$F_{R_z,z}$ to $E_z$');
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gd_dvf{i}('Ez', 'Frz_z'), freqs, 'Hz'))), '--');
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/opt_stiff_sensibility_dist_dvf.pdf', 'width', 'full', 'height', 'full')
#+end_src
#+name: fig:opt_stiff_sensibility_dist_dvf
#+caption: Norm of the transfer function from vertical disturbances to vertical position error with (dashed) and without (solid) Direct Velocity Feedback applied
#+RESULTS:
[[file:figs/opt_stiff_sensibility_dist_dvf.png]]
* Primary Control in the task space
** Introduction :ignore:
@ -477,10 +746,10 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@ -490,8 +759,8 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@ -501,10 +770,10 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz')))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
@ -515,8 +784,8 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz')))), ...
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
@ -628,10 +897,10 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
ax1 = subplot(2, 2, 1);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@ -641,8 +910,8 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
ax2 = subplot(2, 2, 2);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz'))));
set(gca,'ColorOrderIndex',i);
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz'))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
@ -652,10 +921,10 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
ax3 = subplot(2, 2, 3);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz')))));
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz')))));
end
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
@ -666,8 +935,8 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
ax4 = subplot(2, 2, 4);
hold on;
for i = 1:length(Ms)
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz')))), ...
set(gca,'ColorOrderIndex',i);
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz')))), ...
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
end
hold off;
@ -690,6 +959,7 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
** Simulation
* Primary Control in the leg space
** Introduction :ignore:
** Plant in the task space
#+begin_src matlab :exports none
freqs = logspace(0, 3, 1000);