Remove few outputs and add missing captions
This commit is contained in:
parent
1715214c8b
commit
4a0882638a
@ -4,7 +4,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-04-08 mer. 12:12 -->
|
||||
<!-- 2020-04-08 mer. 12:17 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||
<title>Determination of the optimal nano-hexapod’s stiffness for reducing the effect of disturbances</title>
|
||||
@ -257,7 +257,7 @@
|
||||
<li><a href="#org78dd34d">2.3. Sensitivity to Stages vibration (Filtering)</a></li>
|
||||
<li><a href="#orgd4ea2f4">2.4. Effect of Ground motion (Transmissibility).</a></li>
|
||||
<li><a href="#org0448746">2.5. Direct Forces (Compliance).</a></li>
|
||||
<li><a href="#orge784867">2.6. Conclusion</a></li>
|
||||
<li><a href="#org6791692">2.6. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org6527e58">3. Effect of granite stiffness</a>
|
||||
@ -270,7 +270,7 @@
|
||||
</li>
|
||||
<li><a href="#org9215f81">3.2. Soft Granite</a></li>
|
||||
<li><a href="#org8878556">3.3. Effect of the Granite transfer function</a></li>
|
||||
<li><a href="#org4b4fa39">3.4. Conclusion</a></li>
|
||||
<li><a href="#orga001da4">3.4. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org8a88fb0">4. Open Loop Budget Error</a>
|
||||
@ -278,7 +278,7 @@
|
||||
<li><a href="#org6bd588f">4.1. Noise Budgeting - Theory</a></li>
|
||||
<li><a href="#orgcc86f59">4.2. Power Spectral Densities</a></li>
|
||||
<li><a href="#orgef96b89">4.3. Cumulative Amplitude Spectrum</a></li>
|
||||
<li><a href="#org2b9df24">4.4. Conclusion</a></li>
|
||||
<li><a href="#org4352c0d">4.4. Conclusion</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org34c0f38">5. Closed Loop Budget Error</a>
|
||||
@ -287,7 +287,7 @@
|
||||
<li><a href="#orgf2d36a1">5.2. Reduction thanks to feedback - Required bandwidth</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgbf0fb63">6. Conclusion</a></li>
|
||||
<li><a href="#org08f24cd">6. Conclusion</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
@ -497,8 +497,8 @@ The effect of direct forces/torques applied on the sample (cable forces for inst
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orge784867" class="outline-3">
|
||||
<h3 id="orge784867"><span class="section-number-3">2.6</span> Conclusion</h3>
|
||||
<div id="outline-container-org6791692" class="outline-3">
|
||||
<h3 id="org6791692"><span class="section-number-3">2.6</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-2-6">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -678,12 +678,14 @@ From Figures <a href="#orgc4c14fb">11</a> and <a href="#org533cc4b">12</a>, we s
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org4b4fa39" class="outline-3">
|
||||
<h3 id="org4b4fa39"><span class="section-number-3">3.4</span> Conclusion</h3>
|
||||
<div id="outline-container-orga001da4" class="outline-3">
|
||||
<h3 id="orga001da4"><span class="section-number-3">3.4</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-3-4">
|
||||
<div class="important">
|
||||
<p>
|
||||
Having a soft granite suspension could greatly improve the sensitivity the ground motion and thus the level of sample vibration if it is found that ground motion is the limiting factor.
|
||||
Having a soft granite suspension greatly decreases the sensitivity the ground motion.
|
||||
Also, it does not affect much the sensitivity to stage vibration and direct forces.
|
||||
Thus the level of sample vibration can be reduced by using a soft granite suspension if it is found that ground motion is the limiting factor.
|
||||
</p>
|
||||
|
||||
</div>
|
||||
@ -716,7 +718,7 @@ Let’s consider Figure <a href="#org7ff50a0">13</a> there \(G_d(s)\) is the
|
||||
<div id="org7ff50a0" class="figure">
|
||||
<p><img src="figs/psd_change_tf.png" alt="psd_change_tf.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 13: </span>Figure caption</p>
|
||||
<p><span class="figure-number">Figure 13: </span>Signal \(d\) going through and LTI transfer function \(G_d(s)\) to give a signal \(y\)</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@ -742,7 +744,7 @@ Sometimes, we prefer to compute the <b>Amplitude</b> Spectral Density (ASD) whic
|
||||
<div id="orgc24bdf6" class="figure">
|
||||
<p><img src="figs/psd_change_tf_multiple_pert.png" alt="psd_change_tf_multiple_pert.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 14: </span>Figure caption</p>
|
||||
<p><span class="figure-number">Figure 14: </span>Block diagram showing and output \(y\) resulting from the addition of multiple perturbations \(d_i\)</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@ -823,24 +825,6 @@ Similarly, the Cumulative Amplitude Spectrum of the sample vibrations are shown:
|
||||
The black dashed line corresponds to the performance objective of a sample vibration equal to \(10\ nm [rms]\).
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">freqs = dist_f.f;
|
||||
|
||||
<span class="org-type">figure</span>;
|
||||
hold on;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span>
|
||||
plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(dist_f.psd_gm<span class="org-type">.*</span>abs(squeeze(freqresp(Gd{<span class="org-constant">i</span>}(<span class="org-string">'Ez'</span>, <span class="org-string">'Dwz'</span>), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2)))), <span class="org-string">'-'</span>, ...
|
||||
<span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>)));
|
||||
<span class="org-keyword">end</span>
|
||||
plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>);
|
||||
hold off;
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>);
|
||||
xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $E_y$ $[m]$'</span>)
|
||||
legend(<span class="org-string">'Location'</span>, <span class="org-string">'northeast'</span>);
|
||||
xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="org488d65f" class="figure">
|
||||
<p><img src="figs/opt_stiff_cas_dz_gm.png" alt="opt_stiff_cas_dz_gm.png" />
|
||||
@ -848,24 +832,6 @@ xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-typ
|
||||
<p><span class="figure-number">Figure 18: </span>Cumulative Amplitude Spectrum of the Sample vertical position error due to Ground motion for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_cas_dz_gm.png">png</a>, <a href="./figs/opt_stiff_cas_dz_gm.pdf">pdf</a>)</p>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">freqs = dist_f.f;
|
||||
|
||||
<span class="org-type">figure</span>;
|
||||
hold on;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span>
|
||||
plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(dist_f.psd_rz<span class="org-type">.*</span>abs(squeeze(freqresp(Gd{<span class="org-constant">i</span>}(<span class="org-string">'Ez'</span>, <span class="org-string">'Frz_z'</span>), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2)))), <span class="org-string">'-'</span>, ...
|
||||
<span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>)));
|
||||
<span class="org-keyword">end</span>
|
||||
plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>);
|
||||
hold off;
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>);
|
||||
xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $[m]$'</span>)
|
||||
legend(<span class="org-string">'Location'</span>, <span class="org-string">'southwest'</span>);
|
||||
xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="orge5458c6" class="figure">
|
||||
<p><img src="figs/opt_stiff_cas_dz_rz.png" alt="opt_stiff_cas_dz_rz.png" />
|
||||
@ -873,24 +839,6 @@ xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-typ
|
||||
<p><span class="figure-number">Figure 19: </span>Cumulative Amplitude Spectrum of the Sample vertical position error due to Vertical vibration of the Spindle for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_cas_dz_rz.png">png</a>, <a href="./figs/opt_stiff_cas_dz_rz.pdf">pdf</a>)</p>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">freqs = dist_f.f;
|
||||
|
||||
<span class="org-type">figure</span>;
|
||||
hold on;
|
||||
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span>
|
||||
plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(psd_tot(<span class="org-type">:</span>,<span class="org-constant">i</span>))))), <span class="org-string">'-'</span>, ...
|
||||
<span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>)));
|
||||
<span class="org-keyword">end</span>
|
||||
plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>);
|
||||
hold off;
|
||||
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>);
|
||||
xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $E_z$ $[m]$'</span>)
|
||||
legend(<span class="org-string">'Location'</span>, <span class="org-string">'northeast'</span>);
|
||||
xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="orgf6888f0" class="figure">
|
||||
<p><img src="figs/opt_stiff_cas_dz_tot.png" alt="opt_stiff_cas_dz_tot.png" />
|
||||
@ -900,8 +848,8 @@ xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-typ
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org2b9df24" class="outline-3">
|
||||
<h3 id="org2b9df24"><span class="section-number-3">4.4</span> Conclusion</h3>
|
||||
<div id="outline-container-org4352c0d" class="outline-3">
|
||||
<h3 id="org4352c0d"><span class="section-number-3">4.4</span> Conclusion</h3>
|
||||
<div class="outline-text-3" id="text-4-4">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -1064,8 +1012,8 @@ The obtained required bandwidth (approximate upper and lower bounds) to obtained
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgbf0fb63" class="outline-2">
|
||||
<h2 id="orgbf0fb63"><span class="section-number-2">6</span> Conclusion</h2>
|
||||
<div id="outline-container-org08f24cd" class="outline-2">
|
||||
<h2 id="org08f24cd"><span class="section-number-2">6</span> Conclusion</h2>
|
||||
<div class="outline-text-2" id="text-6">
|
||||
<div class="important">
|
||||
<p>
|
||||
@ -1083,7 +1031,7 @@ From Figure <a href="#orgd677910">23</a> and Table <a href="#org5ab4860">1</a>,
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-04-08 mer. 12:12</p>
|
||||
<p class="date">Created: 2020-04-08 mer. 12:17</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -693,7 +693,9 @@ From Figures [[fig:opt_stiff_soft_granite_Frz]] and [[fig:opt_stiff_soft_granite
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
Having a soft granite suspension could greatly improve the sensitivity the ground motion and thus the level of sample vibration if it is found that ground motion is the limiting factor.
|
||||
Having a soft granite suspension greatly decreases the sensitivity the ground motion.
|
||||
Also, it does not affect much the sensitivity to stage vibration and direct forces.
|
||||
Thus the level of sample vibration can be reduced by using a soft granite suspension if it is found that ground motion is the limiting factor.
|
||||
#+end_important
|
||||
|
||||
* Open Loop Budget Error
|
||||
@ -729,7 +731,7 @@ Let's consider Figure [[fig:psd_change_tf]] there $G_d(s)$ is the transfer funct
|
||||
#+end_src
|
||||
|
||||
#+name: fig:psd_change_tf
|
||||
#+caption: Figure caption
|
||||
#+caption: Signal $d$ going through and LTI transfer function $G_d(s)$ to give a signal $y$
|
||||
#+RESULTS:
|
||||
[[file:figs/psd_change_tf.png]]
|
||||
|
||||
@ -768,7 +770,7 @@ Sometimes, we prefer to compute the *Amplitude* Spectral Density (ASD) which is
|
||||
#+end_src
|
||||
|
||||
#+name: fig:psd_change_tf_multiple_pert
|
||||
#+caption: Figure caption
|
||||
#+caption: Block diagram showing and output $y$ resulting from the addition of multiple perturbations $d_i$
|
||||
#+RESULTS:
|
||||
[[file:figs/psd_change_tf_multiple_pert.png]]
|
||||
|
||||
@ -892,7 +894,7 @@ Similarly, the Cumulative Amplitude Spectrum of the sample vibrations are shown:
|
||||
|
||||
The black dashed line corresponds to the performance objective of a sample vibration equal to $10\ nm [rms]$.
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
freqs = dist_f.f;
|
||||
|
||||
figure;
|
||||
@ -918,7 +920,7 @@ The black dashed line corresponds to the performance objective of a sample vibra
|
||||
#+caption: Cumulative Amplitude Spectrum of the Sample vertical position error due to Ground motion for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_cas_dz_gm.png][png]], [[./figs/opt_stiff_cas_dz_gm.pdf][pdf]])
|
||||
[[file:figs/opt_stiff_cas_dz_gm.png]]
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
freqs = dist_f.f;
|
||||
|
||||
figure;
|
||||
@ -944,7 +946,7 @@ The black dashed line corresponds to the performance objective of a sample vibra
|
||||
#+caption: Cumulative Amplitude Spectrum of the Sample vertical position error due to Vertical vibration of the Spindle for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_cas_dz_rz.png][png]], [[./figs/opt_stiff_cas_dz_rz.pdf][pdf]])
|
||||
[[file:figs/opt_stiff_cas_dz_rz.png]]
|
||||
|
||||
#+begin_src matlab
|
||||
#+begin_src matlab :exports none
|
||||
freqs = dist_f.f;
|
||||
|
||||
figure;
|
||||
|
Loading…
Reference in New Issue
Block a user