Update centrifugal forces analytical values
This commit is contained in:
parent
81ad4485c3
commit
860cae4d1a
Binary file not shown.
Binary file not shown.
Before Width: | Height: | Size: 35 KiB After Width: | Height: | Size: 34 KiB |
Binary file not shown.
194
org/centrifugal_forces.html
Normal file
194
org/centrifugal_forces.html
Normal file
@ -0,0 +1,194 @@
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<?xml version="1.0" encoding="utf-8"?>
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-05-06 mer. 16:02 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Centrifugal Forces</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
<meta name="author" content="Dehaeze Thomas" />
|
||||
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
||||
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
||||
<script src="./js/jquery.min.js"></script>
|
||||
<script src="./js/bootstrap.min.js"></script>
|
||||
<script src="./js/jquery.stickytableheaders.min.js"></script>
|
||||
<script src="./js/readtheorg.js"></script>
|
||||
<script>MathJax = {
|
||||
tex: {
|
||||
tags: 'ams',
|
||||
macros: {bm: ["\\boldsymbol{#1}",1],}
|
||||
}
|
||||
};
|
||||
</script>
|
||||
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
<div id="org-div-home-and-up">
|
||||
<a accesskey="h" href="./index.html"> UP </a>
|
||||
|
|
||||
<a accesskey="H" href="./index.html"> HOME </a>
|
||||
</div><div id="content">
|
||||
<h1 class="title">Centrifugal Forces</h1>
|
||||
<div id="table-of-contents">
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#orga1e0a81">1. Parameters</a></li>
|
||||
<li><a href="#orge469792">2. Centrifugal forces for light and heavy sample</a></li>
|
||||
<li><a href="#orgb479647">3. Centrifugal forces as a function of the rotation speed</a></li>
|
||||
<li><a href="#orgd6375c3">4. Maximum rotation speed as a function of the mass</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
In this document, we wish to estimate the centrifugal forces due to the spindle’s rotation when the sample’s center of mass is off-centered with respect to the rotation axis.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
This is the case then the sample is moved by the micro-hexapod.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The centrifugal forces are defined as represented Figure <a href="#org1cf510f">1</a> where:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li>\(M\) is the total mass of the rotating elements in \([kg]\)</li>
|
||||
<li>\(\omega\) is the rotation speed in \([rad/s]\)</li>
|
||||
<li>\(r\) is the distance to the rotation axis in \([m]\)</li>
|
||||
</ul>
|
||||
|
||||
|
||||
<div id="org1cf510f" class="figure">
|
||||
<p><img src="./figs/centrifugal.png" alt="centrifugal.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 1: </span>Centrifugal forces</p>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga1e0a81" class="outline-2">
|
||||
<h2 id="orga1e0a81"><span class="section-number-2">1</span> Parameters</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
<p>
|
||||
We define some parameters for the computation.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The mass of the sample can vary from \(1\,kg\) to \(50\,kg\) to which is added to mass of the metrology reflector and the nano-hexapod’s top platform (here set to \(15\,kg\)).
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">M_light = 16; % mass of excentred parts mooving [kg]
|
||||
M_heavy = 65; % [kg]
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
For the light mass, the rotation speed is 60rpm whereas for the heavy mass, it is equal to 1rpm.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">w_light = 2*pi; % rotational speed [rad/s]
|
||||
w_heavy = 2*pi/60; % rotational speed [rad/s]
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Finally, we consider a mass eccentricity of \(10\,mm\).
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">R = 0.01; % Excentricity [m]
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge469792" class="outline-2">
|
||||
<h2 id="orge469792"><span class="section-number-2">2</span> Centrifugal forces for light and heavy sample</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
<p>
|
||||
From the formula \(F_c = m \omega^2 r\), we obtain the values shown below.
|
||||
</p>
|
||||
|
||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
|
||||
|
||||
<colgroup>
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-right" />
|
||||
</colgroup>
|
||||
<thead>
|
||||
<tr>
|
||||
<th scope="col" class="org-left"> </th>
|
||||
<th scope="col" class="org-right">Force [N]</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="org-left">light</td>
|
||||
<td class="org-right">6.32</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">heavy</td>
|
||||
<td class="org-right">0.01</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgb479647" class="outline-2">
|
||||
<h2 id="orgb479647"><span class="section-number-2">3</span> Centrifugal forces as a function of the rotation speed</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<p>
|
||||
The centrifugal forces as a function of the rotation speed for light and heavy sample is shown on Figure <a href="#orgdb75476">2</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgdb75476" class="figure">
|
||||
<p><img src="figs/centrifugal_forces_rpm.png" alt="centrifugal_forces_rpm.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 2: </span>Centrifugal forces function of the rotation speed</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgd6375c3" class="outline-2">
|
||||
<h2 id="orgd6375c3"><span class="section-number-2">4</span> Maximum rotation speed as a function of the mass</h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
<p>
|
||||
We plot the maximum rotation speed as a function of the mass for different maximum force that we can use to counteract the centrifugal forces (Figure <a href="#org522f2af">3</a>).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
From a specified maximum allowed centrifugal force (here set to \(10\,[N]\)), the maximum rotation speed as a function of the sample’s mass is shown in Figure <a href="#org522f2af">3</a>.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">F_max = 10; % Maximum accepted centrifugal forces [N]
|
||||
|
||||
R = 0.01;
|
||||
|
||||
M_sample = 0:1:100;
|
||||
M_reflector = 15;
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org522f2af" class="figure">
|
||||
<p><img src="figs/max_force_rpm.png" alt="max_force_rpm.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 3: </span>Maximum rotation speed as a function of the sample mass for an allowed centrifugal force of \(100\,[N]\)</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-05-06 mer. 16:02</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
@ -42,7 +42,7 @@ For the light mass, the rotation speed is 60rpm whereas for the heavy mass, it i
|
||||
|
||||
Finally, we consider a mass eccentricity of $10\,mm$.
|
||||
#+begin_src matlab
|
||||
R = 0.1; % Excentricity [m]
|
||||
R = 0.01; % Excentricity [m]
|
||||
#+end_src
|
||||
|
||||
* Centrifugal forces for light and heavy sample
|
||||
@ -51,14 +51,14 @@ From the formula $F_c = m \omega^2 r$, we obtain the values shown below.
|
||||
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
|
||||
data = [M_light*R*w_light^2;
|
||||
M_heavy*R*w_heavy^2];
|
||||
data2orgtable(data, {'light', 'heavy'}, {'Force [N]'}, ' %.1f ');
|
||||
data2orgtable(data, {'light', 'heavy'}, {'Force [N]'}, ' %.2f ');
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
| | Force [N] |
|
||||
|-------+-----------|
|
||||
| light | 63.2 |
|
||||
| heavy | 0.1 |
|
||||
| light | 6.32 |
|
||||
| heavy | 0.01 |
|
||||
|
||||
* Centrifugal forces as a function of the rotation speed
|
||||
The centrifugal forces as a function of the rotation speed for light and heavy sample is shown on Figure [[fig:centrifugal_forces_rpm]].
|
||||
@ -87,12 +87,12 @@ exportFig('figs/centrifugal_forces_rpm.pdf', 'width', 'wide', 'height', 'tall')
|
||||
* Maximum rotation speed as a function of the mass
|
||||
We plot the maximum rotation speed as a function of the mass for different maximum force that we can use to counteract the centrifugal forces (Figure [[fig:max_force_rpm]]).
|
||||
|
||||
From a specified maximum allowed centrifugal force (here set to $100\,[N]$), the maximum rotation speed as a function of the sample's mass is shown in Figure [[fig:max_force_rpm]].
|
||||
From a specified maximum allowed centrifugal force (here set to $10\,[N]$), the maximum rotation speed as a function of the sample's mass is shown in Figure [[fig:max_force_rpm]].
|
||||
|
||||
#+begin_src matlab
|
||||
F_max = 100; % Maximum accepted centrifugal forces [N]
|
||||
F_max = 10; % Maximum accepted centrifugal forces [N]
|
||||
|
||||
R = 0.1;
|
||||
R = 0.01;
|
||||
|
||||
M_sample = 0:1:100;
|
||||
M_reflector = 15;
|
||||
|
Loading…
Reference in New Issue
Block a user