Analysis: effect of DVF on disturbance sensibility
Before Width: | Height: | Size: 96 KiB |
BIN
docs/figs/opt_stiff_dvf_damping_gain.pdf
Normal file
BIN
docs/figs/opt_stiff_dvf_damping_gain.png
Normal file
After Width: | Height: | Size: 238 KiB |
1533
docs/figs/opt_stiff_dvf_plant.pdf
Normal file
BIN
docs/figs/opt_stiff_dvf_plant.png
Normal file
After Width: | Height: | Size: 150 KiB |
BIN
docs/figs/opt_stiff_dvf_root_locus.pdf
Normal file
BIN
docs/figs/opt_stiff_dvf_root_locus.png
Normal file
After Width: | Height: | Size: 89 KiB |
BIN
docs/figs/opt_stiff_primary_plant_damped_L.pdf
Normal file
BIN
docs/figs/opt_stiff_primary_plant_damped_L.png
Normal file
After Width: | Height: | Size: 164 KiB |
BIN
docs/figs/opt_stiff_primary_plant_damped_X.pdf
Normal file
BIN
docs/figs/opt_stiff_primary_plant_damped_X.png
Normal file
After Width: | Height: | Size: 224 KiB |
BIN
docs/figs/opt_stiff_primary_plant_damped_coupling_L.pdf
Normal file
BIN
docs/figs/opt_stiff_primary_plant_damped_coupling_L.png
Normal file
After Width: | Height: | Size: 192 KiB |
2343
docs/figs/opt_stiff_primary_plant_damped_coupling_X.pdf
Normal file
BIN
docs/figs/opt_stiff_primary_plant_damped_coupling_X.png
Normal file
After Width: | Height: | Size: 226 KiB |
7703
docs/figs/opt_stiff_sensibility_dist_dvf.pdf
Normal file
BIN
docs/figs/opt_stiff_sensibility_dist_dvf.png
Normal file
After Width: | Height: | Size: 250 KiB |
BIN
mat/conf_log.mat
@ -50,7 +50,6 @@
|
||||
#+end_src
|
||||
|
||||
** Initialization
|
||||
We initialize all the stages with the default parameters.
|
||||
#+begin_src matlab
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
@ -60,15 +59,11 @@ We initialize all the stages with the default parameters.
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
initializeSimscapeConfiguration();
|
||||
initializeDisturbances('enable', false);
|
||||
initializeLoggingConfiguration('log', 'none');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
initializeController('type', 'hac-dvf');
|
||||
#+end_src
|
||||
|
||||
@ -121,6 +116,12 @@ The nano-hexapod has the following leg's stiffness and damping.
|
||||
#+end_src
|
||||
|
||||
** Controller Design
|
||||
The obtain dynamics from actuators forces $\tau_i$ to the relative motion of the legs $d\mathcal{L}_i$ is shown in Figure [[fig:opt_stiff_dvf_plant]] for the three considered payload masses.
|
||||
|
||||
The Root Locus is shown in Figure [[fig:opt_stiff_dvf_root_locus]] and wee see that we have unconditional stability.
|
||||
|
||||
In order to choose the gain such that we obtain good damping for all the three payload masses, we plot the damping ration of the modes as a function of the gain for all three payload masses in Figure [[fig:opt_stiff_dvf_damping_gain]].
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(-1, 3, 1000);
|
||||
|
||||
@ -151,11 +152,19 @@ The nano-hexapod has the following leg's stiffness and damping.
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
Root Locus
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/opt_stiff_dvf_plant.pdf', 'width', 'full', 'height', 'full')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:opt_stiff_dvf_plant
|
||||
#+caption: Dynamics for the Direct Velocity Feedback active damping for three payload masses
|
||||
#+RESULTS:
|
||||
[[file:figs/opt_stiff_dvf_plant.png]]
|
||||
|
||||
#+begin_src matlab :exports none :post
|
||||
figure;
|
||||
|
||||
gains = logspace(1, 4, 300);
|
||||
gains = logspace(2, 5, 300);
|
||||
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
@ -181,13 +190,13 @@ Root Locus
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/opt_stdvf_dvf_root_locus.pdf', 'width', 'wide', 'height', 'tall');
|
||||
exportFig('figs/opt_stiff_dvf_root_locus.pdf', 'width', 'wide', 'height', 'tall');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:opt_stdvf_dvf_root_locus
|
||||
#+caption: Root Locus for the
|
||||
#+name: fig:opt_stiff_dvf_root_locus
|
||||
#+caption: Root Locus for the DVF controll for three payload masses
|
||||
#+RESULTS:
|
||||
[[file:figs/opt_stdvf_dvf_root_locus.png]]
|
||||
[[file:figs/opt_stiff_dvf_root_locus.png]]
|
||||
|
||||
Damping as function of the gain
|
||||
#+begin_src matlab :exports none
|
||||
@ -218,22 +227,35 @@ Damping as function of the gain
|
||||
ylim([0, 1]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/opt_stiff_dvf_damping_gain.pdf', 'width', 'full', 'height', 'full')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:opt_stiff_dvf_damping_gain
|
||||
#+caption: Damping ratio of the poles as a function of the DVF gain
|
||||
#+RESULTS:
|
||||
[[file:figs/opt_stiff_dvf_damping_gain.png]]
|
||||
|
||||
Finally, we use the following controller for the Decentralized Direct Velocity Feedback:
|
||||
#+begin_src matlab
|
||||
Kdvf = 5e3*s/(1+s/2/pi/1e3)*eye(6);
|
||||
#+end_src
|
||||
|
||||
* Identification of the dynamics for the Primary controller
|
||||
** Introduction :ignore:
|
||||
** Effect of the Low Authority Control on the Primary Plant
|
||||
*** Introduction :ignore:
|
||||
Let's identify the dynamics from actuator forces $\bm{\tau}$ to displacement as measured by the metrology $\bm{\mathcal{X}}$:
|
||||
\[ \bm{G}(s) = \frac{\bm{\mathcal{X}}}{\bm{\tau}} \]
|
||||
We do so both when the DVF is applied and when it is not applied.
|
||||
|
||||
Then, we compute both the transfer function from forces applied by the actuators $\bm{\mathcal{F}}$ to the measured position error in the frame of the nano-hexapod $\bm{\epsilon}_{\mathcal{X}_n}$:
|
||||
|
||||
Then, we compute the transfer function from forces applied by the actuators $\bm{\mathcal{F}}$ to the measured position error in the frame of the nano-hexapod $\bm{\epsilon}_{\mathcal{X}_n}$:
|
||||
\[ \bm{G}_\mathcal{X}(s) = \frac{\bm{\epsilon}_{\mathcal{X}_n}}{\bm{\mathcal{F}}} = \bm{G}(s) \bm{J}^{-T} \]
|
||||
The obtained dynamics is shown in Figure [[fig:opt_stiff_primary_plant_damped_X]].
|
||||
|
||||
and from actuator forces $\bm{\tau}$ to position error of each leg $\bm{\epsilon}_\mathcal{L}$:
|
||||
|
||||
And we compute the transfer function from actuator forces $\bm{\tau}$ to position error of each leg $\bm{\epsilon}_\mathcal{L}$:
|
||||
\[ \bm{G}_\mathcal{L} = \frac{\bm{\epsilon}_\mathcal{L}}{\bm{\tau}} = \bm{J} \bm{G}(s) \]
|
||||
|
||||
We identify these dynamics with and without using the DVF controller.
|
||||
The obtained dynamics is shown in Figure [[fig:opt_stiff_primary_plant_damped_L]].
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
%% Name of the Simulink File
|
||||
@ -249,7 +271,7 @@ We identify these dynamics with and without using the DVF controller.
|
||||
load('mat/stages.mat', 'nano_hexapod');
|
||||
#+end_src
|
||||
|
||||
** Identification of the undamped plant :ignore:
|
||||
*** Identification of the undamped plant :ignore:
|
||||
#+begin_src matlab :exports none
|
||||
Kdvf_backup = Kdvf;
|
||||
Kdvf = tf(zeros(6));
|
||||
@ -263,7 +285,7 @@ We identify these dynamics with and without using the DVF controller.
|
||||
#+begin_src matlab :exports none
|
||||
for i = 1:length(Ms)
|
||||
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
|
||||
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
|
||||
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io);
|
||||
@ -284,7 +306,7 @@ We identify these dynamics with and without using the DVF controller.
|
||||
Kdvf = Kdvf_backup;
|
||||
#+end_src
|
||||
|
||||
** Identification of the damped plant :ignore:
|
||||
*** Identification of the damped plant :ignore:
|
||||
#+begin_src matlab :exports none
|
||||
Gm_x = {zeros(length(Ms), 1)};
|
||||
Gm_l = {zeros(length(Ms), 1)};
|
||||
@ -310,7 +332,7 @@ We identify these dynamics with and without using the DVF controller.
|
||||
end
|
||||
#+end_src
|
||||
|
||||
** Obtained dynamics for the Undamped plant :ignore:
|
||||
*** Effect of the Damping on the plant diagonal dynamics :ignore:
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 5000);
|
||||
|
||||
@ -323,6 +345,10 @@ We identify these dynamics with and without using the DVF controller.
|
||||
plot(freqs, abs(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(1, 1), freqs, 'Hz'))), '--');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(2, 2), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@ -334,6 +360,8 @@ We identify these dynamics with and without using the DVF controller.
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(3, 3), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@ -347,6 +375,10 @@ We identify these dynamics with and without using the DVF controller.
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(1, 1), freqs, 'Hz')))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(2, 2), freqs, 'Hz')))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(1, 1), freqs, 'Hz')))), '--');
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(2, 2), freqs, 'Hz')))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
@ -360,6 +392,9 @@ We identify these dynamics with and without using the DVF controller.
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_x{i}(3, 3), freqs, 'Hz')))), ...
|
||||
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(3, 3), freqs, 'Hz')))), '--', ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
@ -371,6 +406,15 @@ We identify these dynamics with and without using the DVF controller.
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/opt_stiff_primary_plant_damped_X.pdf', 'width', 'full', 'height', 'full')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:opt_stiff_primary_plant_damped_X
|
||||
#+caption: Primary plant in the task space with (dashed) and without (solid) Direct Velocity Feedback
|
||||
#+RESULTS:
|
||||
[[file:figs/opt_stiff_primary_plant_damped_X.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 5000);
|
||||
|
||||
@ -381,6 +425,8 @@ We identify these dynamics with and without using the DVF controller.
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_l{i}(1, 1), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@ -392,6 +438,9 @@ We identify these dynamics with and without using the DVF controller.
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G_l{i}(1, 1), freqs, 'Hz')))), ...
|
||||
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_l{i}(1, 1), freqs, 'Hz')))), '--', ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
@ -403,6 +452,226 @@ We identify these dynamics with and without using the DVF controller.
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/opt_stiff_primary_plant_damped_L.pdf', 'width', 'full', 'height', 'full')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:opt_stiff_primary_plant_damped_L
|
||||
#+caption: Primary plant in the space of the legs with (dashed) and without (solid) Direct Velocity Feedback
|
||||
#+RESULTS:
|
||||
[[file:figs/opt_stiff_primary_plant_damped_L.png]]
|
||||
|
||||
*** Effect of the Damping on the coupling dynamics :ignore:
|
||||
The coupling (off diagonal elements) of $\bm{G}_\mathcal{X}$ are shown in Figure [[fig:opt_stiff_primary_plant_damped_coupling_X]] both when DVF is applied and when it is not.
|
||||
|
||||
The coupling does not change a lot with DVF.
|
||||
|
||||
|
||||
The coupling in the space of the legs $\bm{G}_\mathcal{L}$ are shown in Figure [[fig:opt_stiff_primary_plant_damped_coupling_L]].
|
||||
The magnitude of the coupling around the resonance of the nano-hexapod (where the coupling is the highest) is considerably reduced when DVF is applied.
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_x{1}(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{1}(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_x{1}(1, 1), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{1}(1, 1), freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
ylim([1e-12, inf]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/opt_stiff_primary_plant_damped_coupling_X.pdf', 'width', 'full', 'height', 'tall')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:opt_stiff_primary_plant_damped_coupling_X
|
||||
#+caption: Coupling in the primary plant in the task with (dashed) and without (solid) Direct Velocity Feedback
|
||||
#+RESULTS:
|
||||
[[file:figs/opt_stiff_primary_plant_damped_coupling_X.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
for i = 1:5
|
||||
for j = i+1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G_l{1}(i, j), freqs, 'Hz'))), 'color', [0, 0, 0, 0.2]);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_l{1}(i, j), freqs, 'Hz'))), '--', 'color', [0, 0, 0, 0.2]);
|
||||
end
|
||||
end
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_l{1}(1, 1), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_l{1}(1, 1), freqs, 'Hz'))), '--');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
ylim([1e-9, inf]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/opt_stiff_primary_plant_damped_coupling_L.pdf', 'width', 'full', 'height', 'tall')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:opt_stiff_primary_plant_damped_coupling_L
|
||||
#+caption: Coupling in the primary plant in the space of the legs with (dashed) and without (solid) Direct Velocity Feedback
|
||||
#+RESULTS:
|
||||
[[file:figs/opt_stiff_primary_plant_damped_coupling_L.png]]
|
||||
|
||||
** Effect of the Low Authority Control on the Sensibility to Disturbances
|
||||
*** Introduction :ignore:
|
||||
We may now see how Decentralized Direct Velocity Feedback changes the sensibility to disturbances, namely:
|
||||
- Ground motion
|
||||
- Spindle and Translation stage vibrations
|
||||
- Direct forces applied to the sample
|
||||
|
||||
To simplify the analysis, we here only consider the vertical direction, thus, we will look at the transfer functions:
|
||||
- from vertical ground motion $D_{w,z}$ to the vertical position error of the sample $E_z$
|
||||
- from vertical vibration forces of the spindle $F_{R_z,z}$ to $E_z$
|
||||
- from vertical vibration forces of the translation stage $F_{T_y,z}$ to $E_z$
|
||||
- from vertical direct forces (such as cable forces) $F_{d,z}$ to $E_z$
|
||||
|
||||
The norm of these transfer functions are shown in Figure [[fig:opt_stiff_sensibility_dist_dvf]].
|
||||
|
||||
*** Identification :ignore:
|
||||
#+begin_src matlab :exports none
|
||||
%% Name of the Simulink File
|
||||
mdl = 'nass_model';
|
||||
|
||||
%% Micro-Hexapod
|
||||
clear io; io_i = 1;
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Dwz'); io_i = io_i + 1; % Z Ground motion
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fty_z'); io_i = io_i + 1; % Parasitic force Ty - Z
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Frz_z'); io_i = io_i + 1; % Parasitic force Rz - Z
|
||||
io(io_i) = linio([mdl, '/Disturbances'], 1, 'openinput', [], 'Fd'); io_i = io_i + 1; % Direct forces
|
||||
|
||||
io(io_i) = linio([mdl, '/Tracking Error'], 1, 'output', [], 'En'); io_i = io_i + 1; % Position Errror
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
Kdvf_backup = Kdvf;
|
||||
Kdvf = tf(zeros(6));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
Gd = {zeros(length(Ms), 1)};
|
||||
|
||||
for i = 1:length(Ms)
|
||||
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
|
||||
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'Dwz', 'Fty_z', 'Frz_z', 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
|
||||
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
||||
|
||||
Gd(i) = {G};
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
Kdvf = Kdvf_backup;
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
Gd_dvf = {zeros(length(Ms), 1)};
|
||||
|
||||
for i = 1:length(Ms)
|
||||
initializeSample('mass', Ms(i), 'freq', sqrt(Kp/Ms(i))/2/pi*ones(6,1));
|
||||
initializeReferences('Rz_type', 'rotating-not-filtered', 'Rz_period', Ms(i));
|
||||
|
||||
%% Run the linearization
|
||||
G = linearize(mdl, io);
|
||||
G.InputName = {'Dwz', 'Fty_z', 'Frz_z', 'Fdx', 'Fdy', 'Fdz', 'Mdx', 'Mdy', 'Mdz'};
|
||||
G.OutputName = {'Ex', 'Ey', 'Ez', 'Erx', 'Ery', 'Erz'};
|
||||
|
||||
Gd_dvf(i) = {G};
|
||||
end
|
||||
#+end_src
|
||||
|
||||
*** Results :ignore:
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 5000);
|
||||
|
||||
figure;
|
||||
|
||||
subplot(2, 2, 1);
|
||||
title('$D_{w,z}$ to $E_z$');
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'), freqs, 'Hz'))), ...
|
||||
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gd_dvf{i}('Ez', 'Dwz'), freqs, 'Hz'))), '--', ...
|
||||
'HandleVisibility', 'off');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'southeast');
|
||||
|
||||
subplot(2, 2, 2);
|
||||
title('$F_{dz}$ to $E_z$');
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Fdz'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gd_dvf{i}('Ez', 'Fdz'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
subplot(2, 2, 3);
|
||||
title('$F_{T_y,z}$ to $E_z$');
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Fty_z'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gd_dvf{i}('Ez', 'Fty_z'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
subplot(2, 2, 4);
|
||||
title('$F_{R_z,z}$ to $E_z$');
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gd_dvf{i}('Ez', 'Frz_z'), freqs, 'Hz'))), '--');
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/opt_stiff_sensibility_dist_dvf.pdf', 'width', 'full', 'height', 'full')
|
||||
#+end_src
|
||||
|
||||
#+name: fig:opt_stiff_sensibility_dist_dvf
|
||||
#+caption: Norm of the transfer function from vertical disturbances to vertical position error with (dashed) and without (solid) Direct Velocity Feedback applied
|
||||
#+RESULTS:
|
||||
[[file:figs/opt_stiff_sensibility_dist_dvf.png]]
|
||||
|
||||
* Primary Control in the task space
|
||||
** Introduction :ignore:
|
||||
|
||||
@ -477,10 +746,10 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@ -490,8 +759,8 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
|
||||
ax2 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@ -501,10 +770,10 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
|
||||
ax3 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz')))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz')))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4), freqs, 'Hz')))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5), freqs, 'Hz')))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
@ -515,8 +784,8 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz')))), ...
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6), freqs, 'Hz')))), ...
|
||||
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
|
||||
end
|
||||
hold off;
|
||||
@ -628,10 +897,10 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@ -641,8 +910,8 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
|
||||
ax2 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, abs(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
@ -652,10 +921,10 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
|
||||
ax3 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz')))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz')))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(4, 4)*Kx(4,4), freqs, 'Hz')))));
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(5, 5)*Kx(5,5), freqs, 'Hz')))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
@ -666,8 +935,8 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
for i = 1:length(Ms)
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz')))), ...
|
||||
set(gca,'ColorOrderIndex',i);
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gm_x{i}(6, 6)*Kx(6,6), freqs, 'Hz')))), ...
|
||||
'DisplayName', sprintf('$m_p = %.0f [kg]$', Ms(i)));
|
||||
end
|
||||
hold off;
|
||||
@ -690,6 +959,7 @@ Let's look $\bm{G}_\mathcal{X}(s)$.
|
||||
** Simulation
|
||||
|
||||
* Primary Control in the leg space
|
||||
** Introduction :ignore:
|
||||
** Plant in the task space
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|