Update rotational stiffness of joints
This commit is contained in:
parent
ef7d7a54d5
commit
571dfbffb4
@ -3436,24 +3436,24 @@ function [nano_hexapod] = initializeNanoHexapodFinal(args)
|
|||||||
arguments
|
arguments
|
||||||
%% Bottom Flexible Joints
|
%% Bottom Flexible Joints
|
||||||
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||||
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad]
|
||||||
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad]
|
||||||
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||||
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
|
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m]
|
||||||
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
|
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)]
|
||||||
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
|
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)]
|
||||||
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
|
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)]
|
||||||
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
|
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)]
|
||||||
%% Top Flexible Joints
|
%% Top Flexible Joints
|
||||||
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||||
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad]
|
||||||
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad]
|
||||||
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||||
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
|
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m]
|
||||||
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
|
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)]
|
||||||
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
|
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)]
|
||||||
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
|
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)]
|
||||||
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
|
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)]
|
||||||
%% Jacobian - Location of frame {A} and {B}
|
%% Jacobian - Location of frame {A} and {B}
|
||||||
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
|
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
|
||||||
%% Relative Motion Sensor
|
%% Relative Motion Sensor
|
||||||
@ -3463,12 +3463,12 @@ arguments
|
|||||||
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
|
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
|
||||||
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
|
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
|
||||||
% For 2DoF
|
% For 2DoF
|
||||||
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.35e6 % [N/m]
|
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.38e6 % [N/m]
|
||||||
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.5e6 % [N/m]
|
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.75e6 % [N/m]
|
||||||
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*43e6 % [N/m]
|
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*3e7 % [N/m]
|
||||||
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e0 % [N/(m/s)]
|
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e1 % [N/(m/s)]
|
||||||
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e0 % [N/(m/s)]
|
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
|
||||||
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e0 % [N/(m/s)]
|
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
|
||||||
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
|
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
|
||||||
% For Flexible Frame
|
% For Flexible Frame
|
||||||
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
|
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
|
||||||
@ -3588,7 +3588,7 @@ end
|
|||||||
if all(args.actuator_Ga == 0)
|
if all(args.actuator_Ga == 0)
|
||||||
switch args.actuator_type
|
switch args.actuator_type
|
||||||
case '2dof'
|
case '2dof'
|
||||||
nano_hexapod.actuator.Ga = ones(6,1)*(-46.4);
|
nano_hexapod.actuator.Ga = ones(6,1)*(-30.0);
|
||||||
case 'flexible frame'
|
case 'flexible frame'
|
||||||
nano_hexapod.actuator.Ga = ones(6,1); % TODO
|
nano_hexapod.actuator.Ga = ones(6,1); % TODO
|
||||||
case 'flexible'
|
case 'flexible'
|
||||||
|
@ -3,24 +3,24 @@ function [nano_hexapod] = initializeNanoHexapodFinal(args)
|
|||||||
arguments
|
arguments
|
||||||
%% Bottom Flexible Joints
|
%% Bottom Flexible Joints
|
||||||
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
args.flex_bot_type char {mustBeMember(args.flex_bot_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||||
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
args.flex_bot_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad]
|
||||||
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
args.flex_bot_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad]
|
||||||
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
args.flex_bot_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||||
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
|
args.flex_bot_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m]
|
||||||
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
|
args.flex_bot_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)]
|
||||||
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
|
args.flex_bot_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)]
|
||||||
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
|
args.flex_bot_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)]
|
||||||
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
|
args.flex_bot_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)]
|
||||||
%% Top Flexible Joints
|
%% Top Flexible Joints
|
||||||
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
args.flex_top_type char {mustBeMember(args.flex_top_type,{'2dof', '3dof', '4dof', 'flexible'})} = '4dof'
|
||||||
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*5 % X bending stiffness [Nm/rad]
|
args.flex_top_kRx (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % X bending stiffness [Nm/rad]
|
||||||
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*5 % Y bending stiffness [Nm/rad]
|
args.flex_top_kRy (6,1) double {mustBeNumeric} = ones(6,1)*3.5 % Y bending stiffness [Nm/rad]
|
||||||
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
args.flex_top_kRz (6,1) double {mustBeNumeric} = ones(6,1)*260 % Torsionnal stiffness [Nm/rad]
|
||||||
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*1e8 % Axial Stiffness [N/m]
|
args.flex_top_kz (6,1) double {mustBeNumeric} = ones(6,1)*8e7 % Axial Stiffness [N/m]
|
||||||
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % X bending Damping [Nm/(rad/s)]
|
args.flex_top_cRx (6,1) double {mustBeNumeric} = ones(6,1)*0 % X bending Damping [Nm/(rad/s)]
|
||||||
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Y bending Damping [Nm/(rad/s)]
|
args.flex_top_cRy (6,1) double {mustBeNumeric} = ones(6,1)*0 % Y bending Damping [Nm/(rad/s)]
|
||||||
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0.1 % Torsionnal Damping [Nm/(rad/s)]
|
args.flex_top_cRz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Torsionnal Damping [Nm/(rad/s)]
|
||||||
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*1e2 % Axial Damping [N/(m/s)]
|
args.flex_top_cz (6,1) double {mustBeNumeric} = ones(6,1)*0 % Axial Damping [N/(m/s)]
|
||||||
%% Jacobian - Location of frame {A} and {B}
|
%% Jacobian - Location of frame {A} and {B}
|
||||||
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
|
args.MO_B (1,1) double {mustBeNumeric} = 150e-3 % Height of {B} w.r.t. {M} [m]
|
||||||
%% Relative Motion Sensor
|
%% Relative Motion Sensor
|
||||||
@ -30,12 +30,12 @@ arguments
|
|||||||
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
|
args.actuator_Ga (6,1) double {mustBeNumeric} = zeros(6,1) % Actuator gain [N/V]
|
||||||
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
|
args.actuator_Gs (6,1) double {mustBeNumeric} = zeros(6,1) % Sensor gain [V/m]
|
||||||
% For 2DoF
|
% For 2DoF
|
||||||
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.35e6 % [N/m]
|
args.actuator_k (6,1) double {mustBeNumeric} = ones(6,1)*0.38e6 % [N/m]
|
||||||
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.5e6 % [N/m]
|
args.actuator_ke (6,1) double {mustBeNumeric} = ones(6,1)*1.75e6 % [N/m]
|
||||||
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*43e6 % [N/m]
|
args.actuator_ka (6,1) double {mustBeNumeric} = ones(6,1)*3e7 % [N/m]
|
||||||
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e0 % [N/(m/s)]
|
args.actuator_c (6,1) double {mustBeNumeric} = ones(6,1)*3e1 % [N/(m/s)]
|
||||||
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e0 % [N/(m/s)]
|
args.actuator_ce (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
|
||||||
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e0 % [N/(m/s)]
|
args.actuator_ca (6,1) double {mustBeNumeric} = ones(6,1)*1e1 % [N/(m/s)]
|
||||||
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
|
args.actuator_Leq (6,1) double {mustBeNumeric} = ones(6,1)*0.056 % [m]
|
||||||
% For Flexible Frame
|
% For Flexible Frame
|
||||||
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
|
args.actuator_ks (6,1) double {mustBeNumeric} = ones(6,1)*235e6 % Stiffness of one stack [N/m]
|
||||||
@ -118,7 +118,7 @@ end
|
|||||||
if all(args.actuator_Ga == 0)
|
if all(args.actuator_Ga == 0)
|
||||||
switch args.actuator_type
|
switch args.actuator_type
|
||||||
case '2dof'
|
case '2dof'
|
||||||
nano_hexapod.actuator.Ga = ones(6,1)*(-46.4);
|
nano_hexapod.actuator.Ga = ones(6,1)*(-30.0);
|
||||||
case 'flexible frame'
|
case 'flexible frame'
|
||||||
nano_hexapod.actuator.Ga = ones(6,1); % TODO
|
nano_hexapod.actuator.Ga = ones(6,1); % TODO
|
||||||
case 'flexible'
|
case 'flexible'
|
||||||
|
Loading…
Reference in New Issue
Block a user