Add metrology element (change of base, computation of error)

Lot's of new things:
- try to use less .mat files
- computation of setpoint and error in the cartesian frame fixed to the granite
- change of base to have the errors w.r.t. the NASS base
- add script to plot setpoint, position and error
This commit is contained in:
Thomas Dehaeze 2018-10-24 15:08:23 +02:00
parent baedb9b571
commit 7575aee987
36 changed files with 447 additions and 135 deletions

View File

@ -5,7 +5,7 @@ clear; close all; clc;
load('./mat/G_xg_to_d.mat', 'G_xg_to_d'); load('./mat/G_xg_to_d.mat', 'G_xg_to_d');
%% Load shape of the perturbation %% Load shape of the perturbation
load('./mat/weight_Wxg.mat', 'Wxg'); load('./mat/perturbations.mat', 'Wxg');
%% Effect of the perturbation on the output %% Effect of the perturbation on the output
freqs = logspace(-1, 3, 1000); freqs = logspace(-1, 3, 1000);

View File

@ -5,7 +5,7 @@ clear; close all; clc;
load('./mat/Gd_ol_cl.mat', 'Gd_ol_20', 'Gd_cl_20'); load('./mat/Gd_ol_cl.mat', 'Gd_ol_20', 'Gd_cl_20');
%% %%
load('./mat/weight_Wxg.mat', 'Wxg') load('./mat/perturbations.mat', 'Wxg')
%% %%
load('./mat/G_gm_to_dh.mat', 'G_gm_to_dh') load('./mat/G_gm_to_dh.mat', 'G_gm_to_dh')
@ -44,5 +44,3 @@ set(gca, 'XScale', 'log');
% set(gca, 'YScale', 'log'); % set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('CAS [m]'); xlabel('Frequency [Hz]'); ylabel('CAS [m]');
hold off; hold off;

View File

@ -123,7 +123,7 @@ exportFig('gm_control_psd_y', 'normal-normal')
%% Compare OL and CL - PSD %% Compare OL and CL - PSD
load('./mat/G_xg_to_d.mat', 'G_xg_to_d'); load('./mat/G_xg_to_d.mat', 'G_xg_to_d');
load('./mat/weight_Wxg.mat', 'Wxg'); load('./mat/perturbations.mat', 'Wxg');
load('./mat/T_S.mat', 'S', 'T'); load('./mat/T_S.mat', 'S', 'T');
freqs = logspace(-1, 3, 1000); freqs = logspace(-1, 3, 1000);

Binary file not shown.

View File

@ -9,12 +9,12 @@ initializeSample(struct('mass', 1));
initializeNanoHexapod(struct('actuator', 'lorentz')); initializeNanoHexapod(struct('actuator', 'lorentz'));
K_iff = K_iff_light_vc; %#ok K_iff = K_iff_light_vc; %#ok
save('./mat/K_iff.mat', 'K_iff'); save('./mat/controllers.mat', 'K_iff');
G_iff_light_vc = identifyPlant(); G_iff_light_vc = identifyPlant();
initializeNanoHexapod(struct('actuator', 'piezo')); initializeNanoHexapod(struct('actuator', 'piezo'));
K_iff = K_iff_light_pz; %#ok K_iff = K_iff_light_pz; %#ok
save('./mat/K_iff.mat', 'K_iff'); save('./mat/controllers.mat', 'K_iff');
G_iff_light_pz = identifyPlant(); G_iff_light_pz = identifyPlant();
%% Heavy Sample %% Heavy Sample
@ -22,12 +22,12 @@ initializeSample(struct('mass', 50));
initializeNanoHexapod(struct('actuator', 'lorentz')); initializeNanoHexapod(struct('actuator', 'lorentz'));
K_iff = K_iff_heavy_vc; %#ok K_iff = K_iff_heavy_vc; %#ok
save('./mat/K_iff.mat', 'K_iff'); save('./mat/controllers.mat', 'K_iff');
G_iff_heavy_vc = identifyPlant(); G_iff_heavy_vc = identifyPlant();
initializeNanoHexapod(struct('actuator', 'piezo')); initializeNanoHexapod(struct('actuator', 'piezo'));
K_iff = K_iff_heavy_pz; K_iff = K_iff_heavy_pz;
save('./mat/K_iff.mat', 'K_iff'); save('./mat/controllers.mat', 'K_iff', '-append');
G_iff_heavy_pz = identifyPlant(); G_iff_heavy_pz = identifyPlant();
%% Save the obtained transfer functions %% Save the obtained transfer functions

View File

@ -0,0 +1,50 @@
%% Plot all 6 errors expressed in the NASS base
figure;
%% Tx
subaxis(2, 3, 1);
hold on;
plot(error_nass.Time, error_nass.Data(:, 1), 'k-', 'DisplayName', '$\epsilon_x$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Ty
subaxis(2, 3, 2);
hold on;
plot(error_nass.Time, error_nass.Data(:, 2), 'k-', 'DisplayName', '$\epsilon_y$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Tz
subaxis(2, 3, 3);
hold on;
plot(error_nass.Time, error_nass.Data(:, 3), 'k-', 'DisplayName', '$\epsilon_z$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Rx
subaxis(2, 3, 4);
hold on;
plot(error_nass.Time, error_nass.Data(:, 4), 'k-', 'DisplayName', '$\epsilon_{\theta_x}$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');
%% Ry
subaxis(2, 3, 5);
hold on;
plot(error_nass.Time, error_nass.Data(:, 5), 'k-', 'DisplayName', '$\epsilon_{\theta_y}$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');
%% Rz
subaxis(2, 3, 6);
hold on;
plot(error_nass.Time, error_nass.Data(:, 6), 'k-', 'DisplayName', '$\epsilon_{\theta_z}$');
legend();
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');

View File

@ -3,7 +3,7 @@ clear; close all; clc;
%% Initialize simulation configuration %% Initialize simulation configuration
opts_sim = struct(... opts_sim = struct(...
'Tsim', 2 ... 'Tsim', 1 ...
); );
initializeSimConf(opts_sim); initializeSimConf(opts_sim);
@ -14,19 +14,22 @@ load('./mat/sim_conf.mat', 'sim_conf')
time_vector = 0:sim_conf.Ts:sim_conf.Tsim; time_vector = 0:sim_conf.Ts:sim_conf.Tsim;
% Translation Stage % Translation Stage
ty = 0*ones(length(time_vector), 1); ty = 0.05*ones(length(time_vector), 1);
% Tilt Stage % Tilt Stage
ry = 2*pi*(3/360)*ones(length(time_vector), 1); ry = 2*pi*(3/360)*ones(length(time_vector), 1);
% ry = 2*pi*(3/360)*sin(2*pi*time_vector);
% Spindle % Spindle
rz = 2*pi*1*(time_vector); rz = 2*pi*1*(time_vector);
% rz = 2*pi*(190/360)*ones(length(time_vector), 1);
% Micro Hexapod % Micro Hexapod
u_hexa = zeros(length(time_vector), 6); u_hexa = zeros(length(time_vector), 6);
% Gravity Compensator system % Gravity Compensator system
mass = zeros(length(time_vector), 2); mass = zeros(length(time_vector), 2);
mass(:, 2) = pi;
opts_inputs = struct(... opts_inputs = struct(...
'ty', ty, ... 'ty', ty, ...

View File

@ -0,0 +1,56 @@
%%
figure;
%% Tx
subaxis(2, 3, 1);
hold on;
plot(pos.Time, pos.Data(:, 1), 'k-');
plot(setpoint.Time, setpoint.Data(:, 1), 'k--');
legend({'x - pos', 'x - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Ty
subaxis(2, 3, 2);
hold on;
plot(pos.Time, pos.Data(:, 2), 'k-');
plot(setpoint.Time, setpoint.Data(:, 2), 'k--');
legend({'y - pos', 'y - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Tz
subaxis(2, 3, 3);
hold on;
plot(pos.Time, pos.Data(:, 3), 'k-');
plot(setpoint.Time, setpoint.Data(:, 3), 'k--');
legend({'z - pos', 'z - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Position (m)');
%% Rx
subaxis(2, 3, 4);
hold on;
plot(pos.Time, pos.Data(:, 4), 'k-');
plot(setpoint.Time, setpoint.Data(:, 4), 'k--');
legend({'$\theta_x$ - pos', '$\theta_x$ - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');
%% Ry
subaxis(2, 3, 5);
hold on;
plot(pos.Time, pos.Data(:, 5), 'k-');
plot(setpoint.Time, setpoint.Data(:, 5), 'k--');
legend({'$\theta_y$ - pos', '$\theta_y$ - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');
%% Rz
subaxis(2, 3, 6);
hold on;
plot(pos.Time, pos.Data(:, 6), 'k-');
plot(setpoint.Time, setpoint.Data(:, 6), 'k--');
legend({'$\theta_z$ - pos', '$\theta_z$ - setpoint'});
hold off;
xlabel('Time (s)'); ylabel('Rotation (rad)');

View File

@ -0,0 +1,55 @@
%% Script Description
% Determine if we take into account the flexibilities,
% does that changes a lot
%%
clear; close all; clc;
%% Initialize all the stage by default
run init_data.m
%% Options for Linearized
options = linearizeOptions;
options.SampleTime = 0;
%% Name of the Simulink File
mdl = 'simscape_id_micro_station';
%% Micro-Hexapod
% Input/Output definition
io(1) = linio([mdl, '/Micro-Station/Fm_ext'],1,'openinput');
io(2) = linio([mdl, '/Micro-Station/Fg_ext'],1,'openinput');
io(3) = linio([mdl, '/Micro-Station/Dm_inertial'],1,'output');
io(4) = linio([mdl, '/Micro-Station/Ty_inertial'],1,'output');
io(5) = linio([mdl, '/Micro-Station/Ry_inertial'],1,'output');
io(6) = linio([mdl, '/Micro-Station/Dg_inertial'],1,'output');
%% Run the linearization
initializeTy();
G_ms_flexible = linearize(mdl, io, 0);
% Input/Output names
G_ms_flexible.InputName = {'Fmx', 'Fmy', 'Fmz',...
'Fgx', 'Fgy', 'Fgz'};
G_ms_flexible.OutputName = {'Dmx', 'Dmy', 'Dmz', ...
'Tyx', 'Tyy', 'Tyz', ...
'Ryx', 'Ryy', 'Ryz', ...
'Dgx', 'Dgy', 'Dgz'};
%% Run the linearization
initializeTy(struct('rigid', true));
G_ms_ty_rigid = linearize(mdl, io, 0);
% Input/Output names
G_ms_ty_rigid.InputName = {'Fmx', 'Fmy', 'Fmz',...
'Fgx', 'Fgy', 'Fgz'};
G_ms_ty_rigid.OutputName = {'Dmx', 'Dmy', 'Dmz', ...
'Tyx', 'Tyy', 'Tyz', ...
'Ryx', 'Ryy', 'Ryz', ...
'Dgx', 'Dgy', 'Dgz'};
%% Save the obtained transfer functions
save('./mat/id_micro_station_flexibility.mat', 'G_ms_flexible', 'G_ms_ty_rigid');

View File

@ -0,0 +1,99 @@
%% Script Description
% Determine if we take into account the flexibilities,
% does that changes a lot
%%
clear; close all; clc;
%% Load Configuration file
load('./mat/config.mat', 'save_fig', 'freqs');
%% Load the obtained transfer functions
load('./mat/id_micro_station_flexibility.mat', 'G_ms_flexible', 'G_ms_ty_rigid');
%% Get Measurement Object
load('2018_01_12.mat', 'm_object');
% Get Measurements Data
opts = struct('freq_min', 10, 'est_backend', 'idfrd');
meas_sys = getDynamicTFs(m_object, 'marble', 'hexa', {{'tx', 'tx'},{'ty', 'ty'},{'tz', 'tz'}}, opts);
%%
dir = 'y';
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(G_ms_flexible(['Dg' dir], ['Fg' dir]), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_ms_ty_rigid(['Dg' dir], ['Fg' dir]), freqs, 'Hz'))), '--');
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
legend({'Flexible', 'Ty - Rigid'});
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms_flexible(['Dg' dir], ['Fg' dir]), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms_ty_rigid(['Dg' dir], ['Fg' dir]), freqs, 'Hz'))), '--');
set(gca,'xscale','log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
%%
dir = 'y';
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(G_ms_flexible(['Dm' dir], ['Fm' dir]), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_ms_ty_rigid(['Dm' dir], ['Fm' dir]), freqs, 'Hz'))), '--');
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
legend({'Flexible', 'Ty - Rigid'});
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms_flexible(['Dm' dir], ['Fm' dir]), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms_ty_rigid(['Dm' dir], ['Fm' dir]), freqs, 'Hz'))), '--');
set(gca,'xscale','log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
%%
dir = 'z';
figure;
% Amplitude
ax1 = subaxis(2,1,1);
hold on;
plot(freqs, abs(squeeze(freqresp(G_ms_flexible(['Dg' dir], ['Fm' dir]), freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(G_ms_ty_rigid(['Dg' dir], ['Fm' dir]), freqs, 'Hz'))), '--');
plot(freqs, abs(squeeze(freqresp(meas_sys(['Dm' dir], ['Fh' dir]), freqs, 'Hz'))), '.');
set(gca,'xscale','log'); set(gca,'yscale','log');
ylabel('Amplitude [m/N]');
set(gca, 'XTickLabel',[]);
legend({'Flexible', 'Ty - Rigid'});
hold off;
% Phase
ax2 = subaxis(2,1,2);
hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms_flexible(['Dg' dir], ['Fm' dir]), freqs, 'Hz'))));
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms_ty_rigid(['Dg' dir], ['Fm' dir]), freqs, 'Hz'))), '--');
plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys(['Dm' dir], ['Fh' dir]), freqs, 'Hz'))), '.');
set(gca,'xscale','log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');

View File

@ -16,85 +16,90 @@ load('2018_01_12.mat', 'm_object');
%% Get Measurements Data %% Get Measurements Data
opts = struct('freq_min', 10, 'est_backend', 'idfrd'); opts = struct('freq_min', 10, 'est_backend', 'idfrd');
meas_sys = getDynamicTFs(m_object, 'marble', 'hexa', {'tx', 'tx'}, opts); meas_sys = getDynamicTFs(m_object, 'marble', 'hexa', {{'tx', 'tx'},{'ty', 'ty'},{'tz', 'tz'}}, opts);
%% Granite to Granite %% Granite to Granite
figure; for dir = 'xyz'
% Amplitude figure;
ax1 = subaxis(2,1,1); % Amplitude
hold on; ax1 = subaxis(2,1,1);
plot(freqs, abs(squeeze(freqresp(G_ms('Dgx', 'Fgx'), freqs, 'Hz')))); hold on;
plot(freqs, abs(squeeze(freqresp(meas_sys('Dmx', 'Fmx'), freqs, 'Hz'))), '.'); plot(freqs, abs(squeeze(freqresp(G_ms(['Dg' dir], ['Fg' dir]), freqs, 'Hz'))));
set(gca,'xscale','log'); set(gca,'yscale','log'); plot(freqs, abs(squeeze(freqresp(meas_sys(['Dm' dir], ['Fm' dir]), freqs, 'Hz'))), '.');
ylabel('Amplitude [m/N]'); set(gca,'xscale','log'); set(gca,'yscale','log');
set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/N]');
legend({'Model', 'Meas.'}); set(gca, 'XTickLabel',[]);
hold off; legend({'Model', 'Meas.'});
% Phase hold off;
ax2 = subaxis(2,1,2); % Phase
hold on; ax2 = subaxis(2,1,2);
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms('Dgz', 'Fgz'), freqs, 'Hz')))); hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys('Dmx', 'Fmx'), freqs, 'Hz'))), '.'); plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms(['Dg' dir], ['Fg' dir]), freqs, 'Hz'))));
set(gca,'xscale','log'); plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys(['Dm' dir], ['Fm' dir]), freqs, 'Hz'))), '.');
ylim([-180, 180]); set(gca,'xscale','log');
yticks([-180, -90, 0, 90, 180]); ylim([-180, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); yticks([-180, -90, 0, 90, 180]);
hold off; xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
linkaxes([ax1,ax2],'x'); if save_fig; exportFig(['comp_meas_g_g_' dir], 'normal-normal', struct('path', 'identification')); end
end
if save_fig; exportFig('comp_meas_g_g', 'normal-normal', struct('path', 'identification')); end
%% Hexapod to Hexapod %% Hexapod to Hexapod
figure; for dir = 'xyz'
% Amplitude figure;
ax1 = subaxis(2,1,1); % Amplitude
hold on; ax1 = subaxis(2,1,1);
plot(freqs, abs(squeeze(freqresp(G_ms('Dmx', 'Fmx'), freqs, 'Hz')))); hold on;
plot(freqs, abs(squeeze(freqresp(meas_sys('Dhx', 'Fhx'), freqs, 'Hz'))), '.'); plot(freqs, abs(squeeze(freqresp(G_ms(['Dm' dir], ['Fm' dir]), freqs, 'Hz'))));
set(gca,'xscale','log'); set(gca,'yscale','log'); plot(freqs, abs(squeeze(freqresp(meas_sys(['Dh' dir], ['Fh' dir]), freqs, 'Hz'))), '.');
ylabel('Amplitude [m/N]'); set(gca,'xscale','log'); set(gca,'yscale','log');
set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/N]');
legend({'Model', 'Meas.'}); set(gca, 'XTickLabel',[]);
hold off; legend({'Model', 'Meas.'});
% Phase hold off;
ax2 = subaxis(2,1,2); % Phase
hold on; ax2 = subaxis(2,1,2);
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms('Dmx', 'Fmx'), freqs, 'Hz')))); hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys('Dhx', 'Fhx'), freqs, 'Hz'))), '.'); plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms(['Dm' dir], ['Fm' dir]), freqs, 'Hz'))));
set(gca,'xscale','log'); plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys(['Dh' dir], ['Fh' dir]), freqs, 'Hz'))), '.');
ylim([-180, 180]); set(gca,'xscale','log');
yticks([-180, -90, 0, 90, 180]); ylim([-180, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); yticks([-180, -90, 0, 90, 180]);
hold off; xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x'); linkaxes([ax1,ax2],'x');
if save_fig; exportFig('comp_meas_m_m', 'normal-normal', struct('path', 'identification')); end if save_fig; exportFig(['comp_meas_m_m_' dir], 'normal-normal', struct('path', 'identification')); end
end
%% Hexapod to Granite %% Hexapod to Granite
figure; for dir = 'xyz'
% Amplitude figure;
ax1 = subaxis(2,1,1); % Amplitude
hold on; ax1 = subaxis(2,1,1);
plot(freqs, abs(squeeze(freqresp(G_ms('Dmx', 'Fgx'), freqs, 'Hz')))); hold on;
plot(freqs, abs(squeeze(freqresp(meas_sys('Dhx', 'Fmx'), freqs, 'Hz'))), '.'); plot(freqs, abs(squeeze(freqresp(G_ms(['Dm' dir], ['Fg' dir]), freqs, 'Hz'))));
set(gca,'xscale','log'); set(gca,'yscale','log'); plot(freqs, abs(squeeze(freqresp(meas_sys(['Dh' dir], ['Fm' dir]), freqs, 'Hz'))), '.');
ylabel('Amplitude [m/N]'); set(gca,'xscale','log'); set(gca,'yscale','log');
set(gca, 'XTickLabel',[]); ylabel('Amplitude [m/N]');
legend({'Model', 'Meas.'}); set(gca, 'XTickLabel',[]);
hold off; legend({'Model', 'Meas.'});
% Phase hold off;
ax2 = subaxis(2,1,2); % Phase
hold on; ax2 = subaxis(2,1,2);
plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms('Dmx', 'Fgx'), freqs, 'Hz')))); hold on;
plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys('Dhx', 'Fmx'), freqs, 'Hz'))), '.'); plot(freqs, 180/pi*angle(squeeze(freqresp(G_ms(['Dm' dir], ['Fg' dir]), freqs, 'Hz'))));
set(gca,'xscale','log'); plot(freqs, 180/pi*angle(squeeze(freqresp(meas_sys(['Dh' dir], ['Fm' dir]), freqs, 'Hz'))), '.');
ylim([-180, 180]); set(gca,'xscale','log');
yticks([-180, -90, 0, 90, 180]); ylim([-180, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]'); yticks([-180, -90, 0, 90, 180]);
hold off; xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x'); linkaxes([ax1,ax2],'x');
if save_fig; exportFig('comp_meas_m_g', 'normal-normal', struct('path', 'identification')); end if save_fig; exportFig(['comp_meas_m_g_' dir], 'normal-normal', struct('path', 'identification')); end
end

View File

@ -3,7 +3,7 @@ clear; close all; clc;
%% %%
K_iff = tf(zeros(6)); K_iff = tf(zeros(6));
save('./mat/K_iff.mat', 'K_iff'); save('./mat/controllers.mat', 'K_iff', '-append');
%% Light Sample %% Light Sample
initializeSample(struct('mass', 1)); initializeSample(struct('mass', 1));

Binary file not shown.

View File

@ -52,6 +52,7 @@ initializeSample(struct('mass', 20));
%% Controllers %% Controllers
K = tf(zeros(6)); K = tf(zeros(6));
save('./mat/controller.mat', 'K');
K_iff = tf(zeros(6)); K_iff = tf(zeros(6));
save('./mat/K_iff.mat', 'K_iff');
save('./mat/controllers.mat', 'K', 'K_iff');

View File

@ -9,9 +9,8 @@ Wxg = 1e-5*(s/(2e2)^(1/3) + 2*pi*0.1)^3/(s + 2*pi*0.1)^3;
Wxg = Wxg*(s/(0.5e6)^(1/3) + 2*pi*10)^3/(s + 2*pi*10)^3; Wxg = Wxg*(s/(0.5e6)^(1/3) + 2*pi*10)^3/(s + 2*pi*10)^3;
Wxg = Wxg/(1+s/(2*pi*2000)); Wxg = Wxg/(1+s/(2*pi*2000));
save('./mat/weight_Wxg.mat', 'Wxg');
%% Sensor Noise %% Sensor Noise
Wn = tf(1e-12); Wn = tf(1e-12);
save('./mat/weight_Wn.mat', 'Wn'); %% Save Weights
save('./mat/perturbations.mat', 'Wxg', 'Wn');

View File

@ -1,17 +1,17 @@
%% Script that is run just before %% Script that is run just before
% the simulation is started % the simulation is started
% Load all the data used for the simulation
load('./mat/sim_conf.mat', 'sim_conf'); %% Load all the data used for the simulation
load('./mat/sim_conf.mat');
%% Load SolidWorks Data %% Load SolidWorks Data
load('./mat/solids.mat', 'solids'); load('./mat/solids.mat');
%% Load data of each stage %% Load data of each stage
load('./mat/stages.mat', 'ground', 'granite', 'ty', 'ry', 'rz', 'micro_hexapod', 'axisc', 'nano_hexapod', 'mirror', 'sample'); load('./mat/stages.mat');
%% Load Signals Applied to the system %% Load Signals Applied to the system
load('./mat/inputs.mat', 'inputs'); load('./mat/inputs.mat');
%% Load Controller %% Load Controller
load('./mat/controller.mat', 'K'); load('./mat/controllers.mat');
load('./mat/K_iff.mat', 'K_iff');

View File

@ -28,7 +28,7 @@ function [inputs] = initializeInputs(opts_param)
%% Ground motion %% Ground motion
if islogical(opts.Dw) && opts.Dw == true if islogical(opts.Dw) && opts.Dw == true
load('./mat/weight_Wxg.mat', 'Wxg'); load('./mat/perturbations.mat', 'Wxg');
Dw = 1/sqrt(2)*100*random('norm', 0, 1, length(time_vector), 3); Dw = 1/sqrt(2)*100*random('norm', 0, 1, length(time_vector), 3);
Dw(:, 1) = lsim(Wxg, Dw(:, 1), time_vector); Dw(:, 1) = lsim(Wxg, Dw(:, 1), time_vector);
Dw(:, 2) = lsim(Wxg, Dw(:, 2), time_vector); Dw(:, 2) = lsim(Wxg, Dw(:, 2), time_vector);
@ -64,17 +64,17 @@ function [inputs] = initializeInputs(opts_param)
inputs.ry = timeseries(ry, time_vector); inputs.ry = timeseries(ry, time_vector);
%% Spindle [rad] %% Spindle [rad]
if islogical(opts.Rz) && opts.Rz == true if islogical(opts.rz) && opts.rz == true
Rz = 2*pi*0.5*time_vector; rz = 2*pi*0.5*time_vector;
elseif islogical(opts.Rz) && opts.Rz == false elseif islogical(opts.rz) && opts.rz == false
Rz = zeros(length(time_vector), 1); rz = zeros(length(time_vector), 1);
elseif isnumeric(opts.Rz) && length(opts.Rz) == 1 elseif isnumeric(opts.rz) && length(opts.rz) == 1
Rz = 2*pi*(opts.Rz/60)*time_vector; rz = 2*pi*(opts.rz/60)*time_vector;
else else
Rz = opts.Rz; rz = opts.rz;
end end
inputs.Rz = timeseries(Rz, time_vector); inputs.rz = timeseries(rz, time_vector);
%% Micro Hexapod %% Micro Hexapod
if islogical(opts.u_hexa) && opts.setpoint == true if islogical(opts.u_hexa) && opts.setpoint == true
@ -85,19 +85,19 @@ function [inputs] = initializeInputs(opts_param)
u_hexa = opts.u_hexa; u_hexa = opts.u_hexa;
end end
inputs.micro_hexapod = timeseries(u_hexa, time_vector); inputs.u_hexa = timeseries(u_hexa, time_vector);
%% Center of gravity compensation %% Center of gravity compensation
if islogical(opts.mass) && opts.setpoint == true if islogical(opts.mass) && opts.setpoint == true
Rm = zeros(length(time_vector), 2); axisc = zeros(length(time_vector), 2);
elseif islogical(opts.mass) && opts.setpoint == false elseif islogical(opts.mass) && opts.setpoint == false
Rm = zeros(length(time_vector), 2); axisc = zeros(length(time_vector), 2);
Rm(:, 2) = pi*ones(length(time_vector), 1); axisc(:, 2) = pi*ones(length(time_vector), 1);
else else
Rm = opts.mass; axisc = opts.mass;
end end
inputs.Rm = timeseries(Rm, time_vector); inputs.axisc = timeseries(axisc, time_vector);
%% Nano Hexapod %% Nano Hexapod
if islogical(opts.n_hexa) && opts.setpoint == true if islogical(opts.n_hexa) && opts.setpoint == true
@ -108,7 +108,7 @@ function [inputs] = initializeInputs(opts_param)
n_hexa = opts.n_hexa; n_hexa = opts.n_hexa;
end end
inputs.nano_hexapod = timeseries(n_hexa, time_vector); inputs.n_hexa = timeseries(n_hexa, time_vector);
%% Set point [m, rad] %% Set point [m, rad]
if islogical(opts.setpoint) && opts.setpoint == true if islogical(opts.setpoint) && opts.setpoint == true

View File

@ -12,9 +12,9 @@ function [] = initializeMicroHexapod(opts_param)
%% Stewart Object %% Stewart Object
micro_hexapod = struct(); micro_hexapod = struct();
micro_hexapod.h = 350; % Total height of the platform [mm] micro_hexapod.h = 350; % Total height of the platform [mm]
micro_hexapod.jacobian = 265; % Point where the Jacobian is computed => Center of rotation [mm] micro_hexapod.jacobian = 265; % Distance from the top platform to the Jacobian point [mm]
%% Bottom Plate %% Bottom Plate - Mechanical Design
BP = struct(); BP = struct();
BP.rad.int = 110; % Internal Radius [mm] BP.rad.int = 110; % Internal Radius [mm]
@ -26,7 +26,7 @@ function [] = initializeMicroHexapod(opts_param)
BP.color = [0.6 0.6 0.6]; % Color [rgb] BP.color = [0.6 0.6 0.6]; % Color [rgb]
BP.shape = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness]; BP.shape = [BP.rad.int BP.thickness; BP.rad.int 0; BP.rad.ext 0; BP.rad.ext BP.thickness];
%% Top Plate %% Top Plate - Mechanical Design
TP = struct(); TP = struct();
TP.rad.int = 82; % Internal Radius [mm] TP.rad.int = 82; % Internal Radius [mm]
@ -38,7 +38,7 @@ function [] = initializeMicroHexapod(opts_param)
TP.color = [0.6 0.6 0.6]; % Color [rgb] TP.color = [0.6 0.6 0.6]; % Color [rgb]
TP.shape = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness]; TP.shape = [TP.rad.int TP.thickness; TP.rad.int 0; TP.rad.ext 0; TP.rad.ext TP.thickness];
%% Leg %% Struts
Leg = struct(); Leg = struct();
Leg.stroke = 10e-3; % Maximum Stroke of each leg [m] Leg.stroke = 10e-3; % Maximum Stroke of each leg [m]

View File

@ -1,10 +1,24 @@
function [ry] = initializeRy() function [ry] = initializeRy(opts_param)
%% Default values for opts
opts = struct('rigid', false);
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
%% %%
ry = struct(); ry = struct();
ry.m = 200; % [kg] ry.m = 200; % [kg]
ry.k.tilt = 1e4; % Rotation stiffness around y [N*m/deg] if opts.rigid
ry.k.tilt = 1e10; % Rotation stiffness around y [N*m/deg]
else
ry.k.tilt = 1e4; % Rotation stiffness around y [N*m/deg]
end
ry.k.h = 357e6/4; % Stiffness in the direction of the guidance [N/m] ry.k.h = 357e6/4; % Stiffness in the direction of the guidance [N/m]
ry.k.rad = 555e6/4; % Stiffness in the top direction [N/m] ry.k.rad = 555e6/4; % Stiffness in the top direction [N/m]

View File

@ -1,18 +1,36 @@
function [rz] = initializeRz() function [rz] = initializeRz(opts_param)
%% Default values for opts
opts = struct('rigid', false);
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
%% %%
rz = struct(); rz = struct();
% Estimated mass of the mooving part
rz.m = 250; % [kg] rz.m = 250; % [kg]
% Estimated stiffnesses
rz.k.ax = 2e9; % Axial Stiffness [N/m] rz.k.ax = 2e9; % Axial Stiffness [N/m]
rz.k.rad = 7e8; % Radial Stiffness [N/m] rz.k.rad = 7e8; % Radial Stiffness [N/m]
rz.k.rot = 1e2; % Rotational Stiffness [N*m/deg] rz.k.rot = 100e6*2*pi/360; % Rotational Stiffness [N*m/deg]
rz.k.tilt = 1e2; % TODO [N*m/deg]
rz.c.ax = 10*(1/5)*sqrt(rz.k.ax/rz.m); if opts.rigid
rz.c.rad = 10*(1/5)*sqrt(rz.k.rad/rz.m); rz.k.tilt = 1e10; % Vertical Rotational Stiffness [N*m/deg]
rz.c.tilt = 100*(1/1)*sqrt(rz.k.tilt/rz.m); else
rz.c.rot = 100*(1/1)*sqrt(rz.k.rot/rz.m); rz.k.tilt = 1e2; % TODO what value should I put? [N*m/deg]
end
% TODO
rz.c.ax = 2*sqrt(rz.k.ax/rz.m);
rz.c.rad = 2*sqrt(rz.k.rad/rz.m);
rz.c.tilt = 100*sqrt(rz.k.tilt/rz.m);
rz.c.rot = 100*sqrt(rz.k.rot/rz.m);
%% Save %% Save
save('./mat/stages.mat', 'rz', '-append'); save('./mat/stages.mat', 'rz', '-append');

View File

@ -1,9 +1,9 @@
function [] = initializeSample(opts_param) function [] = initializeSample(opts_param)
%% Default values for opts %% Default values for opts
sample = struct('radius', 100,... sample = struct('radius', 100, ...
'height', 300,... 'height', 300, ...
'mass', 50,... 'mass', 50, ...
'offset', 0,... 'offset', 0, ...
'color', [0.45, 0.45, 0.45] ... 'color', [0.45, 0.45, 0.45] ...
); );

View File

@ -1,10 +1,24 @@
function [ty] = initializeTy() function [ty] = initializeTy(opts_param)
%% Default values for opts
opts = struct('rigid', false);
%% Populate opts with input parameters
if exist('opts_param','var')
for opt = fieldnames(opts_param)'
opts.(opt{1}) = opts_param.(opt{1});
end
end
%% %%
ty = struct(); ty = struct();
ty.m = 250; % [kg] ty.m = 250; % [kg]
ty.k.ax = 1e7/4; % Axial Stiffness for each of the 4 guidance (y) [N/m] if opts.rigid
ty.k.ax = 1e10; % Axial Stiffness for each of the 4 guidance (y) [N/m]
else
ty.k.ax = 1e7/4; % Axial Stiffness for each of the 4 guidance (y) [N/m]
end
ty.k.rad = 9e9/4; % Radial Stiffness for each of the 4 guidance (x-z) [N/m] ty.k.rad = 9e9/4; % Radial Stiffness for each of the 4 guidance (x-z) [N/m]
ty.c.ax = 100*(1/5)*sqrt(ty.k.ax/ty.m); ty.c.ax = 100*(1/5)*sqrt(ty.k.ax/ty.m);

Binary file not shown.

BIN
mat/controllers.mat Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

BIN
mat/perturbations.mat Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -19,10 +19,10 @@ function [] = runSimulation(sys_name, sys_mass, ctrl_type, act_damp)
if strcmp(act_damp, 'iff') if strcmp(act_damp, 'iff')
K_iff_crit = load('./mat/K_iff_crit.mat'); K_iff_crit = load('./mat/K_iff_crit.mat');
K_iff = K_iff_crit.(sprintf('K_iff_%s_%s', sys_mass, sys_name)); %#ok K_iff = K_iff_crit.(sprintf('K_iff_%s_%s', sys_mass, sys_name)); %#ok
save('./mat/K_iff.mat', 'K_iff'); save('./mat/controllers.mat', 'K_iff', '-append');
elseif strcmp(act_damp, 'none') elseif strcmp(act_damp, 'none')
K_iff = tf(zeros(6)); %#ok K_iff = tf(zeros(6)); %#ok
save('./mat/K_iff.mat', 'K_iff'); save('./mat/controllers.mat', 'K_iff', '-append');
end end
%% %%