diff --git a/docs/optimal_stiffness_disturbances.html b/docs/optimal_stiffness_disturbances.html index 3b5ce93..6ba74ed 100644 --- a/docs/optimal_stiffness_disturbances.html +++ b/docs/optimal_stiffness_disturbances.html @@ -4,7 +4,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"> <head> -<!-- 2020-04-08 mer. 12:12 --> +<!-- 2020-04-08 mer. 12:17 --> <meta http-equiv="Content-Type" content="text/html;charset=utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <title>Determination of the optimal nano-hexapod’s stiffness for reducing the effect of disturbances</title> @@ -257,7 +257,7 @@ <li><a href="#org78dd34d">2.3. Sensitivity to Stages vibration (Filtering)</a></li> <li><a href="#orgd4ea2f4">2.4. Effect of Ground motion (Transmissibility).</a></li> <li><a href="#org0448746">2.5. Direct Forces (Compliance).</a></li> -<li><a href="#orge784867">2.6. Conclusion</a></li> +<li><a href="#org6791692">2.6. Conclusion</a></li> </ul> </li> <li><a href="#org6527e58">3. Effect of granite stiffness</a> @@ -270,7 +270,7 @@ </li> <li><a href="#org9215f81">3.2. Soft Granite</a></li> <li><a href="#org8878556">3.3. Effect of the Granite transfer function</a></li> -<li><a href="#org4b4fa39">3.4. Conclusion</a></li> +<li><a href="#orga001da4">3.4. Conclusion</a></li> </ul> </li> <li><a href="#org8a88fb0">4. Open Loop Budget Error</a> @@ -278,7 +278,7 @@ <li><a href="#org6bd588f">4.1. Noise Budgeting - Theory</a></li> <li><a href="#orgcc86f59">4.2. Power Spectral Densities</a></li> <li><a href="#orgef96b89">4.3. Cumulative Amplitude Spectrum</a></li> -<li><a href="#org2b9df24">4.4. Conclusion</a></li> +<li><a href="#org4352c0d">4.4. Conclusion</a></li> </ul> </li> <li><a href="#org34c0f38">5. Closed Loop Budget Error</a> @@ -287,7 +287,7 @@ <li><a href="#orgf2d36a1">5.2. Reduction thanks to feedback - Required bandwidth</a></li> </ul> </li> -<li><a href="#orgbf0fb63">6. Conclusion</a></li> +<li><a href="#org08f24cd">6. Conclusion</a></li> </ul> </div> </div> @@ -497,8 +497,8 @@ The effect of direct forces/torques applied on the sample (cable forces for inst </div> </div> -<div id="outline-container-orge784867" class="outline-3"> -<h3 id="orge784867"><span class="section-number-3">2.6</span> Conclusion</h3> +<div id="outline-container-org6791692" class="outline-3"> +<h3 id="org6791692"><span class="section-number-3">2.6</span> Conclusion</h3> <div class="outline-text-3" id="text-2-6"> <div class="important"> <p> @@ -678,12 +678,14 @@ From Figures <a href="#orgc4c14fb">11</a> and <a href="#org533cc4b">12</a>, we s </div> </div> -<div id="outline-container-org4b4fa39" class="outline-3"> -<h3 id="org4b4fa39"><span class="section-number-3">3.4</span> Conclusion</h3> +<div id="outline-container-orga001da4" class="outline-3"> +<h3 id="orga001da4"><span class="section-number-3">3.4</span> Conclusion</h3> <div class="outline-text-3" id="text-3-4"> <div class="important"> <p> -Having a soft granite suspension could greatly improve the sensitivity the ground motion and thus the level of sample vibration if it is found that ground motion is the limiting factor. +Having a soft granite suspension greatly decreases the sensitivity the ground motion. +Also, it does not affect much the sensitivity to stage vibration and direct forces. +Thus the level of sample vibration can be reduced by using a soft granite suspension if it is found that ground motion is the limiting factor. </p> </div> @@ -716,7 +718,7 @@ Let’s consider Figure <a href="#org7ff50a0">13</a> there \(G_d(s)\) is the <div id="org7ff50a0" class="figure"> <p><img src="figs/psd_change_tf.png" alt="psd_change_tf.png" /> </p> -<p><span class="figure-number">Figure 13: </span>Figure caption</p> +<p><span class="figure-number">Figure 13: </span>Signal \(d\) going through and LTI transfer function \(G_d(s)\) to give a signal \(y\)</p> </div> <p> @@ -742,7 +744,7 @@ Sometimes, we prefer to compute the <b>Amplitude</b> Spectral Density (ASD) whic <div id="orgc24bdf6" class="figure"> <p><img src="figs/psd_change_tf_multiple_pert.png" alt="psd_change_tf_multiple_pert.png" /> </p> -<p><span class="figure-number">Figure 14: </span>Figure caption</p> +<p><span class="figure-number">Figure 14: </span>Block diagram showing and output \(y\) resulting from the addition of multiple perturbations \(d_i\)</p> </div> <p> @@ -823,24 +825,6 @@ Similarly, the Cumulative Amplitude Spectrum of the sample vibrations are shown: The black dashed line corresponds to the performance objective of a sample vibration equal to \(10\ nm [rms]\). </p> -<div class="org-src-container"> -<pre class="src src-matlab">freqs = dist_f.f; - -<span class="org-type">figure</span>; -hold on; -<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span> - plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(dist_f.psd_gm<span class="org-type">.*</span>abs(squeeze(freqresp(Gd{<span class="org-constant">i</span>}(<span class="org-string">'Ez'</span>, <span class="org-string">'Dwz'</span>), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2)))), <span class="org-string">'-'</span>, ... - <span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>))); -<span class="org-keyword">end</span> -plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); -hold off; -<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>); -xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $E_y$ $[m]$'</span>) -legend(<span class="org-string">'Location'</span>, <span class="org-string">'northeast'</span>); -xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]); -</pre> -</div> - <div id="org488d65f" class="figure"> <p><img src="figs/opt_stiff_cas_dz_gm.png" alt="opt_stiff_cas_dz_gm.png" /> @@ -848,24 +832,6 @@ xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-typ <p><span class="figure-number">Figure 18: </span>Cumulative Amplitude Spectrum of the Sample vertical position error due to Ground motion for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_cas_dz_gm.png">png</a>, <a href="./figs/opt_stiff_cas_dz_gm.pdf">pdf</a>)</p> </div> -<div class="org-src-container"> -<pre class="src src-matlab">freqs = dist_f.f; - -<span class="org-type">figure</span>; -hold on; -<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span> - plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(dist_f.psd_rz<span class="org-type">.*</span>abs(squeeze(freqresp(Gd{<span class="org-constant">i</span>}(<span class="org-string">'Ez'</span>, <span class="org-string">'Frz_z'</span>), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2)))), <span class="org-string">'-'</span>, ... - <span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>))); -<span class="org-keyword">end</span> -plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); -hold off; -<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>); -xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $[m]$'</span>) -legend(<span class="org-string">'Location'</span>, <span class="org-string">'southwest'</span>); -xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]); -</pre> -</div> - <div id="orge5458c6" class="figure"> <p><img src="figs/opt_stiff_cas_dz_rz.png" alt="opt_stiff_cas_dz_rz.png" /> @@ -873,24 +839,6 @@ xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-typ <p><span class="figure-number">Figure 19: </span>Cumulative Amplitude Spectrum of the Sample vertical position error due to Vertical vibration of the Spindle for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_cas_dz_rz.png">png</a>, <a href="./figs/opt_stiff_cas_dz_rz.pdf">pdf</a>)</p> </div> -<div class="org-src-container"> -<pre class="src src-matlab">freqs = dist_f.f; - -<span class="org-type">figure</span>; -hold on; -<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span> - plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(psd_tot(<span class="org-type">:</span>,<span class="org-constant">i</span>))))), <span class="org-string">'-'</span>, ... - <span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>))); -<span class="org-keyword">end</span> -plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>); -hold off; -<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>); -xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $E_z$ $[m]$'</span>) -legend(<span class="org-string">'Location'</span>, <span class="org-string">'northeast'</span>); -xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]); -</pre> -</div> - <div id="orgf6888f0" class="figure"> <p><img src="figs/opt_stiff_cas_dz_tot.png" alt="opt_stiff_cas_dz_tot.png" /> @@ -900,8 +848,8 @@ xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-typ </div> </div> -<div id="outline-container-org2b9df24" class="outline-3"> -<h3 id="org2b9df24"><span class="section-number-3">4.4</span> Conclusion</h3> +<div id="outline-container-org4352c0d" class="outline-3"> +<h3 id="org4352c0d"><span class="section-number-3">4.4</span> Conclusion</h3> <div class="outline-text-3" id="text-4-4"> <div class="important"> <p> @@ -1064,8 +1012,8 @@ The obtained required bandwidth (approximate upper and lower bounds) to obtained </div> </div> -<div id="outline-container-orgbf0fb63" class="outline-2"> -<h2 id="orgbf0fb63"><span class="section-number-2">6</span> Conclusion</h2> +<div id="outline-container-org08f24cd" class="outline-2"> +<h2 id="org08f24cd"><span class="section-number-2">6</span> Conclusion</h2> <div class="outline-text-2" id="text-6"> <div class="important"> <p> @@ -1083,7 +1031,7 @@ From Figure <a href="#orgd677910">23</a> and Table <a href="#org5ab4860">1</a>, </div> <div id="postamble" class="status"> <p class="author">Author: Dehaeze Thomas</p> -<p class="date">Created: 2020-04-08 mer. 12:12</p> +<p class="date">Created: 2020-04-08 mer. 12:17</p> </div> </body> </html> diff --git a/org/optimal_stiffness_disturbances.org b/org/optimal_stiffness_disturbances.org index a505da8..2b6e0a5 100644 --- a/org/optimal_stiffness_disturbances.org +++ b/org/optimal_stiffness_disturbances.org @@ -693,7 +693,9 @@ From Figures [[fig:opt_stiff_soft_granite_Frz]] and [[fig:opt_stiff_soft_granite ** Conclusion #+begin_important - Having a soft granite suspension could greatly improve the sensitivity the ground motion and thus the level of sample vibration if it is found that ground motion is the limiting factor. + Having a soft granite suspension greatly decreases the sensitivity the ground motion. + Also, it does not affect much the sensitivity to stage vibration and direct forces. + Thus the level of sample vibration can be reduced by using a soft granite suspension if it is found that ground motion is the limiting factor. #+end_important * Open Loop Budget Error @@ -729,7 +731,7 @@ Let's consider Figure [[fig:psd_change_tf]] there $G_d(s)$ is the transfer funct #+end_src #+name: fig:psd_change_tf -#+caption: Figure caption +#+caption: Signal $d$ going through and LTI transfer function $G_d(s)$ to give a signal $y$ #+RESULTS: [[file:figs/psd_change_tf.png]] @@ -768,7 +770,7 @@ Sometimes, we prefer to compute the *Amplitude* Spectral Density (ASD) which is #+end_src #+name: fig:psd_change_tf_multiple_pert -#+caption: Figure caption +#+caption: Block diagram showing and output $y$ resulting from the addition of multiple perturbations $d_i$ #+RESULTS: [[file:figs/psd_change_tf_multiple_pert.png]] @@ -892,7 +894,7 @@ Similarly, the Cumulative Amplitude Spectrum of the sample vibrations are shown: The black dashed line corresponds to the performance objective of a sample vibration equal to $10\ nm [rms]$. -#+begin_src matlab +#+begin_src matlab :exports none freqs = dist_f.f; figure; @@ -918,7 +920,7 @@ The black dashed line corresponds to the performance objective of a sample vibra #+caption: Cumulative Amplitude Spectrum of the Sample vertical position error due to Ground motion for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_cas_dz_gm.png][png]], [[./figs/opt_stiff_cas_dz_gm.pdf][pdf]]) [[file:figs/opt_stiff_cas_dz_gm.png]] -#+begin_src matlab +#+begin_src matlab :exports none freqs = dist_f.f; figure; @@ -944,7 +946,7 @@ The black dashed line corresponds to the performance objective of a sample vibra #+caption: Cumulative Amplitude Spectrum of the Sample vertical position error due to Vertical vibration of the Spindle for multiple nano-hexapod stiffnesses ([[./figs/opt_stiff_cas_dz_rz.png][png]], [[./figs/opt_stiff_cas_dz_rz.pdf][pdf]]) [[file:figs/opt_stiff_cas_dz_rz.png]] -#+begin_src matlab +#+begin_src matlab :exports none freqs = dist_f.f; figure;