nass-simscape/docs/optimal_stiffness_disturbances.html

1060 lines
50 KiB
HTML
Raw Normal View History

<?xml version="1.0" encoding="utf-8"?>
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-04-07 mar. 19:33 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Determination of the optimal nano-hexapod&rsquo;s stiffness for reducing the effect of disturbances</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<style type="text/css">
<!--/*--><![CDATA[/*><!--*/
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #ccc;
box-shadow: 3px 3px 3px #eee;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: visible;
padding-top: 1.2em;
}
pre.src:before {
display: none;
position: absolute;
background-color: white;
top: -10px;
right: 10px;
padding: 3px;
border: 1px solid black;
}
pre.src:hover:before { display: inline;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
/*]]>*/-->
</style>
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
<script type="text/javascript" src="./js/jquery.min.js"></script>
<script type="text/javascript" src="./js/bootstrap.min.js"></script>
<script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
<script type="text/javascript" src="./js/readtheorg.js"></script>
<script type="text/javascript">
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&amp;dn=gpl-3.0.txt GPL-v3-or-Later
<!--/*--><![CDATA[/*><!--*/
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.cacheClassElem = elem.className;
elem.cacheClassTarget = target.className;
target.className = "code-highlighted";
elem.className = "code-highlighted";
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(elem.cacheClassElem)
elem.className = elem.cacheClassElem;
if(elem.cacheClassTarget)
target.className = elem.cacheClassTarget;
}
/*]]>*///-->
// @license-end
</script>
<script>
MathJax = {
tex: {
tags: 'ams',
macros: {
bm: ["\\boldsymbol{#1}",1],
}
}
};
</script>
<script type="text/javascript"
src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="index.html"> UP </a>
|
<a accesskey="H" href="index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Determination of the optimal nano-hexapod&rsquo;s stiffness for reducing the effect of disturbances</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org9e9f810">1. Disturbances</a></li>
<li><a href="#orgc44cf7e">2. Effect of disturbances on the position error</a>
<ul>
<li><a href="#org524df41">2.1. Initialization</a></li>
<li><a href="#orgaf88c9f">2.2. Identification</a></li>
<li><a href="#org78dd34d">2.3. Sensitivity to Stages vibration (Filtering)</a></li>
<li><a href="#orgd4ea2f4">2.4. Effect of Ground motion (Transmissibility).</a></li>
<li><a href="#org0448746">2.5. Direct Forces (Compliance).</a></li>
<li><a href="#orga29f90b">2.6. Conclusion</a></li>
</ul>
</li>
<li><a href="#org6527e58">3. Effect of granite stiffness</a>
<ul>
<li><a href="#orgd3e5fe1">3.1. Analytical Analysis</a>
<ul>
<li><a href="#orgbc34a65">3.1.1. Simple mass-spring-damper model</a></li>
<li><a href="#org4ddec32">3.1.2. General Case</a></li>
</ul>
</li>
<li><a href="#org9215f81">3.2. Soft Granite</a></li>
<li><a href="#org8878556">3.3. Effect of the Granite transfer function</a></li>
<li><a href="#org6362e01">3.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org8a88fb0">4. Open Loop Budget Error</a>
<ul>
<li><a href="#org6bd588f">4.1. Noise Budgeting - Theory</a></li>
<li><a href="#orgcc86f59">4.2. Power Spectral Densities</a></li>
<li><a href="#orgef96b89">4.3. Cumulative Amplitude Spectrum</a></li>
<li><a href="#org2852fc6">4.4. Conclusion</a></li>
</ul>
</li>
<li><a href="#org34c0f38">5. Closed Loop Budget Error</a>
<ul>
<li><a href="#orgdfef0eb">5.1. Approximation of the effect of feedback on the motion error</a></li>
<li><a href="#orgf2d36a1">5.2. Reduction thanks to feedback - Required bandwidth</a></li>
</ul>
</li>
<li><a href="#orge784867">6. Conclusion</a></li>
</ul>
</div>
</div>
<p>
In this document is studied how the stiffness of the nano-hexapod will impact the effect of disturbances on the position error of the sample.
</p>
<p>
It is divided in the following sections:
</p>
<ul class="org-ul">
<li>Section <a href="#org17d3d6a">1</a>: the disturbances are listed and their Power Spectral Densities (PSD) are shown</li>
<li>Section <a href="#orgf9e4300">2</a>: the transfer functions from disturbances to the position error of the sample are computed for a wide range of nano-hexapod stiffnesses</li>
<li>Section <a href="#orgd4105b6">3</a>:</li>
<li>Section <a href="#org5d05990">4</a>: from both the PSD of the disturbances and the transfer function from disturbances to sample&rsquo;s position errors, we compute the resulting PSD and Cumulative Amplitude Spectrum (CAS)</li>
<li>Section <a href="#orgd3503fb">5</a>: from a simplistic model is computed the required control bandwidth to reduce the position error to acceptable values</li>
</ul>
<div id="outline-container-org9e9f810" class="outline-2">
<h2 id="org9e9f810"><span class="section-number-2">1</span> Disturbances</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org17d3d6a"></a>
</p>
<p>
The main disturbances considered here are:
</p>
<ul class="org-ul">
<li>\(D_w\): Ground displacement in the \(x\), \(y\) and \(z\) directions</li>
<li>\(F_{ty}\): Forces applied by the Translation stage in the \(x\) and \(z\) directions</li>
<li>\(F_{rz}\): Forces applied by the Spindle in the \(z\) direction</li>
<li>\(F_d\): Direct forces applied at the center of mass of the Payload</li>
</ul>
<p>
The level of these disturbances has been identified form experiments which are detailed in <a href="disturbances.html">this</a> document.
</p>
<p>
The measured Amplitude Spectral Densities (ASD) of these forces are shown in Figures <a href="#org6b4e47c">1</a> and <a href="#orgb7b8e77">2</a>.
</p>
<p>
In this study, the expected frequency content of the direct forces applied to the payload is not considered.
</p>
<div id="org6b4e47c" class="figure">
<p><img src="figs/opt_stiff_dist_gm.png" alt="opt_stiff_dist_gm.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Amplitude Spectral Density of the Ground Displacement (<a href="./figs/opt_stiff_dist_gm.png">png</a>, <a href="./figs/opt_stiff_dist_gm.pdf">pdf</a>)</p>
</div>
<div id="orgb7b8e77" class="figure">
<p><img src="figs/opt_stiff_dist_fty_frz.png" alt="opt_stiff_dist_fty_frz.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Amplitude Spectral Density of the &ldquo;parasitic&rdquo; forces comming from the Translation stage and the spindle (<a href="./figs/opt_stiff_dist_fty_frz.png">png</a>, <a href="./figs/opt_stiff_dist_fty_frz.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgc44cf7e" class="outline-2">
<h2 id="orgc44cf7e"><span class="section-number-2">2</span> Effect of disturbances on the position error</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="orgf9e4300"></a>
</p>
<p>
In this section, we use the Simscape model to identify the transfer function from disturbances to the position error of the sample.
We do that for a wide range of nano-hexapod stiffnesses and we compare the obtained results.
</p>
</div>
<div id="outline-container-org524df41" class="outline-3">
<h3 id="org524df41"><span class="section-number-3">2.1</span> Initialization</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We initialize all the stages with the default parameters.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeGround();
initializeGranite();
initializeTy();
initializeRy();
initializeRz();
initializeMicroHexapod();
initializeAxisc();
initializeMirror();
</pre>
</div>
<p>
We use a sample mass of 10kg.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeSample(<span class="org-string">'mass'</span>, 10);
</pre>
</div>
<p>
We include gravity, and we use no controller.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeSimscapeConfiguration(<span class="org-string">'gravity'</span>, <span class="org-constant">true</span>);
initializeController();
initializeDisturbances(<span class="org-string">'enable'</span>, <span class="org-constant">false</span>);
initializeLoggingConfiguration(<span class="org-string">'log'</span>, <span class="org-string">'none'</span>);
</pre>
</div>
</div>
</div>
<div id="outline-container-orgaf88c9f" class="outline-3">
<h3 id="orgaf88c9f"><span class="section-number-3">2.2</span> Identification</h3>
<div class="outline-text-3" id="text-2-2">
<p>
The considered inputs are:
</p>
<ul class="org-ul">
<li><code>Dwx</code>: Ground displacement in the \(x\) direction</li>
<li><code>Dwy</code>: Ground displacement in the \(y\) direction</li>
<li><code>Dwz</code>: Ground displacement in the \(z\) direction</li>
<li><code>Fty_x</code>: Forces applied by the Translation stage in the \(x\) direction</li>
<li><code>Fty_z</code>: Forces applied by the Translation stage in the \(z\) direction</li>
<li><code>Frz_z</code>: Forces applied by the Spindle in the \(z\) direction</li>
<li><code>Fd</code>: Direct forces applied at the center of mass of the Payload</li>
</ul>
<p>
The outputs are <code>Ex</code>, <code>Ey</code>, <code>Ez</code>, <code>Erx</code>, <code>Ery</code>, <code>Erz</code> which are the 3 positions and 3 orientations errors of the sample.
</p>
<p>
We initialize the set of the nano-hexapod stiffnesses, and for each of them, we identify the dynamics from defined inputs to defined outputs.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Ks = logspace(3,9,7); <span class="org-comment">% [N/m]</span>
</pre>
</div>
</div>
</div>
<div id="outline-container-org78dd34d" class="outline-3">
<h3 id="org78dd34d"><span class="section-number-3">2.3</span> Sensitivity to Stages vibration (Filtering)</h3>
<div class="outline-text-3" id="text-2-3">
<p>
The sensitivity the stage vibrations are displayed:
</p>
<ul class="org-ul">
<li>Figure <a href="#orgf55ba1b">3</a>: sensitivity to vertical spindle vibrations</li>
<li>Figure <a href="#orgce1ac2c">4</a>: sensitivity to vertical translation stage vibrations</li>
<li>Figure <a href="#org1a24ee2">5</a>: sensitivity to horizontal (x) translation stage vibrations</li>
</ul>
<div id="orgf55ba1b" class="figure">
<p><img src="figs/opt_stiff_sensitivity_Frz.png" alt="opt_stiff_sensitivity_Frz.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Sensitivity to Spindle vertical motion error (\(F_{rz}\)) to the vertical error position of the sample (\(E_z\)) (<a href="./figs/opt_stiff_sensitivity_Frz.png">png</a>, <a href="./figs/opt_stiff_sensitivity_Frz.pdf">pdf</a>)</p>
</div>
<div id="orgce1ac2c" class="figure">
<p><img src="figs/opt_stiff_sensitivity_Fty_z.png" alt="opt_stiff_sensitivity_Fty_z.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Sensitivity to Translation stage vertical motion error (\(F_{ty,z}\)) to the vertical error position of the sample (\(E_z\)) (<a href="./figs/opt_stiff_sensitivity_Fty_z.png">png</a>, <a href="./figs/opt_stiff_sensitivity_Fty_z.pdf">pdf</a>)</p>
</div>
<div id="org1a24ee2" class="figure">
<p><img src="figs/opt_stiff_sensitivity_Fty_x.png" alt="opt_stiff_sensitivity_Fty_x.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Sensitivity to Translation stage \(x\) motion error (\(F_{ty,x}\)) to the error position of the sample in the \(x\) direction (\(E_x\)) (<a href="./figs/opt_stiff_sensitivity_Fty_x.png">png</a>, <a href="./figs/opt_stiff_sensitivity_Fty_x.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgd4ea2f4" class="outline-3">
<h3 id="orgd4ea2f4"><span class="section-number-3">2.4</span> Effect of Ground motion (Transmissibility).</h3>
<div class="outline-text-3" id="text-2-4">
<p>
The effect of Ground motion on the position error of the sample is shown in Figure <a href="#org212587b">6</a>.
</p>
<div id="org212587b" class="figure">
<p><img src="figs/opt_stiff_sensitivity_Dw.png" alt="opt_stiff_sensitivity_Dw.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Sensitivity to Ground motion (\(D_{w}\)) to the position error of the sample (\(E_y\) and \(E_z\)) (<a href="./figs/opt_stiff_sensitivity_Dw.png">png</a>, <a href="./figs/opt_stiff_sensitivity_Dw.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org0448746" class="outline-3">
<h3 id="org0448746"><span class="section-number-3">2.5</span> Direct Forces (Compliance).</h3>
<div class="outline-text-3" id="text-2-5">
<p>
The effect of direct forces/torques applied on the sample (cable forces for instance) on the position error of the sample is shown in Figure <a href="#orga33395f">7</a>.
</p>
<div id="orga33395f" class="figure">
<p><img src="figs/opt_stiff_sensitivity_Fd.png" alt="opt_stiff_sensitivity_Fd.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Sensitivity to Direct forces and torques applied to the sample (\(F_d\), \(M_d\)) to the position error of the sample (<a href="./figs/opt_stiff_sensitivity_Fd.png">png</a>, <a href="./figs/opt_stiff_sensitivity_Fd.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orga29f90b" class="outline-3">
<h3 id="orga29f90b"><span class="section-number-3">2.6</span> Conclusion</h3>
<div class="outline-text-3" id="text-2-6">
<div class="important">
<p>
Reducing the nano-hexapod stiffness generally lowers the sensitivity to stages vibration but increases the sensitivity to ground motion and direct forces.
</p>
<p>
In order to conclude on the optimal stiffness that will yield the smallest sample vibration, one has to include the level of disturbances. This is done in Section <a href="#org5d05990">4</a>.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org6527e58" class="outline-2">
<h2 id="org6527e58"><span class="section-number-2">3</span> Effect of granite stiffness</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="orgd4105b6"></a>
</p>
<p>
In this section, we wish to see if a soft granite suspension could help in reducing the effect of disturbances on the position error of the sample.
</p>
</div>
<div id="outline-container-orgd3e5fe1" class="outline-3">
<h3 id="orgd3e5fe1"><span class="section-number-3">3.1</span> Analytical Analysis</h3>
<div class="outline-text-3" id="text-3-1">
</div>
<div id="outline-container-orgbc34a65" class="outline-4">
<h4 id="orgbc34a65"><span class="section-number-4">3.1.1</span> Simple mass-spring-damper model</h4>
<div class="outline-text-4" id="text-3-1-1">
<p>
Let&rsquo;s consider the system shown in Figure <a href="#org8fb9606">8</a> consisting of two stacked mass-spring-damper systems.
The bottom one represents the granite, and the top one all the positioning stages.
We want the smallest stage &ldquo;deformation&rdquo; \(d = x^\prime - x\) due to ground motion \(w\).
</p>
<div id="org8fb9606" class="figure">
<p><img src="figs/2dof_system_granite_stiffness.png" alt="2dof_system_granite_stiffness.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Mass Spring Damper system consisting of a granite and a positioning stage</p>
</div>
<p>
If we write the equation of motion of the system in Figure <a href="#org8fb9606">8</a>, we obtain:
</p>
\begin{align}
m^\prime s^2 x^\prime &= (c^\prime s + k^\prime) (x - x^\prime) \\
ms^2 x &= (c^\prime s + k^\prime) (x^\prime - x) + (cs + k) (w - x)
\end{align}
<p>
If we note \(d = x^\prime - x\), we obtain:
</p>
\begin{equation}
\frac{d}{w} = \frac{-m^\prime s^2 (cs + k)}{ (m^\prime s^2 + c^\prime s + k^\prime) (ms^2 + cs + k) + m^\prime s^2(c^\prime s + k^\prime)}
\end{equation}
</div>
</div>
<div id="outline-container-org4ddec32" class="outline-4">
<h4 id="org4ddec32"><span class="section-number-4">3.1.2</span> General Case</h4>
<div class="outline-text-4" id="text-3-1-2">
<p>
Let&rsquo;s now considering a general positioning stage defined by:
</p>
<ul class="org-ul">
<li>\(G^\prime(s) = \frac{F}{x}\): its mechanical &ldquo;impedance&rdquo;</li>
<li>\(D^\prime(s) = \frac{d}{x}\): its &ldquo;deformation&rdquo; transfer function</li>
</ul>
<div id="org9702e0f" class="figure">
<p><img src="figs/general_system_granite_stiffness.png" alt="general_system_granite_stiffness.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Mass Spring Damper representing the granite and a general representation of positioning stages</p>
</div>
<p>
The equation of motion are:
</p>
\begin{align}
ms^2 x &= (cs + k) (x - w) - F \\
F &= G^\prime(s) x \\
d &= D^\prime(s) x
\end{align}
<p>
where:
</p>
<ul class="org-ul">
<li>\(F\) is the force applied by the position stages on the granite mass</li>
</ul>
<div class="important">
<p>
We can express \(d\) as a function of \(w\):
</p>
\begin{equation}
\frac{d}{w} = \frac{D^\prime(s) (cs + k)}{ms^2 + cs + k + G^\prime(s)}
\end{equation}
<p>
This is the transfer function that we would like to minimize.
</p>
</div>
<p>
Let&rsquo;s verify this formula for a simple mass/spring/damper positioning stage.
In that case, we have:
</p>
\begin{align*}
D^\prime(s) &= \frac{d}{x} = \frac{- m^\prime s^2}{m^\prime s^2 + c^\prime s + k^\prime} \\
G^\prime(s) &= \frac{F}{x} = \frac{m^\prime s^2(c^\prime s + k)}{m^\prime s^2 + c^\prime s + k^\prime}
\end{align*}
<p>
And finally:
</p>
\begin{equation}
\frac{d}{w} = \frac{-m^\prime s^2 (cs + k)}{ (m^\prime s^2 + c^\prime s + k^\prime) (ms^2 + cs + k) + m^\prime s^2(c^\prime s + k^\prime)}
\end{equation}
<p>
which is the same as the previously derived equation.
</p>
</div>
</div>
</div>
<div id="outline-container-org9215f81" class="outline-3">
<h3 id="org9215f81"><span class="section-number-3">3.2</span> Soft Granite</h3>
<div class="outline-text-3" id="text-3-2">
<p>
Let&rsquo;s initialize a soft granite and see how the sensitivity to disturbances will change.
</p>
<div class="org-src-container">
<pre class="src src-matlab">initializeGranite(<span class="org-string">'K'</span>, 5e5<span class="org-type">*</span>ones(3,1), <span class="org-string">'C'</span>, 5e3<span class="org-type">*</span>ones(3,1));
</pre>
</div>
</div>
</div>
<div id="outline-container-org8878556" class="outline-3">
<h3 id="org8878556"><span class="section-number-3">3.3</span> Effect of the Granite transfer function</h3>
<div class="outline-text-3" id="text-3-3">
<p>
From Figure <a href="#org38146da">10</a>, we can see that having a &ldquo;soft&rdquo; granite suspension greatly lowers the sensitivity to ground motion.
The sensitivity is indeed lowered starting from the resonance of the granite on its soft suspension (few Hz here).
</p>
<p>
From Figures <a href="#orgc4c14fb">11</a> and <a href="#org533cc4b">12</a>, we see that the change of granite suspension does not change a lot the sensitivity to both direct forces and stage vibrations.
</p>
<div id="org38146da" class="figure">
<p><img src="figs/opt_stiff_soft_granite_Dw.png" alt="opt_stiff_soft_granite_Dw.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Change of sensibility to Ground motion when using a stiff Granite (solid curves) and a soft Granite (dashed curves) (<a href="./figs/opt_stiff_soft_granite_Dw.png">png</a>, <a href="./figs/opt_stiff_soft_granite_Dw.pdf">pdf</a>)</p>
</div>
<div id="orgc4c14fb" class="figure">
<p><img src="figs/opt_stiff_soft_granite_Frz.png" alt="opt_stiff_soft_granite_Frz.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Change of sensibility to Spindle vibrations when using a stiff Granite (solid curves) and a soft Granite (dashed curves) (<a href="./figs/opt_stiff_soft_granite_Frz.png">png</a>, <a href="./figs/opt_stiff_soft_granite_Frz.pdf">pdf</a>)</p>
</div>
<div id="org533cc4b" class="figure">
<p><img src="figs/opt_stiff_soft_granite_Fd.png" alt="opt_stiff_soft_granite_Fd.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Change of sensibility to direct forces when using a stiff Granite (solid curves) and a soft Granite (dashed curves) (<a href="./figs/opt_stiff_soft_granite_Fd.png">png</a>, <a href="./figs/opt_stiff_soft_granite_Fd.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org6362e01" class="outline-3">
<h3 id="org6362e01"><span class="section-number-3">3.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-3-4">
<div class="important">
<p>
Having a soft granite suspension could greatly improve the sensitivity the ground motion and thus the level of sample vibration if it is found that ground motion is the limiting factor.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org8a88fb0" class="outline-2">
<h2 id="org8a88fb0"><span class="section-number-2">4</span> Open Loop Budget Error</h2>
<div class="outline-text-2" id="text-4">
<p>
<a id="org5d05990"></a>
</p>
<p>
Now that the frequency content of disturbances have been estimated (Section <a href="#org17d3d6a">1</a>) and the transfer functions from disturbances to the position error of the sample have been identified (Section <a href="#orgf9e4300">2</a>), we can compute the level of sample vibration due to the disturbances.
</p>
<p>
We then can conclude and the nano-hexapod stiffness that will lower the sample position error.
</p>
</div>
<div id="outline-container-org6bd588f" class="outline-3">
<h3 id="org6bd588f"><span class="section-number-3">4.1</span> Noise Budgeting - Theory</h3>
<div class="outline-text-3" id="text-4-1">
<p>
Let&rsquo;s consider Figure <a href="#org7ff50a0">13</a> there \(G_d(s)\) is the transfer function from a signal \(d\) (the perturbation) to a signal \(y\) (the sample&rsquo;s position error).
</p>
<div id="org7ff50a0" class="figure">
<p><img src="figs/psd_change_tf.png" alt="psd_change_tf.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Figure caption</p>
</div>
<p>
We can compute the Power Spectral Density (PSD) of signal \(y\) from the PSD of \(d\) and the norm of \(G_d(s)\):
</p>
\begin{equation}
S_{y}(\omega) = \left|G_d(j\omega)\right|^2 S_{d}(\omega) \label{eq:psd_transfer_function}
\end{equation}
<p>
If we now consider multiple disturbances \(d_1, \dots, d_n\) as shown in Figure <a href="#orgc24bdf6">14</a>, we have that:
</p>
\begin{equation}
S_{y}(\omega) = \left|G_{d_1}(j\omega)\right|^2 S_{d_1}(\omega) + \dots + \left|G_{d_n}(j\omega)\right|^2 S_{d_n}(\omega) \label{eq:sum_psd}
\end{equation}
<p>
Sometimes, we prefer to compute the <b>Amplitude</b> Spectral Density (ASD) which is related to the PSD by:
\[ \Gamma_y(\omega) = \sqrt{S_y(\omega)} \]
</p>
<div id="orgc24bdf6" class="figure">
<p><img src="figs/psd_change_tf_multiple_pert.png" alt="psd_change_tf_multiple_pert.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Figure caption</p>
</div>
<p>
The Cumulative Power Spectrum (CPS) is here defined as:
</p>
\begin{equation}
\Phi_y(\omega) = \int_\omega^\infty S_y(\nu) d\nu
\end{equation}
<p>
And the Cumulative Amplitude Spectrum (CAS):
</p>
\begin{equation}
\Psi(\omega) = \sqrt{\Phi(\omega)} = \sqrt{\int_\omega^\infty S_y(\nu) d\nu}
\end{equation}
<p>
The CAS evaluation for all frequency corresponds to the rms value of the considered quantity:
\[ y_{\text{rms}} = \Psi(\omega = 0) = \sqrt{\int_0^\infty S_y(\nu) d\nu} \]
</p>
</div>
</div>
<div id="outline-container-orgcc86f59" class="outline-3">
<h3 id="orgcc86f59"><span class="section-number-3">4.2</span> Power Spectral Densities</h3>
<div class="outline-text-3" id="text-4-2">
<p>
We compute the effect of perturbations on the motion error thanks to Eq. \eqref{eq:psd_transfer_function}.
</p>
<p>
The result is shown in:
</p>
<ul class="org-ul">
<li>Figure <a href="#orgd3d7b28">15</a>: PSD of the vertical sample&rsquo;s motion error due to vertical ground motion</li>
<li>Figure <a href="#orgd8e87cd">16</a>: PSD of the vertical sample&rsquo;s motion error due to vertical vibrations of the Spindle</li>
</ul>
<div id="orgd3d7b28" class="figure">
<p><img src="figs/opt_stiff_psd_dz_gm.png" alt="opt_stiff_psd_dz_gm.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Amplitude Spectral Density of the Sample vertical position error due to Ground motion for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_psd_dz_gm.png">png</a>, <a href="./figs/opt_stiff_psd_dz_gm.pdf">pdf</a>)</p>
</div>
<div id="orgd8e87cd" class="figure">
<p><img src="figs/opt_stiff_psd_dz_rz.png" alt="opt_stiff_psd_dz_rz.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Amplitude Spectral Density of the Sample vertical position error due to Vertical vibration of the Spindle for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_psd_dz_rz.png">png</a>, <a href="./figs/opt_stiff_psd_dz_rz.pdf">pdf</a>)</p>
</div>
<p>
We compute the effect of all perturbations on the vertical position error using Eq. \eqref{eq:sum_psd} and the resulting PSD is shown in Figure <a href="#orgdbfb5e0">17</a>.
</p>
<div id="orgdbfb5e0" class="figure">
<p><img src="figs/opt_stiff_psd_dz_tot.png" alt="opt_stiff_psd_dz_tot.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Amplitude Spectral Density of the Sample vertical position error due to all considered perturbations for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_psd_dz_tot.png">png</a>, <a href="./figs/opt_stiff_psd_dz_tot.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-orgef96b89" class="outline-3">
<h3 id="orgef96b89"><span class="section-number-3">4.3</span> Cumulative Amplitude Spectrum</h3>
<div class="outline-text-3" id="text-4-3">
<p>
Similarly, the Cumulative Amplitude Spectrum of the sample vibrations are shown:
</p>
<ul class="org-ul">
<li>Figure <a href="#org488d65f">18</a>: due to vertical ground motion</li>
<li>Figure <a href="#orge5458c6">19</a>: due to vertical vibrations of the Spindle</li>
<li>Figure <a href="#orgf6888f0">20</a>: due to all considered perturbations</li>
</ul>
<p>
The black dashed line corresponds to the performance objective of a sample vibration equal to \(10\ nm [rms]\).
</p>
<div class="org-src-container">
<pre class="src src-matlab">freqs = dist_f.f;
<span class="org-type">figure</span>;
hold on;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span>
plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(dist_f.psd_gm<span class="org-type">.*</span>abs(squeeze(freqresp(Gd{<span class="org-constant">i</span>}(<span class="org-string">'Ez'</span>, <span class="org-string">'Dwz'</span>), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2)))), <span class="org-string">'-'</span>, ...
<span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>)));
<span class="org-keyword">end</span>
plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>);
hold off;
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>);
xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $E_y$ $[m]$'</span>)
legend(<span class="org-string">'Location'</span>, <span class="org-string">'northeast'</span>);
xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]);
</pre>
</div>
<div id="org488d65f" class="figure">
<p><img src="figs/opt_stiff_cas_dz_gm.png" alt="opt_stiff_cas_dz_gm.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Cumulative Amplitude Spectrum of the Sample vertical position error due to Ground motion for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_cas_dz_gm.png">png</a>, <a href="./figs/opt_stiff_cas_dz_gm.pdf">pdf</a>)</p>
</div>
<div class="org-src-container">
<pre class="src src-matlab">freqs = dist_f.f;
<span class="org-type">figure</span>;
hold on;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span>
plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(dist_f.psd_rz<span class="org-type">.*</span>abs(squeeze(freqresp(Gd{<span class="org-constant">i</span>}(<span class="org-string">'Ez'</span>, <span class="org-string">'Frz_z'</span>), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2)))), <span class="org-string">'-'</span>, ...
<span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>)));
<span class="org-keyword">end</span>
plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>);
hold off;
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>);
xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $[m]$'</span>)
legend(<span class="org-string">'Location'</span>, <span class="org-string">'southwest'</span>);
xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]);
</pre>
</div>
<div id="orge5458c6" class="figure">
<p><img src="figs/opt_stiff_cas_dz_rz.png" alt="opt_stiff_cas_dz_rz.png" />
</p>
<p><span class="figure-number">Figure 19: </span>Cumulative Amplitude Spectrum of the Sample vertical position error due to Vertical vibration of the Spindle for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_cas_dz_rz.png">png</a>, <a href="./figs/opt_stiff_cas_dz_rz.pdf">pdf</a>)</p>
</div>
<div class="org-src-container">
<pre class="src src-matlab">freqs = dist_f.f;
<span class="org-type">figure</span>;
hold on;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span>
plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(psd_tot(<span class="org-type">:</span>,<span class="org-constant">i</span>))))), <span class="org-string">'-'</span>, ...
<span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>)));
<span class="org-keyword">end</span>
plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>);
hold off;
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>);
xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $E_z$ $[m]$'</span>)
legend(<span class="org-string">'Location'</span>, <span class="org-string">'northeast'</span>);
xlim([1, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]);
</pre>
</div>
<div id="orgf6888f0" class="figure">
<p><img src="figs/opt_stiff_cas_dz_tot.png" alt="opt_stiff_cas_dz_tot.png" />
</p>
<p><span class="figure-number">Figure 20: </span>Cumulative Amplitude Spectrum of the Sample vertical position error due to all considered perturbations for multiple nano-hexapod stiffnesses (<a href="./figs/opt_stiff_cas_dz_tot.png">png</a>, <a href="./figs/opt_stiff_cas_dz_tot.pdf">pdf</a>)</p>
</div>
</div>
</div>
<div id="outline-container-org2852fc6" class="outline-3">
<h3 id="org2852fc6"><span class="section-number-3">4.4</span> Conclusion</h3>
<div class="outline-text-3" id="text-4-4">
<div class="important">
<p>
From Figure <a href="#orgf6888f0">20</a>, we can see that a soft nano-hexapod \(k<10^6\ [N/m]\) significantly reduces the effect of perturbations from 20Hz to 300Hz.
</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org34c0f38" class="outline-2">
<h2 id="org34c0f38"><span class="section-number-2">5</span> Closed Loop Budget Error</h2>
<div class="outline-text-2" id="text-5">
<p>
<a id="orgd3503fb"></a>
</p>
</div>
<div id="outline-container-orgdfef0eb" class="outline-3">
<h3 id="orgdfef0eb"><span class="section-number-3">5.1</span> Approximation of the effect of feedback on the motion error</h3>
<div class="outline-text-3" id="text-5-1">
<p>
Let&rsquo;s consider Figure <a href="#org6308d80">21</a> where a controller \(K\) is used to reduce the effect of the disturbance \(d\) on the position error \(y\).
</p>
<div id="org6308d80" class="figure">
<p><img src="figs/effect_feedback_disturbance_diagram.png" alt="effect_feedback_disturbance_diagram.png" />
</p>
<p><span class="figure-number">Figure 21: </span>Feedback System</p>
</div>
<p>
The reduction of the impact of \(d\) on \(y\) thanks to feedback is described by the following equation:
</p>
\begin{equation}
\frac{y}{d} = \frac{G_d}{1 + KG}
\end{equation}
<p>
As a first approximation, we can consider that the controller is designed in such a way that the loop gain \(KG\) is a pure integrator:
\[ L_1(s) = K_1(s) G(s) = \frac{\omega_c}{s} \]
where \(\omega_c\) is the crossover frequency.
</p>
<p>
We may then consider another controller in such a way that the loop gain corresponds to a double integrator with a lead centered with the crossover frequency \(\omega_c\):
\[ L_2(s) = K_2(s) G(s) = \left( \frac{\omega_c}{s} \right)^2 \cdot \frac{1 + \frac{s}{\omega_c/2}}{1 + \frac{s}{2\omega_c}} \]
</p>
</div>
</div>
<div id="outline-container-orgf2d36a1" class="outline-3">
<h3 id="orgf2d36a1"><span class="section-number-3">5.2</span> Reduction thanks to feedback - Required bandwidth</h3>
<div class="outline-text-3" id="text-5-2">
<div class="org-src-container">
<pre class="src src-matlab">wc = 1<span class="org-type">*</span>2<span class="org-type">*</span><span class="org-constant">pi</span>; <span class="org-comment">% [rad/s]</span>
xic = 0.5;
S = (s<span class="org-type">/</span>wc)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>wc);
bodeFig({S}, logspace(<span class="org-type">-</span>1,2,1000))
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">wc = [1, 5, 10, 20, 50, 100, 200];
S1 = {zeros(length(wc), 1)};
S2 = {zeros(length(wc), 1)};
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">j</span></span> = <span class="org-constant">1:length(wc)</span>
L = (2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>wc(<span class="org-constant">j</span>))<span class="org-type">/</span>s; <span class="org-comment">% Simple integrator</span>
S1{<span class="org-constant">j</span>} = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> L);
L = ((2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>wc(<span class="org-constant">j</span>))<span class="org-type">/</span>s)<span class="org-type">^</span>2<span class="org-type">*</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>(2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>wc(<span class="org-constant">j</span>)<span class="org-type">/</span>2))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>(2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>wc(<span class="org-constant">j</span>)<span class="org-type">*</span>2));
S2{<span class="org-constant">j</span>} = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> L);
<span class="org-keyword">end</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">freqs = dist_f.f;
<span class="org-type">figure</span>;
hold on;
<span class="org-constant">i</span> = 6;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">j</span></span> = <span class="org-constant">1:length(wc)</span>
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>,<span class="org-string">'ColorOrderIndex'</span>,<span class="org-constant">j</span>);
plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(abs(squeeze(freqresp(S1{<span class="org-constant">j</span>}, freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>psd_tot(<span class="org-type">:</span>,<span class="org-constant">i</span>))))), <span class="org-string">'-'</span>, ...
<span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$\\omega_c = %.0f$ [Hz]'</span>, wc(<span class="org-constant">j</span>)));
<span class="org-keyword">end</span>
plot(freqs, sqrt(flip(<span class="org-type">-</span>cumtrapz(flip(freqs), flip(psd_tot(<span class="org-type">:</span>,<span class="org-constant">i</span>))))), <span class="org-string">'k-'</span>, ...
<span class="org-string">'DisplayName'</span>, <span class="org-string">'Open-Loop'</span>);
plot([freqs(1) freqs(end)], [10e<span class="org-type">-</span>9 10e<span class="org-type">-</span>9], <span class="org-string">'k--'</span>, <span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>);
hold off;
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>);
xlabel(<span class="org-string">'Frequency [Hz]'</span>); ylabel(<span class="org-string">'CAS $E_y$ $[m]$'</span>)
legend(<span class="org-string">'Location'</span>, <span class="org-string">'northeast'</span>);
xlim([0.5, 500]); ylim([1e<span class="org-type">-</span>10 1e<span class="org-type">-</span>6]);
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">wc = logspace(0, 3, 100);
Dz1_rms = zeros(length(Ks), length(wc));
Dz2_rms = zeros(length(Ks), length(wc));
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span>
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">j</span></span> = <span class="org-constant">1:length(wc)</span>
L = (2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>wc(<span class="org-constant">j</span>))<span class="org-type">/</span>s;
Dz1_rms(<span class="org-constant">i</span>, <span class="org-constant">j</span>) = sqrt(trapz(freqs, abs(squeeze(freqresp(1<span class="org-type">/</span>(1 <span class="org-type">+</span> L), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>psd_tot(<span class="org-type">:</span>,<span class="org-constant">i</span>)));
L = ((2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>wc(<span class="org-constant">j</span>))<span class="org-type">/</span>s)<span class="org-type">^</span>2<span class="org-type">*</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>(2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>wc(<span class="org-constant">j</span>)<span class="org-type">/</span>2))<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>(2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>wc(<span class="org-constant">j</span>)<span class="org-type">*</span>2));
Dz2_rms(<span class="org-constant">i</span>, <span class="org-constant">j</span>) = sqrt(trapz(freqs, abs(squeeze(freqresp(1<span class="org-type">/</span>(1 <span class="org-type">+</span> L), freqs, <span class="org-string">'Hz'</span>)))<span class="org-type">.^</span>2<span class="org-type">.*</span>psd_tot(<span class="org-type">:</span>,<span class="org-constant">i</span>)));
<span class="org-keyword">end</span>
<span class="org-keyword">end</span>
</pre>
</div>
<div class="org-src-container">
<pre class="src src-matlab">freqs = dist_f.f;
<span class="org-type">figure</span>;
hold on;
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(Ks)</span>
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>,<span class="org-string">'ColorOrderIndex'</span>,<span class="org-constant">i</span>);
plot(wc, Dz1_rms(<span class="org-constant">i</span>, <span class="org-type">:</span>), <span class="org-string">'-'</span>, ...
<span class="org-string">'DisplayName'</span>, sprintf(<span class="org-string">'$k = %.0g$ [N/m]'</span>, Ks(<span class="org-constant">i</span>)))
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>,<span class="org-string">'ColorOrderIndex'</span>,<span class="org-constant">i</span>);
plot(wc, Dz2_rms(<span class="org-constant">i</span>, <span class="org-type">:</span>), <span class="org-string">'--'</span>, ...
<span class="org-string">'HandleVisibility'</span>, <span class="org-string">'off'</span>)
<span class="org-keyword">end</span>
hold off;
<span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'xscale'</span>, <span class="org-string">'log'</span>); <span class="org-type">set</span>(<span class="org-variable-name">gca</span>, <span class="org-string">'yscale'</span>, <span class="org-string">'log'</span>);
xlabel(<span class="org-string">'Control Bandwidth [Hz]'</span>); ylabel(<span class="org-string">'$E_z\ [m, rms]$'</span>)
legend(<span class="org-string">'Location'</span>, <span class="org-string">'southwest'</span>);
xlim([1, 500]);
</pre>
</div>
</div>
</div>
</div>
<div id="outline-container-orge784867" class="outline-2">
<h2 id="orge784867"><span class="section-number-2">6</span> Conclusion</h2>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-04-07 mar. 19:33</p>
</div>
</body>
</html>