diff --git a/docs/optimal_stiffness_disturbances.html b/docs/optimal_stiffness_disturbances.html index 3b5ce93..6ba74ed 100644 --- a/docs/optimal_stiffness_disturbances.html +++ b/docs/optimal_stiffness_disturbances.html @@ -4,7 +4,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
- +-Having a soft granite suspension could greatly improve the sensitivity the ground motion and thus the level of sample vibration if it is found that ground motion is the limiting factor. +Having a soft granite suspension greatly decreases the sensitivity the ground motion. +Also, it does not affect much the sensitivity to stage vibration and direct forces. +Thus the level of sample vibration can be reduced by using a soft granite suspension if it is found that ground motion is the limiting factor.
-
Figure 13: Figure caption
+Figure 13: Signal \(d\) going through and LTI transfer function \(G_d(s)\) to give a signal \(y\)
@@ -742,7 +744,7 @@ Sometimes, we prefer to compute the Amplitude Spectral Density (ASD) whic
-
Figure 14: Figure caption
+Figure 14: Block diagram showing and output \(y\) resulting from the addition of multiple perturbations \(d_i\)
@@ -823,24 +825,6 @@ Similarly, the Cumulative Amplitude Spectrum of the sample vibrations are shown: The black dashed line corresponds to the performance objective of a sample vibration equal to \(10\ nm [rms]\).
-freqs = dist_f.f; - -figure; -hold on; -for i = 1:length(Ks) - plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(dist_f.psd_gm.*abs(squeeze(freqresp(Gd{i}('Ez', 'Dwz'), freqs, 'Hz'))).^2)))), '-', ... - 'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i))); -end -plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off'); -hold off; -set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); -xlabel('Frequency [Hz]'); ylabel('CAS $E_y$ $[m]$') -legend('Location', 'northeast'); -xlim([1, 500]); ylim([1e-10 1e-6]); --
@@ -848,24 +832,6 @@ xlim([1, 500]); ylim([1e-10 1eFigure 18: Cumulative Amplitude Spectrum of the Sample vertical position error due to Ground motion for multiple nano-hexapod stiffnesses (png, pdf)
freqs = dist_f.f; - -figure; -hold on; -for i = 1:length(Ks) - plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(dist_f.psd_rz.*abs(squeeze(freqresp(Gd{i}('Ez', 'Frz_z'), freqs, 'Hz'))).^2)))), '-', ... - 'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i))); -end -plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off'); -hold off; -set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); -xlabel('Frequency [Hz]'); ylabel('CAS $[m]$') -legend('Location', 'southwest'); -xlim([1, 500]); ylim([1e-10 1e-6]); --
@@ -873,24 +839,6 @@ xlim([1, 500]); ylim([1e-10 1eFigure 19: Cumulative Amplitude Spectrum of the Sample vertical position error due to Vertical vibration of the Spindle for multiple nano-hexapod stiffnesses (png, pdf)
freqs = dist_f.f; - -figure; -hold on; -for i = 1:length(Ks) - plot(freqs, sqrt(flip(-cumtrapz(flip(freqs), flip(psd_tot(:,i))))), '-', ... - 'DisplayName', sprintf('$k = %.0g$ [N/m]', Ks(i))); -end -plot([freqs(1) freqs(end)], [10e-9 10e-9], 'k--', 'HandleVisibility', 'off'); -hold off; -set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); -xlabel('Frequency [Hz]'); ylabel('CAS $E_z$ $[m]$') -legend('Location', 'northeast'); -xlim([1, 500]); ylim([1e-10 1e-6]); --
@@ -900,8 +848,8 @@ xlim([1, 500]); ylim([1e-10 1e
-
@@ -1064,8 +1012,8 @@ The obtained required bandwidth (approximate upper and lower bounds) to obtained
Created: 2020-04-08 mer. 12:12 Created: 2020-04-08 mer. 12:174.4 Conclusion
+4.4 Conclusion
6 Conclusion
+6 Conclusion