Analysis of active damping techniques with simscape model
Some flexibility is added to the sample
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -25,7 +25,7 @@
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
#+PROPERTY: header-args:matlab+ :tangle matlab/modal_frf_coh.m
|
||||
#+PROPERTY: header-args:matlab+ :tangle no
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
|
||||
#+PROPERTY: header-args:shell :eval no-export
|
||||
@@ -41,79 +41,8 @@
|
||||
#+PROPERTY: header-args:latex+ :output-dir figs
|
||||
:END:
|
||||
|
||||
* Analysis of the nano-hexapod transfer functions :noexport:
|
||||
** Introduction :ignore:
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no
|
||||
simulinkproject('../');
|
||||
#+end_src
|
||||
|
||||
** Init
|
||||
#+begin_src matlab
|
||||
%% Initialize Ground
|
||||
initializeGround();
|
||||
|
||||
%% Initialize Granite
|
||||
initializeGranite(struct('rigid', false));
|
||||
|
||||
%% Initialize Translation stage
|
||||
initializeTy(struct('rigid', false));
|
||||
|
||||
%% Initialize Tilt Stage
|
||||
initializeRy(struct('rigid', false));
|
||||
|
||||
%% Initialize Spindle
|
||||
initializeRz(struct('rigid', false));
|
||||
|
||||
%% Initialize Hexapod Symétrie
|
||||
initializeMicroHexapod(struct('rigid', false));
|
||||
|
||||
%% Initialize Center of gravity compensation
|
||||
initializeAxisc();
|
||||
|
||||
%% Initialize the mirror
|
||||
initializeMirror();
|
||||
|
||||
%% Initialize the Nano Hexapod
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
|
||||
%% Initialize the Sample
|
||||
initializeSample(struct('mass', 50));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
K = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K', '-append');
|
||||
K_iff = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_iff', '-append');
|
||||
#+end_src
|
||||
|
||||
** Identification
|
||||
#+begin_src matlab
|
||||
G = identifyPlant();
|
||||
#+end_src
|
||||
|
||||
** Force Sensor
|
||||
#+begin_src matlab
|
||||
figure;
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_iff(['Fm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); xlabel('Frequency [Hz]');
|
||||
#+end_src
|
||||
* Introduction :ignore:
|
||||
First, in section [[sec:undamped]], we will looked at the undamped system.
|
||||
First, in section [[sec:undamped_system]], we will looked at the undamped system.
|
||||
|
||||
Then, we will compare three active damping techniques:
|
||||
- In section [[sec:iff]]: the integral force feedback is used
|
||||
@@ -130,7 +59,26 @@ The disturbances are:
|
||||
- Motion errors of all the stages
|
||||
|
||||
* Undamped System
|
||||
<<sec:undamped>>
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/undamped_system.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:undamped_system>>
|
||||
|
||||
** ZIP file containing the data and matlab files :ignore:
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ matlab/undamped_system.m -nt data/undamped_system.zip ]; then
|
||||
cp matlab/undamped_system.m undamped_system.m;
|
||||
zip data/undamped_system \
|
||||
undamped_system.m
|
||||
rm undamped_system.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/undamped_system.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Introduction :ignore:
|
||||
We first look at the undamped system.
|
||||
The performance of this undamped system will be compared with the damped system using various techniques.
|
||||
@@ -157,6 +105,7 @@ We initialize all the stages with the default parameters.
|
||||
The nano-hexapod is a piezoelectric hexapod and the sample has a mass of 50kg.
|
||||
|
||||
#+begin_src matlab
|
||||
initializeInputs();
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
@@ -187,6 +136,11 @@ We identify the various transfer functions of the system
|
||||
G = identifyPlant();
|
||||
#+end_src
|
||||
|
||||
And we save it for further analysis.
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G', '-append');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to disturbances
|
||||
The sensitivity to disturbances are shown on figure [[fig:sensitivity_dist_undamped]].
|
||||
|
||||
@@ -225,6 +179,28 @@ The sensitivity to disturbances are shown on figure [[fig:sensitivity_dist_undam
|
||||
#+CAPTION: Undamped sensitivity to disturbances ([[./figs/sensitivity_dist_undamped.png][png]], [[./figs/sensitivity_dist_undamped.pdf][pdf]])
|
||||
[[file:figs/sensitivity_dist_undamped.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{rz, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{ty, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{ty, x}\right|$');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_dist_stages.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sensitivity_dist_stages
|
||||
#+CAPTION: Sensitivity to force disturbances in various stages ([[./figs/sensitivity_dist_stages.png][png]], [[./figs/sensitivity_dist_stages.pdf][pdf]])
|
||||
[[file:figs/sensitivity_dist_stages.png]]
|
||||
|
||||
** Undamped Plant
|
||||
The "plant" (transfer function from forces applied by the nano-hexapod to the measured displacement of the sample with respect to the granite) bode plot is shown on figure [[fig:sensitivity_dist_undamped]].
|
||||
|
||||
@@ -266,19 +242,37 @@ The "plant" (transfer function from forces applied by the nano-hexapod to the me
|
||||
#+CAPTION: Transfer Function from cartesian forces to displacement for the undamped plant ([[./figs/plant_undamped.png][png]], [[./figs/plant_undamped.pdf][pdf]])
|
||||
[[file:figs/plant_undamped.png]]
|
||||
|
||||
** Save
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G', '-append');
|
||||
* Integral Force Feedback
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/iff.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:iff>>
|
||||
|
||||
** ZIP file containing the data and matlab files :ignore:
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ matlab/iff.m -nt data/iff.zip ]; then
|
||||
cp matlab/iff.m iff.m;
|
||||
zip data/iff \
|
||||
mat/plant.mat \
|
||||
iff.m
|
||||
rm iff.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
* Integral Force Feedback
|
||||
<<sec:iff>>
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/iff.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Introduction :ignore:
|
||||
Integral Force Feedback is applied.
|
||||
In section [[sec:iff_1dof]], IFF is applied on a uni-axial system to understand its behavior.
|
||||
Then, it is applied on the simscape model.
|
||||
|
||||
** One degree-of-freedom example
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle no
|
||||
:END:
|
||||
<<sec:iff_1dof>>
|
||||
*** Equations
|
||||
#+begin_src latex :file iff_1dof.pdf :post pdf2svg(file=*this*, ext="png") :exports results
|
||||
@@ -560,9 +554,10 @@ The corresponding loop gains are shown in figure [[fig:iff_open_loop]].
|
||||
#+CAPTION: Loop Gain for the Integral Force Feedback ([[./figs/iff_open_loop.png][png]], [[./figs/iff_open_loop.pdf][pdf]])
|
||||
[[file:figs/iff_open_loop.png]]
|
||||
|
||||
** Sensitivity to disturbances
|
||||
** Identification of the damped plant
|
||||
Let's initialize the system prior to identification.
|
||||
#+begin_src matlab
|
||||
initializeInputs();
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
@@ -592,6 +587,12 @@ We identify the system dynamics now that the IFF controller is ON.
|
||||
G_iff = identifyPlant();
|
||||
#+end_src
|
||||
|
||||
And we save the damped plant for further analysis
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G_iff', '-append');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to disturbances
|
||||
As shown on figure [[fig:sensitivity_dist_iff]]:
|
||||
- The top platform of the nano-hexapod how behaves as a "free-mass".
|
||||
- The transfer function from direct forces $F_s$ to the relative displacement $D$ is equivalent to the one of an isolated mass.
|
||||
@@ -664,7 +665,7 @@ As shown on figure [[fig:sensitivity_dist_iff]]:
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_dist_stages_iff.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_dist_stages_iff.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
@@ -777,11 +778,6 @@ However, it increases coupling at low frequency (figure [[fig:plant_iff_coupling
|
||||
#+CAPTION: Coupling induced by IFF ([[./figs/plant_iff_coupling.png][png]], [[./figs/plant_iff_coupling.pdf][pdf]])
|
||||
[[file:figs/plant_iff_coupling.png]]
|
||||
|
||||
** Save
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G_iff', '-append');
|
||||
#+end_src
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
Integral Force Feedback:
|
||||
@@ -791,11 +787,34 @@ Integral Force Feedback:
|
||||
#+end_important
|
||||
|
||||
* Relative Motion Control
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/rmc.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:rmc>>
|
||||
|
||||
** ZIP file containing the data and matlab files :ignore:
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ matlab/rmc.m -nt data/rmc.zip ]; then
|
||||
cp matlab/rmc.m rmc.m;
|
||||
zip data/rmc \
|
||||
mat/plant.mat \
|
||||
rmc.m
|
||||
rm rmc.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/rmc.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Introduction :ignore:
|
||||
In the Relative Motion Control (RMC), a derivative feedback is applied between the measured actuator displacement to the actuator force input.
|
||||
|
||||
** One degree-of-freedom example
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle no
|
||||
:END:
|
||||
<<sec:rmc_1dof>>
|
||||
*** Equations
|
||||
#+begin_src latex :file rmc_1dof.pdf :post pdf2svg(file=*this*, ext="png") :exports results
|
||||
@@ -1075,9 +1094,10 @@ The obtained loop gains are shown in figure [[fig:rmc_open_loop]].
|
||||
#+CAPTION: Loop Gain for the Integral Force Feedback ([[./figs/rmc_open_loop.png][png]], [[./figs/rmc_open_loop.pdf][pdf]])
|
||||
[[file:figs/rmc_open_loop.png]]
|
||||
|
||||
** Sensitivity to disturbances
|
||||
** Identification of the damped plant
|
||||
Let's initialize the system prior to identification.
|
||||
#+begin_src matlab
|
||||
initializeInputs();
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
@@ -1107,6 +1127,12 @@ We identify the system dynamics now that the RMC controller is ON.
|
||||
G_rmc = identifyPlant();
|
||||
#+end_src
|
||||
|
||||
And we save the damped plant for further analysis.
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G_rmc', '-append');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to disturbances
|
||||
As shown in figure [[fig:sensitivity_dist_rmc]], RMC control succeed in lowering the sensitivity to disturbances near resonance of the system.
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
@@ -1126,7 +1152,7 @@ As shown in figure [[fig:sensitivity_dist_rmc]], RMC control succeed in lowering
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
legend('location', 'southeast');
|
||||
|
||||
subplot(2, 1, 2);
|
||||
title('$F_s$ to $D$');
|
||||
@@ -1170,7 +1196,7 @@ As shown in figure [[fig:sensitivity_dist_rmc]], RMC control succeed in lowering
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_dist_stages_rmc.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_dist_stages_rmc.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
@@ -1252,11 +1278,6 @@ As shown in figure [[fig:sensitivity_dist_rmc]], RMC control succeed in lowering
|
||||
#+CAPTION: Damped Plant after RMC is applied ([[./figs/plant_rmc_damped.png][png]], [[./figs/plant_rmc_damped.pdf][pdf]])
|
||||
[[file:figs/plant_rmc_damped.png]]
|
||||
|
||||
** Save
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G_rmc', '-append');
|
||||
#+end_src
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
Relative Motion Control:
|
||||
@@ -1264,11 +1285,34 @@ Relative Motion Control:
|
||||
#+end_important
|
||||
|
||||
* Direct Velocity Feedback
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/dvf.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:dvf>>
|
||||
|
||||
** ZIP file containing the data and matlab files :ignore:
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ matlab/dvf.m -nt data/dvf.zip ]; then
|
||||
cp matlab/dvf.m dvf.m;
|
||||
zip data/dvf \
|
||||
mat/plant.mat \
|
||||
dvf.m
|
||||
rm dvf.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/dvf.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Introduction :ignore:
|
||||
In the Relative Motion Control (RMC), a feedback is applied between the measured velocity of the platform to the actuator force input.
|
||||
|
||||
** One degree-of-freedom example
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle no
|
||||
:END:
|
||||
<<sec:dvf_1dof>>
|
||||
*** Equations
|
||||
#+begin_src latex :file dvf_1dof.pdf :post pdf2svg(file=*this*, ext="png") :exports results
|
||||
@@ -1481,8 +1525,6 @@ Let's load the undamped plant:
|
||||
|
||||
Let's look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure [[fig:dvf_plant]]).
|
||||
|
||||
The plant looks to complicated to be reasonably controlled.
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
@@ -1520,15 +1562,241 @@ The plant looks to complicated to be reasonably controlled.
|
||||
#+CAPTION: Transfer function from forces applied in the legs to leg velocity sensor ([[./figs/dvf_plant.png][png]], [[./figs/dvf_plant.pdf][pdf]])
|
||||
[[file:figs/dvf_plant.png]]
|
||||
|
||||
The controller is defined below and the obtained loop gain is shown in figure [[fig:dvf_open_loop_gain]].
|
||||
|
||||
#+begin_src matlab
|
||||
K_dvf = tf(3e4);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, abs(squeeze(freqresp(K_dvf*G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(K_dvf*G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/dvf_open_loop_gain.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:dvf_open_loop_gain
|
||||
#+CAPTION: Loop Gain for DVF ([[./figs/dvf_open_loop_gain.png][png]], [[./figs/dvf_open_loop_gain.pdf][pdf]])
|
||||
[[file:figs/dvf_open_loop_gain.png]]
|
||||
|
||||
** Identification of the damped plant
|
||||
Let's initialize the system prior to identification.
|
||||
#+begin_src matlab
|
||||
initializeInputs();
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
#+end_src
|
||||
|
||||
And initialize the controllers.
|
||||
#+begin_src matlab
|
||||
K = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K', '-append');
|
||||
K_iff = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_iff', '-append');
|
||||
K_rmc = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_rmc', '-append');
|
||||
K_dvf = -K_dvf*eye(6);
|
||||
save('./mat/controllers.mat', 'K_dvf', '-append');
|
||||
#+end_src
|
||||
|
||||
We identify the system dynamics now that the RMC controller is ON.
|
||||
#+begin_src matlab
|
||||
G_dvf = identifyPlant();
|
||||
#+end_src
|
||||
|
||||
And we save the damped plant for further analysis.
|
||||
#+begin_src matlab
|
||||
save('./active_damping/mat/plants.mat', 'G_dvf', '-append');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to disturbances
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
subplot(2, 1, 1);
|
||||
title('$D_g$ to $D$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / D_{g,x}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / D_{g,y}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / D_{g,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
subplot(2, 1, 2);
|
||||
title('$F_s$ to $D$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{s,x}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{s,y}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{s,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_dist_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sensitivity_dist_dvf
|
||||
#+CAPTION: Sensitivity to disturbance once the DVF controller is applied to the system ([[./figs/sensitivity_dist_dvf.png][png]], [[./figs/sensitivity_dist_dvf.pdf][pdf]])
|
||||
[[file:figs/sensitivity_dist_dvf.png]]
|
||||
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{rz, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{ty, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{ty, x}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_dist_stages_dvf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sensitivity_dist_stages_dvf
|
||||
#+CAPTION: Sensitivity to force disturbances in various stages when DVF is applied ([[./figs/sensitivity_dist_stages_dvf.png][png]], [[./figs/sensitivity_dist_stages_dvf.pdf][pdf]])
|
||||
[[file:figs/sensitivity_dist_stages_dvf.png]]
|
||||
|
||||
** Damped Plant
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
|
||||
ax2 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [rad/(Nm)]'); xlabel('Frequency [Hz]');
|
||||
|
||||
ax3 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{n,x}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{n,y}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{n,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), 'DisplayName', '$\left|R_x / M_{n,x}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))), 'DisplayName', '$\left|R_y / M_{n,y}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), 'DisplayName', '$\left|R_z / M_{n,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/plant_dvf_damped.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:plant_dvf_damped
|
||||
#+CAPTION: Damped Plant after DVF is applied ([[./figs/plant_dvf_damped.png][png]], [[./figs/plant_dvf_damped.pdf][pdf]])
|
||||
[[file:figs/plant_dvf_damped.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
Direct Velocity Feedback:
|
||||
- Not usable
|
||||
#+end_important
|
||||
|
||||
* Comparison
|
||||
<<sec:comparison>>
|
||||
|
||||
** Introduction :ignore:
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
@@ -1542,36 +1810,254 @@ Direct Velocity Feedback:
|
||||
cd('../');
|
||||
#+end_src
|
||||
|
||||
** Comparison
|
||||
** Load the plants
|
||||
#+begin_src matlab
|
||||
load('./active_damping/mat/plants.mat', 'G', 'G_iff', 'G_rmc');
|
||||
load('./active_damping/mat/plants.mat', 'G', 'G_iff', 'G_rmc', 'G_dvf');
|
||||
#+end_src
|
||||
|
||||
** Sensitivity to Disturbance
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
title('$D_{g,z}$ to $D_z$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm( 'Dz', 'Dgz'), freqs, 'Hz'))), 'k-' , 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), 'k:' , 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), 'k--', 'DisplayName', 'RMC');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), 'k-.', 'DisplayName', 'DVF');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_comp_ground_motion_z.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sensitivity_comp_ground_motion_z
|
||||
#+CAPTION: caption ([[./figs/sensitivity_comp_ground_motion_z.png][png]], [[./figs/sensitivity_comp_ground_motion_z.pdf][pdf]])
|
||||
[[file:figs/sensitivity_comp_ground_motion_z.png]]
|
||||
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
title('$F_{s,z}$ to $D_z$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs( 'Dz', 'Fsz'), freqs, 'Hz'))), 'k-' , 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), 'k:' , 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), 'k--', 'DisplayName', 'RMC');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), 'k-.', 'DisplayName', 'DVF');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_comp_direct_forces_z.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sensitivity_comp_direct_forces_z
|
||||
#+CAPTION: caption ([[./figs/sensitivity_comp_direct_forces_z.png][png]], [[./figs/sensitivity_comp_direct_forces_z.pdf][pdf]])
|
||||
[[file:figs/sensitivity_comp_direct_forces_z.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
title('$F_{rz,z}$ to $D_z$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist( 'Dz', 'Frzz'), freqs, 'Hz'))), 'k-' , 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'k:' , 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'k--', 'DisplayName', 'RMC');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'k-.', 'DisplayName', 'DVF');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_comp_spindle_z.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sensitivity_comp_spindle_z
|
||||
#+CAPTION: caption ([[./figs/sensitivity_comp_spindle_z.png][png]], [[./figs/sensitivity_comp_spindle_z.pdf][pdf]])
|
||||
[[file:figs/sensitivity_comp_spindle_z.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
title('$F_{ty,z}$ to $D_z$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist( 'Dz', 'Ftyz'), freqs, 'Hz'))), 'k-' , 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'k:' , 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'k--', 'DisplayName', 'RMC');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'k-.', 'DisplayName', 'DVF');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_comp_ty_z.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sensitivity_comp_ty_z
|
||||
#+CAPTION: caption ([[./figs/sensitivity_comp_ty_z.png][png]], [[./figs/sensitivity_comp_ty_z.pdf][pdf]])
|
||||
[[file:figs/sensitivity_comp_ty_z.png]]
|
||||
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
title('$F_{ty,x}$ to $D_x$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist( 'Dx', 'Ftyx'), freqs, 'Hz'))), 'k-' , 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'k:' , 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'k--', 'DisplayName', 'RMC');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'k-.', 'DisplayName', 'DVF');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/sensitivity_comp_ty_x.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:sensitivity_comp_ty_x
|
||||
#+CAPTION: caption ([[./figs/sensitivity_comp_ty_x.png][png]], [[./figs/sensitivity_comp_ty_x.pdf][pdf]])
|
||||
[[file:figs/sensitivity_comp_ty_x.png]]
|
||||
|
||||
** Damped Plant
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
title('$F_{n,z}$ to $D_z$');
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart( 'Dz', 'Fnz'), freqs, 'Hz'))), 'k-' , 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'k:' , 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'k--', 'DisplayName', 'RMC');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'k-.', 'DisplayName', 'DVF');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart ('Dz', 'Fnz'), freqs, 'Hz'))), 'k-');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'k:');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'k--');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'k-.');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/plant_comp_damping_z.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:plant_comp_damping_z
|
||||
#+CAPTION: Plant for the $z$ direction for different active damping technique used ([[./figs/plant_comp_damping_z.png][png]], [[./figs/plant_comp_damping_z.pdf][pdf]])
|
||||
[[file:figs/plant_comp_damping_z.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
subplot(2, 1, 1);
|
||||
title('$D_g$ to $D$');
|
||||
title('$F_{n,z}$ to $D_z$');
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm( 'Dx', 'Dgx'), freqs, 'Hz'))), 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), 'DisplayName', 'RMC');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart( 'Dx', 'Fnx'), freqs, 'Hz'))), 'k-' , 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'k:' , 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'k--', 'DisplayName', 'RMC');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'k-.', 'DisplayName', 'DVF');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
subplot(2, 1, 2);
|
||||
title('$F_s$ to $D$');
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs( 'Dx', 'Fsx'), freqs, 'Hz'))), 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), 'DisplayName', 'RMC');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart ('Dx', 'Fnx'), freqs, 'Hz'))), 'k-');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'k:');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'k--');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'k-.');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/plant_comp_damping_x.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:plant_comp_damping_x
|
||||
#+CAPTION: Plant for the $x$ direction for different active damping technique used ([[./figs/plant_comp_damping_x.png][png]], [[./figs/plant_comp_damping_x.pdf][pdf]])
|
||||
[[file:figs/plant_comp_damping_x.png]]
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
title('$F_{n,x}$ to $R_z$');
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart( 'Rz', 'Fnx'), freqs, 'Hz'))), 'k-' , 'DisplayName', 'Undamped');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart('Rz', 'Fnx'), freqs, 'Hz'))), 'k:' , 'DisplayName', 'IFF');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Rz', 'Fnx'), freqs, 'Hz'))), 'k--', 'DisplayName', 'RMC');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Rz', 'Fnx'), freqs, 'Hz'))), 'k-.', 'DisplayName', 'DVF');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart ('Ry', 'Fnx'), freqs, 'Hz'))), 'k-');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff.G_cart('Ry', 'Fnx'), freqs, 'Hz'))), 'k:');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Ry', 'Fnx'), freqs, 'Hz'))), 'k--');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Ry', 'Fnx'), freqs, 'Hz'))), 'k-.');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
#+end_src
|
||||
|
||||
#+HEADER: :tangle no :exports results :results none :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/plant_comp_damping_coupling.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:plant_comp_damping_coupling
|
||||
#+CAPTION: Comparison of one off-diagonal plant for different damping technique applied ([[./figs/plant_comp_damping_coupling.png][png]], [[./figs/plant_comp_damping_coupling.pdf][pdf]])
|
||||
[[file:figs/plant_comp_damping_coupling.png]]
|
||||
|
||||
* Conclusion
|
||||
<<sec:conclusion>>
|
||||
|
241
active_damping/matlab/dvf.m
Normal file
241
active_damping/matlab/dvf.m
Normal file
@@ -0,0 +1,241 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
open 'simscape/sim_nano_station_id.slx'
|
||||
|
||||
% Control Design
|
||||
% Let's load the undamped plant:
|
||||
|
||||
load('./active_damping/mat/plants.mat', 'G');
|
||||
|
||||
|
||||
|
||||
% Let's look at the transfer function from actuator forces in the nano-hexapod to the measured velocity of the nano-hexapod platform in the direction of the corresponding actuator for all 6 pairs of actuator/sensor (figure [[fig:dvf_plant]]).
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:dvf_plant
|
||||
% #+CAPTION: Transfer function from forces applied in the legs to leg velocity sensor ([[./figs/dvf_plant.png][png]], [[./figs/dvf_plant.pdf][pdf]])
|
||||
% [[file:figs/dvf_plant.png]]
|
||||
|
||||
% The controller is defined below and the obtained loop gain is shown in figure [[fig:dvf_open_loop_gain]].
|
||||
|
||||
|
||||
K_dvf = tf(3e4);
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, abs(squeeze(freqresp(K_dvf*G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(K_dvf*G.G_geoph(['Vm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
% Identification of the damped plant
|
||||
% Let's initialize the system prior to identification.
|
||||
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
|
||||
|
||||
|
||||
% And initialize the controllers.
|
||||
|
||||
K = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K', '-append');
|
||||
K_iff = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_iff', '-append');
|
||||
K_rmc = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_rmc', '-append');
|
||||
K_dvf = -K_dvf*eye(6);
|
||||
save('./mat/controllers.mat', 'K_dvf', '-append');
|
||||
|
||||
|
||||
|
||||
% We identify the system dynamics now that the RMC controller is ON.
|
||||
|
||||
G_dvf = identifyPlant();
|
||||
|
||||
|
||||
|
||||
% And we save the damped plant for further analysis.
|
||||
|
||||
save('./active_damping/mat/plants.mat', 'G_dvf', '-append');
|
||||
|
||||
% Sensitivity to disturbances
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
subplot(2, 1, 1);
|
||||
title('$D_g$ to $D$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / D_{g,x}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / D_{g,y}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / D_{g,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
subplot(2, 1, 2);
|
||||
title('$F_s$ to $D$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{s,x}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{s,y}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{s,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:sensitivity_dist_dvf
|
||||
% #+CAPTION: Sensitivity to disturbance once the DVF controller is applied to the system ([[./figs/sensitivity_dist_dvf.png][png]], [[./figs/sensitivity_dist_dvf.pdf][pdf]])
|
||||
% [[file:figs/sensitivity_dist_dvf.png]]
|
||||
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{rz, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{ty, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{ty, x}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
% Damped Plant
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
|
||||
ax2 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_dvf.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [rad/(Nm)]'); xlabel('Frequency [Hz]');
|
||||
|
||||
ax3 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{n,x}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{n,y}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{n,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), 'DisplayName', '$\left|R_x / M_{n,x}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))), 'DisplayName', '$\left|R_y / M_{n,y}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), 'DisplayName', '$\left|R_z / M_{n,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_dvf.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
281
active_damping/matlab/iff.m
Normal file
281
active_damping/matlab/iff.m
Normal file
@@ -0,0 +1,281 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
open 'simscape/sim_nano_station_id.slx'
|
||||
|
||||
% Control Design
|
||||
% Let's load the undamped plant:
|
||||
|
||||
load('./active_damping/mat/plants.mat', 'G');
|
||||
|
||||
|
||||
|
||||
% Let's look at the transfer function from actuator forces in the nano-hexapod to the force sensor in the nano-hexapod legs for all 6 pairs of actuator/sensor (figure [[fig:iff_plant]]).
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_iff(['Fm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_iff(['Fm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:iff_plant
|
||||
% #+CAPTION: Transfer function from forces applied in the legs to force sensor ([[./figs/iff_plant.png][png]], [[./figs/iff_plant.pdf][pdf]])
|
||||
% [[file:figs/iff_plant.png]]
|
||||
|
||||
% The controller for each pair of actuator/sensor is:
|
||||
|
||||
K_iff = -1000/s;
|
||||
|
||||
|
||||
|
||||
% The corresponding loop gains are shown in figure [[fig:iff_open_loop]].
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, abs(squeeze(freqresp(K_iff*G.G_iff(['Fm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [N/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(K_iff*G.G_iff(['Fm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
% Identification of the damped plant
|
||||
% Let's initialize the system prior to identification.
|
||||
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
|
||||
|
||||
|
||||
% All the controllers are set to 0.
|
||||
|
||||
K = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K', '-append');
|
||||
K_iff = -K_iff*eye(6);
|
||||
save('./mat/controllers.mat', 'K_iff', '-append');
|
||||
K_rmc = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_rmc', '-append');
|
||||
K_dvf = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_dvf', '-append');
|
||||
|
||||
|
||||
|
||||
% We identify the system dynamics now that the IFF controller is ON.
|
||||
|
||||
G_iff = identifyPlant();
|
||||
|
||||
|
||||
|
||||
% And we save the damped plant for further analysis
|
||||
|
||||
save('./active_damping/mat/plants.mat', 'G_iff', '-append');
|
||||
|
||||
% Sensitivity to disturbances
|
||||
% As shown on figure [[fig:sensitivity_dist_iff]]:
|
||||
% - The top platform of the nano-hexapod how behaves as a "free-mass".
|
||||
% - The transfer function from direct forces $F_s$ to the relative displacement $D$ is equivalent to the one of an isolated mass.
|
||||
% - The transfer function from ground motion $D_g$ to the relative displacement $D$ tends to the transfer function from $D_g$ to the displacement of the granite (the sample is being isolated thanks to IFF).
|
||||
% However, as the goal is to make the relative displacement $D$ as small as possible (e.g. to make the sample motion follows the granite motion), this is not a good thing.
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
subplot(2, 1, 1);
|
||||
title('$D_g$ to $D$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / D_{g,x}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / D_{g,y}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / D_{g,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
subplot(2, 1, 2);
|
||||
title('$F_s$ to $D$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{s,x}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{s,y}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{s,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:sensitivity_dist_iff
|
||||
% #+CAPTION: Sensitivity to disturbance once the IFF controller is applied to the system ([[./figs/sensitivity_dist_iff.png][png]], [[./figs/sensitivity_dist_iff.pdf][pdf]])
|
||||
% [[file:figs/sensitivity_dist_iff.png]]
|
||||
|
||||
% #+begin_warning
|
||||
% The order of the models are very high and thus the plots may be wrong.
|
||||
% For instance, the plots are not the same when using =minreal=.
|
||||
% #+end_warning
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{rz, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{ty, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{ty, x}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(minreal(prescale(G_iff.G_dist('Dz', 'Frzz'), {2*pi, 2*pi*1e3})), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(minreal(G_iff.G_dist('Dz', 'Ftyz')), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(minreal(G_iff.G_dist('Dx', 'Ftyx')), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
% Damped Plant
|
||||
% Now, look at the new damped plant to control.
|
||||
|
||||
% It damps the plant (resonance of the nano hexapod as well as other resonances) as shown in figure [[fig:plant_iff_damped]].
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
|
||||
ax2 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [rad/(Nm)]'); xlabel('Frequency [Hz]');
|
||||
|
||||
ax3 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{n,x}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{n,y}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{n,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), 'DisplayName', '$\left|R_x / M_{n,x}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))), 'DisplayName', '$\left|R_y / M_{n,y}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), 'DisplayName', '$\left|R_z / M_{n,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_iff.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:plant_iff_damped
|
||||
% #+CAPTION: Damped Plant after IFF is applied ([[./figs/plant_iff_damped.png][png]], [[./figs/plant_iff_damped.pdf][pdf]])
|
||||
% [[file:figs/plant_iff_damped.png]]
|
||||
|
||||
% However, it increases coupling at low frequency (figure [[fig:plant_iff_coupling]]).
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
for ix = 1:6
|
||||
for iy = 1:6
|
||||
subplot(6, 6, (ix-1)*6 + iy);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart(ix, iy), freqs, 'Hz'))), 'k-');
|
||||
plot(freqs, abs(squeeze(freqresp(G_iff.G_cart(ix, iy), freqs, 'Hz'))), 'k--');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylim([1e-12, 1e-5]);
|
||||
end
|
||||
end
|
246
active_damping/matlab/rmc.m
Normal file
246
active_damping/matlab/rmc.m
Normal file
@@ -0,0 +1,246 @@
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
open 'simscape/sim_nano_station_id.slx'
|
||||
|
||||
% Control Design
|
||||
% Let's load the undamped plant:
|
||||
|
||||
load('./active_damping/mat/plants.mat', 'G');
|
||||
|
||||
|
||||
|
||||
% Let's look at the transfer function from actuator forces in the nano-hexapod to the measured displacement of the actuator for all 6 pairs of actuator/sensor (figure [[fig:rmc_plant]]).
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dleg(['Dm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_dleg(['Dm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:rmc_plant
|
||||
% #+CAPTION: Transfer function from forces applied in the legs to leg displacement sensor ([[./figs/rmc_plant.png][png]], [[./figs/rmc_plant.pdf][pdf]])
|
||||
% [[file:figs/rmc_plant.png]]
|
||||
|
||||
% The Relative Motion Controller is defined below.
|
||||
% A Low pass Filter is added to make the controller transfer function proper.
|
||||
|
||||
K_rmc = s*50000/(1 + s/2/pi/10000);
|
||||
|
||||
|
||||
|
||||
% The obtained loop gains are shown in figure [[fig:rmc_open_loop]].
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, abs(squeeze(freqresp(K_rmc*G.G_dleg(['Dm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); set(gca, 'XTickLabel',[]);
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
for i=1:6
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(K_rmc*G.G_dleg(['Dm', num2str(i)], ['F', num2str(i)]), freqs, 'Hz'))));
|
||||
end
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
|
||||
% Identification of the damped plant
|
||||
% Let's initialize the system prior to identification.
|
||||
|
||||
initializeGround();
|
||||
initializeGranite();
|
||||
initializeTy();
|
||||
initializeRy();
|
||||
initializeRz();
|
||||
initializeMicroHexapod();
|
||||
initializeAxisc();
|
||||
initializeMirror();
|
||||
initializeNanoHexapod(struct('actuator', 'piezo'));
|
||||
initializeSample(struct('mass', 50));
|
||||
|
||||
|
||||
|
||||
% And initialize the controllers.
|
||||
|
||||
K = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K', '-append');
|
||||
K_iff = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_iff', '-append');
|
||||
K_rmc = -K_rmc*eye(6);
|
||||
save('./mat/controllers.mat', 'K_rmc', '-append');
|
||||
K_dvf = tf(zeros(6));
|
||||
save('./mat/controllers.mat', 'K_dvf', '-append');
|
||||
|
||||
|
||||
|
||||
% We identify the system dynamics now that the RMC controller is ON.
|
||||
|
||||
G_rmc = identifyPlant();
|
||||
|
||||
|
||||
|
||||
% And we save the damped plant for further analysis.
|
||||
|
||||
save('./active_damping/mat/plants.mat', 'G_rmc', '-append');
|
||||
|
||||
% Sensitivity to disturbances
|
||||
% As shown in figure [[fig:sensitivity_dist_rmc]], RMC control succeed in lowering the sensitivity to disturbances near resonance of the system.
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
subplot(2, 1, 1);
|
||||
title('$D_g$ to $D$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / D_{g,x}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / D_{g,y}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / D_{g,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_gm('Dx', 'Dgx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_gm('Dy', 'Dgy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_gm('Dz', 'Dgz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/m]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
subplot(2, 1, 2);
|
||||
title('$F_s$ to $D$');
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{s,x}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{s,y}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{s,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_fs('Dx', 'Fsx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_fs('Dy', 'Fsy'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_fs('Dz', 'Fsz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:sensitivity_dist_rmc
|
||||
% #+CAPTION: Sensitivity to disturbance once the RMC controller is applied to the system ([[./figs/sensitivity_dist_rmc.png][png]], [[./figs/sensitivity_dist_rmc.pdf][pdf]])
|
||||
% [[file:figs/sensitivity_dist_rmc.png]]
|
||||
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{rz, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{ty, z}\right|$');
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{ty, x}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_dist('Dz', 'Frzz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_dist('Dz', 'Ftyz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_dist('Dx', 'Ftyx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
legend('location', 'northeast');
|
||||
|
||||
% Damped Plant
|
||||
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
|
||||
ax1 = subplot(2, 2, 1);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [m/N]'); xlabel('Frequency [Hz]');
|
||||
|
||||
ax2 = subplot(2, 2, 2);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))));
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--');
|
||||
plot(freqs, abs(squeeze(freqresp(G_rmc.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--');
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Amplitude [rad/(Nm)]'); xlabel('Frequency [Hz]');
|
||||
|
||||
ax3 = subplot(2, 2, 3);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), 'DisplayName', '$\left|D_x / F_{n,x}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dy', 'Fny'), freqs, 'Hz'))), 'DisplayName', '$\left|D_y / F_{n,y}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), 'DisplayName', '$\left|D_z / F_{n,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Dx', 'Fnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Dy', 'Fny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Dz', 'Fnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
ax4 = subplot(2, 2, 4);
|
||||
hold on;
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), 'DisplayName', '$\left|R_x / M_{n,x}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Ry', 'Mny'), freqs, 'Hz'))), 'DisplayName', '$\left|R_y / M_{n,y}\right|$');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), 'DisplayName', '$\left|R_z / M_{n,z}\right|$');
|
||||
set(gca,'ColorOrderIndex',1);
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Rx', 'Mnx'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Ry', 'Mny'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
plot(freqs, 180/pi*angle(squeeze(freqresp(G_rmc.G_cart('Rz', 'Mnz'), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
ylabel('Phase [deg]'); xlabel('Frequency [Hz]');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
legend('location', 'northwest');
|
||||
|
||||
linkaxes([ax1,ax2,ax3,ax4],'x');
|
Reference in New Issue
Block a user