Folder name is changed, rework the html templates Change the organisation.
		
			
				
	
	
		
			841 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Org Mode
		
	
	
	
	
	
			
		
		
	
	
			841 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			Org Mode
		
	
	
	
	
	
#+TITLE: Measurements On the Slip-Ring
 | 
						|
#+SETUPFILE: ../config.org
 | 
						|
 | 
						|
* Effect of the Slip-Ring on the signal
 | 
						|
  :PROPERTIES:
 | 
						|
  :header-args:matlab+: :tangle matlab/meas_slip_ring_geophone.m
 | 
						|
  :header-args:matlab+: :comments org :mkdirp yes
 | 
						|
  :END:
 | 
						|
  <<sec:meas_slip_ring_geophone>>
 | 
						|
 | 
						|
#+begin_src bash :exports none :results none
 | 
						|
  if [ matlab/meas_slip_ring_geophone.m -nt data/meas_slip_ring_geophone.zip ]; then
 | 
						|
    cp matlab/meas_slip_ring_geophone.m meas_slip_ring_geophone.m;
 | 
						|
    zip data/meas_slip_ring_geophone \
 | 
						|
        mat/data_018.mat \
 | 
						|
        mat/data_019.mat \
 | 
						|
        meas_slip_ring_geophone.m;
 | 
						|
    rm meas_slip_ring_geophone.m;
 | 
						|
  fi
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_note
 | 
						|
  All the files (data and Matlab scripts) are accessible [[file:data/meas_slip_ring_geophone.zip][here]].
 | 
						|
#+end_note
 | 
						|
 | 
						|
** Experimental Setup
 | 
						|
Two measurements are made with the control systems of all the stages turned OFF.
 | 
						|
 | 
						|
One geophone is located on the marble while the other is located at the sample location (figure [[fig:setup_slipring]]).
 | 
						|
 | 
						|
#+name: fig:setup_slipring
 | 
						|
#+caption: Experimental Setup
 | 
						|
#+attr_html: :width 500px
 | 
						|
[[file:./img/IMG_20190430_112615.jpg]]
 | 
						|
 | 
						|
The two measurements are:
 | 
						|
| Measurement File | Description                                                      |
 | 
						|
|------------------+------------------------------------------------------------------|
 | 
						|
| =meas_018.mat=   | Signal from the top geophone does not goes through the Slip-ring |
 | 
						|
| =meas_019.mat=   | Signal goes through the Slip-ring (as shown on the figure above) |
 | 
						|
 | 
						|
Each of the measurement =mat= file contains one =data= array with 3 columns:
 | 
						|
| Column number | Description       |
 | 
						|
|---------------+-------------------|
 | 
						|
|             1 | Geophone - Marble |
 | 
						|
|             2 | Geophone - Sample |
 | 
						|
|             3 | Time              |
 | 
						|
 | 
						|
** Matlab Init                                              :noexport:ignore:
 | 
						|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
						|
  <<matlab-dir>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_src matlab :exports none :results silent :noweb yes
 | 
						|
  <<matlab-init>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
** Load data
 | 
						|
We load the data of the z axis of two geophones.
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  d8 = load('mat/data_018.mat', 'data'); d8 = d8.data;
 | 
						|
  d9 = load('mat/data_019.mat', 'data'); d9 = d9.data;
 | 
						|
#+end_src
 | 
						|
 | 
						|
** Analysis - Time Domain
 | 
						|
First, we compare the time domain signals for the two experiments (figure [[fig:slipring_time]]).
 | 
						|
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(d9(:, 3), d9(:, 2), 'DisplayName', 'Slip-Ring');
 | 
						|
  plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Wire');
 | 
						|
  hold off;
 | 
						|
  xlabel('Time [s]'); ylabel('Voltage [V]');
 | 
						|
  xlim([0, 50]);
 | 
						|
  legend('location', 'northeast');
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:slipring_time
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/slipring_time.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:slipring_time
 | 
						|
#+CAPTION: Effect of the Slip-Ring on the measured signal - Time domain
 | 
						|
#+RESULTS: fig:slipring_time
 | 
						|
[[file:figs/slipring_time.png]]
 | 
						|
 | 
						|
** Analysis - Frequency Domain
 | 
						|
We then compute the Power Spectral Density of the two signals and we compare them (figure [[fig:slipring_asd]]).
 | 
						|
#+begin_src matlab :results none
 | 
						|
  dt = d8(2, 3) - d8(1, 3);
 | 
						|
  Fs = 1/dt;
 | 
						|
 | 
						|
  win = hanning(ceil(1*Fs));
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  [pxx8, f] = pwelch(d8(:, 2), win, [], [], Fs);
 | 
						|
  [pxx9, ~] = pwelch(d9(:, 2), win, [], [], Fs);
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(f, sqrt(pxx9), 'DisplayName', 'Slip-Ring');
 | 
						|
  plot(f, sqrt(pxx8), 'DisplayName', 'Wire');
 | 
						|
  hold off;
 | 
						|
  set(gca, 'xscale', 'log');
 | 
						|
  set(gca, 'yscale', 'log');
 | 
						|
  xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
 | 
						|
  xlim([1, 500]);
 | 
						|
  legend('Location', 'southwest');
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:slipring_asd
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/slipring_asd.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:slipring_asd
 | 
						|
#+CAPTION: Effect of the Slip-Ring on the measured signal - Frequency domain
 | 
						|
#+RESULTS: fig:slipring_asd
 | 
						|
[[file:figs/slipring_asd.png]]
 | 
						|
 | 
						|
** Conclusion
 | 
						|
#+begin_important
 | 
						|
- Connecting the geophone through the Slip-Ring seems to induce a lot of noise.
 | 
						|
#+end_important
 | 
						|
 | 
						|
#+begin_note
 | 
						|
*Remaining questions to answer*:
 | 
						|
- Why is there a sharp peak at 300Hz?
 | 
						|
- Why the use of the Slip-Ring does induce a noise?
 | 
						|
- Can the capacitive/inductive properties of the wires in the Slip-ring does not play well with the geophone? (resonant RLC circuit)
 | 
						|
#+end_note
 | 
						|
 | 
						|
* Effect of the rotation of the Slip-Ring
 | 
						|
  :PROPERTIES:
 | 
						|
  :header-args:matlab+: :tangle matlab/meas_effect_sr.m
 | 
						|
  :header-args:matlab+: :comments org :mkdirp yes
 | 
						|
  :END:
 | 
						|
  <<sec:meas_effect_sr>>
 | 
						|
 | 
						|
#+begin_src bash :exports none :results none
 | 
						|
  if [ matlab/meas_effect_sr.m -nt data/meas_effect_sr.zip ]; then
 | 
						|
    cp matlab/meas_effect_sr.m meas_effect_sr.m;
 | 
						|
    zip data/meas_effect_sr \
 | 
						|
        mat/data_001.mat \
 | 
						|
        mat/data_002.mat \
 | 
						|
        meas_effect_sr.m;
 | 
						|
    rm meas_effect_sr.m;
 | 
						|
  fi
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_note
 | 
						|
  All the files (data and Matlab scripts) are accessible [[file:data/meas_effect_sr.zip][here]].
 | 
						|
#+end_note
 | 
						|
 | 
						|
** Measurement Description
 | 
						|
Random Signal is generated by one DAC of the SpeedGoat.
 | 
						|
 | 
						|
The signal going out of the DAC is split into two:
 | 
						|
- one BNC cable is directly connected to one ADC of the SpeedGoat
 | 
						|
- one BNC cable goes two times in the Slip-Ring (from bottom to top and then from top to bottom) and then is connected to one ADC of the SpeedGoat
 | 
						|
 | 
						|
Two measurements are done.
 | 
						|
| Data File          | Description           |
 | 
						|
|--------------------+-----------------------|
 | 
						|
| =mat/data_001.mat= | Slip-ring not turning |
 | 
						|
| =mat/data_002.mat= | Slip-ring turning     |
 | 
						|
 | 
						|
For each measurement, the measured signals are:
 | 
						|
| Data File | Description                        |
 | 
						|
|-----------+------------------------------------|
 | 
						|
| =t=       | Time vector                        |
 | 
						|
| =x1=      | Direct signal                      |
 | 
						|
| =x2=      | Signal going through the Slip-Ring |
 | 
						|
 | 
						|
The goal is to determine is the signal is altered when the spindle is rotating.
 | 
						|
 | 
						|
Here, the rotation speed of the Slip-Ring is set to 1rpm.
 | 
						|
 | 
						|
** Matlab Init                                              :noexport:ignore:
 | 
						|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
						|
  <<matlab-dir>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_src matlab :exports none :results silent :noweb yes
 | 
						|
  <<matlab-init>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
** Load data
 | 
						|
We load the data of the z axis of two geophones.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  sr_off = load('mat/data_001.mat', 't', 'x1', 'x2');
 | 
						|
  sr_on  = load('mat/data_002.mat', 't', 'x1', 'x2');
 | 
						|
#+end_src
 | 
						|
 | 
						|
** Analysis
 | 
						|
Let's first look at the signal produced by the DAC (figure [[fig:random_signal]]).
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(sr_on.t,  sr_on.x1);
 | 
						|
  hold off;
 | 
						|
  xlabel('Time [s]'); ylabel('Voltage [V]');
 | 
						|
  xlim([0 10]);
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:random_signal
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/random_signal.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:random_signal
 | 
						|
#+CAPTION: Random signal produced by the DAC
 | 
						|
#+RESULTS: fig:random_signal
 | 
						|
[[file:figs/random_signal.png]]
 | 
						|
 | 
						|
We now look at the difference between the signal directly measured by the ADC and the signal that goes through the slip-ring (figure [[fig:slipring_comp_signals]]).
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(sr_on.t,  sr_on.x1  -  sr_on.x2,  'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
 | 
						|
  plot(sr_off.t, sr_off.x1 - sr_off.x2,'DisplayName', 'Slip-Ring off');
 | 
						|
  hold off;
 | 
						|
  xlabel('Time [s]'); ylabel('Voltage [V]');
 | 
						|
  xlim([0 10]);
 | 
						|
  legend('Location', 'northeast');
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:slipring_comp_signals
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/slipring_comp_signals.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:slipring_comp_signals
 | 
						|
#+CAPTION: Alteration of the signal when the slip-ring is turning
 | 
						|
#+RESULTS: fig:slipring_comp_signals
 | 
						|
[[file:figs/slipring_comp_signals.png]]
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  dt = sr_on.t(2) - sr_on.t(1);
 | 
						|
  Fs = 1/dt; % [Hz]
 | 
						|
 | 
						|
  win = hanning(ceil(1*Fs));
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  [pxx_on,  f] = pwelch(sr_on.x1  - sr_on.x2,  win, [], [], Fs);
 | 
						|
  [pxx_off, ~] = pwelch(sr_off.x1 - sr_off.x2, win, [], [], Fs);
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_src matlab :results none :exports none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(f, sqrt(pxx_on), 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
 | 
						|
  plot(f, sqrt(pxx_off),'DisplayName', 'Slip-Ring off');
 | 
						|
  hold off;
 | 
						|
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
 | 
						|
  xlabel('Frequency [Hz]'); ylabel('PSD $\left[\frac{V}{\sqrt{Hz}}\right]$');
 | 
						|
  legend('Location', 'northeast');
 | 
						|
  xlim([1, 500]); ylim([1e-5, 1e-3])
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:psd_noise
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/psd_noise.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:psd_noise
 | 
						|
#+CAPTION: ASD of the measured noise
 | 
						|
#+RESULTS: fig:psd_noise
 | 
						|
[[file:figs/psd_noise.png]]
 | 
						|
 | 
						|
** Conclusion
 | 
						|
#+begin_note
 | 
						|
  *Remaining questions*:
 | 
						|
  - Should the measurement be redone using voltage amplifiers?
 | 
						|
  - Use higher rotation speed and measure for longer periods (to have multiple revolutions) ?
 | 
						|
#+end_note
 | 
						|
* Measure of the noise induced by the Slip-Ring
 | 
						|
  :PROPERTIES:
 | 
						|
  :header-args:matlab+: :tangle matlab/meas_slip_ring.m
 | 
						|
  :header-args:matlab+: :comments org :mkdirp yes
 | 
						|
  :END:
 | 
						|
  <<sec:meas_slip_ring>>
 | 
						|
 | 
						|
#+begin_src bash :exports none :results none
 | 
						|
  if [ matlab/meas_slip_ring.m -nt data/meas_slip_ring.zip ]; then
 | 
						|
    cp matlab/meas_slip_ring.m meas_slip_ring.m;
 | 
						|
    zip data/meas_slip_ring \
 | 
						|
        mat/data_008.mat \
 | 
						|
        mat/data_009.mat \
 | 
						|
        mat/data_010.mat \
 | 
						|
        mat/data_011.mat \
 | 
						|
        meas_slip_ring.m;
 | 
						|
    rm meas_slip_ring.m;
 | 
						|
  fi
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_note
 | 
						|
  All the files (data and Matlab scripts) are accessible [[file:data/meas_slip_ring.zip][here]].
 | 
						|
#+end_note
 | 
						|
 | 
						|
** Measurement Description
 | 
						|
*Goal*:
 | 
						|
- Determine the noise induced by the slip-ring
 | 
						|
 | 
						|
*Setup*:
 | 
						|
- 0V is generated by the DAC of the Speedgoat
 | 
						|
- Using a T, one part goes directly to the ADC
 | 
						|
- The other part goes to the slip-ring 2 times and then to the ADC
 | 
						|
- The parameters of the Voltage Amplifier are: 80dB, AC, 1kHz
 | 
						|
- Every stage of the station is OFF
 | 
						|
 | 
						|
First column: Direct measure
 | 
						|
Second column: Slip-ring measure
 | 
						|
 | 
						|
 | 
						|
*Measurements*:
 | 
						|
- =data_008=: Slip-Ring OFF
 | 
						|
- =data_009=: Slip-Ring ON
 | 
						|
- =data_010=: Slip-Ring ON and omega=6rpm
 | 
						|
- =data_011=: Slip-Ring ON and omega=60rpm
 | 
						|
 | 
						|
#+name: fig:setup_sr_6rpm
 | 
						|
#+caption: Slip-Ring rotating at 6rpm
 | 
						|
[[file:./img/VID_20190503_160831.gif]]
 | 
						|
 | 
						|
#+name: fig:setup_sr_60rpm
 | 
						|
#+caption: Slip-Ring rotating at 60rpm
 | 
						|
[[file:./img/VID_20190503_161401.gif]]
 | 
						|
 | 
						|
** Matlab Init                                              :noexport:ignore:
 | 
						|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
						|
  <<matlab-dir>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_src matlab :exports none :results silent :noweb yes
 | 
						|
  <<matlab-init>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
** Load data
 | 
						|
We load the data of the z axis of two geophones.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  sr_off = load('mat/data_008.mat', 'data'); sr_off = sr_off.data;
 | 
						|
  sr_on  = load('mat/data_009.mat', 'data'); sr_on  = sr_on.data;
 | 
						|
  sr_6r  = load('mat/data_010.mat', 'data'); sr_6r  = sr_6r.data;
 | 
						|
  sr_60r = load('mat/data_011.mat', 'data'); sr_60r = sr_60r.data;
 | 
						|
#+end_src
 | 
						|
 | 
						|
** Time Domain
 | 
						|
We plot the time domain data for the direct measurement (figure [[fig:sr_direct_time]]) and for the signal going through the slip-ring (figure [[fig:sr_slipring_time]]);
 | 
						|
 | 
						|
#+begin_src matlab :results none :exports none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(sr_60r(:, 3), sr_60r(:, 1), 'DisplayName', '60rpm');
 | 
						|
  plot(sr_6r(:, 3),  sr_6r(:, 1),  'DisplayName', '6rpm');
 | 
						|
  plot(sr_on(:, 3),  sr_on(:, 1),  'DisplayName', 'ON');
 | 
						|
  plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'OFF');
 | 
						|
  hold off;
 | 
						|
  xlabel('Time [s]'); ylabel('Voltage [V]');
 | 
						|
  legend('Location', 'northeast');
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_direct_time
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_direct_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_direct_time
 | 
						|
#+CAPTION: Direct measurement
 | 
						|
#+RESULTS: fig:sr_direct_time
 | 
						|
[[file:figs/sr_direct_time.png]]
 | 
						|
 | 
						|
 | 
						|
#+begin_src matlab :results none :exports none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(sr_60r(:, 3), sr_60r(:, 2), 'DisplayName', '60rpm');
 | 
						|
  plot(sr_6r(:, 3),  sr_6r(:, 2),  'DisplayName', '6rpm');
 | 
						|
  plot(sr_on(:, 3),  sr_on(:, 2),  'DisplayName', 'ON');
 | 
						|
  plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'OFF');
 | 
						|
  hold off;
 | 
						|
  xlabel('Time [s]'); ylabel('Voltage [V]');
 | 
						|
  legend('Location', 'northeast');
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_slipring_time
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_slipring_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_slipring_time
 | 
						|
#+CAPTION: Measurement of the signal going through the Slip-Ring
 | 
						|
#+RESULTS: fig:sr_slipring_time
 | 
						|
[[file:figs/sr_slipring_time.png]]
 | 
						|
 | 
						|
** Frequency Domain
 | 
						|
We first compute some parameters that will be used for the PSD computation.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  dt = sr_off(2, 3)-sr_off(1, 3);
 | 
						|
 | 
						|
  Fs = 1/dt; % [Hz]
 | 
						|
 | 
						|
  win = hanning(ceil(10*Fs));
 | 
						|
#+end_src
 | 
						|
 | 
						|
Then we compute the Power Spectral Density using =pwelch= function.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  [pxdir, f] = pwelch(sr_off(:, 1), win, [], [], Fs);
 | 
						|
  [pxoff, ~] = pwelch(sr_off(:, 2), win, [], [], Fs);
 | 
						|
  [pxon,  ~] = pwelch(sr_on(:, 2),  win, [], [], Fs);
 | 
						|
  [px6r,  ~] = pwelch(sr_6r(:, 2),  win, [], [], Fs);
 | 
						|
  [px60r, ~] = pwelch(sr_60r(:, 2), win, [], [], Fs);
 | 
						|
#+end_src
 | 
						|
 | 
						|
And we plot the ASD of the measured signals (figure [[fig:sr_psd_compare]]);
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
 | 
						|
  plot(f, sqrt(pxon),  'DisplayName', 'ON');
 | 
						|
  plot(f, sqrt(px6r),  'DisplayName', '6rpm');
 | 
						|
  plot(f, sqrt(px60r), 'DisplayName', '60rpm');
 | 
						|
  plot(f, sqrt(pxdir), 'k-', 'DisplayName', 'Direct');
 | 
						|
  hold off;
 | 
						|
  set(gca, 'xscale', 'log');
 | 
						|
  set(gca, 'yscale', 'log');
 | 
						|
  xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
 | 
						|
  legend('Location', 'northeast');
 | 
						|
  xlim([0.1, 500]);
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_psd_compare
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_psd_compare.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_psd_compare
 | 
						|
#+CAPTION: Comparison of the ASD of the measured signals when the slip-ring is ON, OFF and turning
 | 
						|
#+RESULTS: fig:sr_psd_compare
 | 
						|
[[file:figs/sr_psd_compare.png]]
 | 
						|
 | 
						|
** Conclusion
 | 
						|
#+begin_important
 | 
						|
  *Questions:*
 | 
						|
  - Why is there some sharp peaks? Can this be due to aliasing?
 | 
						|
  - It is possible that the amplifiers were saturating during the measurements => should redo the measurements with a low pass filter before the voltage amplifier
 | 
						|
#+end_important
 | 
						|
 | 
						|
* Measure of the noise induced by the slip ring when using a geophone
 | 
						|
  :PROPERTIES:
 | 
						|
  :header-args:matlab+: :tangle matlab/meas_sr_geophone.m
 | 
						|
  :header-args:matlab+: :comments org :mkdirp yes
 | 
						|
  :END:
 | 
						|
  <<sec:meas_sr_geophone>>
 | 
						|
 | 
						|
#+begin_src bash :exports none :results none
 | 
						|
  if [ matlab/meas_sr_geophone.m -nt data/meas_sr_geophone.zip ]; then
 | 
						|
    cp matlab/meas_sr_geophone.m meas_sr_geophone.m;
 | 
						|
    zip data/meas_sr_geophone \
 | 
						|
        mat/data_012.mat \
 | 
						|
        mat/data_013.mat \
 | 
						|
        mat/data_016.mat \
 | 
						|
        mat/data_017.mat \
 | 
						|
        meas_sr_geophone.m;
 | 
						|
    rm meas_sr_geophone.m;
 | 
						|
  fi
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_note
 | 
						|
  All the files (data and Matlab scripts) are accessible [[file:data/meas_sr_geophone.zip][here]].
 | 
						|
#+end_note
 | 
						|
 | 
						|
** Matlab Init                                              :noexport:ignore:
 | 
						|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
						|
  <<matlab-dir>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+begin_src matlab :exports none :results silent :noweb yes
 | 
						|
  <<matlab-init>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
** First Measurement without LPF
 | 
						|
*** Measurement Description
 | 
						|
*Goal*:
 | 
						|
- Determine if the noise induced by the slip-ring is a limiting factor when measuring the signal coming from a geophone
 | 
						|
 | 
						|
*Setup*:
 | 
						|
- The geophone is located at the sample location
 | 
						|
- The two Voltage amplifiers have the same following settings:
 | 
						|
  - AC
 | 
						|
  - 60dB
 | 
						|
  - 1kHz
 | 
						|
- The signal from the geophone is split into two using a T-BNC:
 | 
						|
  - One part goes directly to the voltage amplifier and then to the ADC.
 | 
						|
  - The other part goes to the slip-ring=>voltage amplifier=>ADC.
 | 
						|
 | 
						|
First column: Direct measure
 | 
						|
Second column: Slip-ring measure
 | 
						|
 | 
						|
*Measurements*:
 | 
						|
- =data_012=: Slip-Ring OFF
 | 
						|
- =data_013=: Slip-Ring ON
 | 
						|
 | 
						|
*** Load data
 | 
						|
We load the data of the z axis of two geophones.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  sr_off = load('mat/data_012.mat', 'data'); sr_off = sr_off.data;
 | 
						|
  sr_on  = load('mat/data_013.mat', 'data'); sr_on  = sr_on.data;
 | 
						|
#+end_src
 | 
						|
 | 
						|
*** Time Domain
 | 
						|
We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_geophone_time_off]]) and when it is ON (figure [[fig:sr_geophone_time_on]]).
 | 
						|
 | 
						|
#+begin_src matlab :results none :exports none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(sr_off(:, 3), sr_off(:, 1), 'DisplayName', 'Direct');
 | 
						|
  plot(sr_off(:, 3), sr_off(:, 2), 'DisplayName', 'Slip-Ring');
 | 
						|
  hold off;
 | 
						|
  legend('Location', 'northeast');
 | 
						|
  xlabel('Time [s]');
 | 
						|
  ylabel('Voltage [V]');
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_geophone_time_off
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_geophone_time_off.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_geophone_time_off
 | 
						|
#+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
 | 
						|
#+RESULTS: fig:sr_geophone_time_off
 | 
						|
[[file:figs/sr_geophone_time_off.png]]
 | 
						|
 | 
						|
#+begin_src matlab :results none :exports none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(sr_on(:, 3),  sr_on(:, 1),  'DisplayName', 'Direct');
 | 
						|
  plot(sr_on(:, 3),  sr_on(:, 2),  'DisplayName', 'Slip-Ring');
 | 
						|
  hold off;
 | 
						|
  legend('Location', 'northeast');
 | 
						|
  xlabel('Time [s]');
 | 
						|
  ylabel('Voltage [V]');
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_geophone_time_on
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_geophone_time_on.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_geophone_time_on
 | 
						|
#+CAPTION: Comparison of the time domain signals when the slip-ring is ON
 | 
						|
#+RESULTS: fig:sr_geophone_time_on
 | 
						|
[[file:figs/sr_geophone_time_on.png]]
 | 
						|
 | 
						|
*** Frequency Domain
 | 
						|
We first compute some parameters that will be used for the PSD computation.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  dt = sr_off(2, 3)-sr_off(1, 3);
 | 
						|
 | 
						|
  Fs = 1/dt; % [Hz]
 | 
						|
 | 
						|
  win = hanning(ceil(10*Fs));
 | 
						|
#+end_src
 | 
						|
 | 
						|
Then we compute the Power Spectral Density using =pwelch= function.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  % Direct measure
 | 
						|
  [pxdoff, ~] = pwelch(sr_off(:, 1), win, [], [], Fs);
 | 
						|
  [pxdon,  ~] = pwelch(sr_on(:, 1),  win, [], [], Fs);
 | 
						|
 | 
						|
  % Slip-Ring measure
 | 
						|
  [pxsroff, f] = pwelch(sr_off(:, 2), win, [], [], Fs);
 | 
						|
  [pxsron,  ~] = pwelch(sr_on(:, 2),  win, [], [], Fs);
 | 
						|
#+end_src
 | 
						|
 | 
						|
Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:sr_geophone_asd]]);
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(f, sqrt(pxdoff), 'DisplayName', 'Direct - OFF');
 | 
						|
  plot(f, sqrt(pxsroff), 'DisplayName', 'Slip-Ring - OFF');
 | 
						|
  plot(f, sqrt(pxdon),  'DisplayName', 'Direct - ON');
 | 
						|
  plot(f, sqrt(pxsron),  'DisplayName', 'Slip-Ring - ON');
 | 
						|
  hold off;
 | 
						|
  set(gca, 'xscale', 'log');
 | 
						|
  set(gca, 'yscale', 'log');
 | 
						|
  xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
 | 
						|
  legend('Location', 'northeast');
 | 
						|
  xlim([0.1, 500]);
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_geophone_asd
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_geophone_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_geophone_asd
 | 
						|
#+CAPTION: Comparison of the Amplitude Spectral Sensity
 | 
						|
#+RESULTS: fig:sr_geophone_asd
 | 
						|
[[file:figs/sr_geophone_asd.png]]
 | 
						|
 | 
						|
#+begin_src matlab :results none :exports none
 | 
						|
  xlim([100, 500]);
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_geophone_asd_zoom
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_geophone_asd_zoom.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_geophone_asd_zoom
 | 
						|
#+CAPTION: Comparison of the Amplitude Spectral Sensity - Zoom
 | 
						|
#+RESULTS: fig:sr_geophone_asd_zoom
 | 
						|
[[file:figs/sr_geophone_asd_zoom.png]]
 | 
						|
 | 
						|
*** Conclusion
 | 
						|
#+begin_important
 | 
						|
  - The fact that the Slip-Ring is turned ON adds some noise to the signal.
 | 
						|
  - The signal going through the Slip-Ring is less noisy than the one going directly to the ADC.
 | 
						|
  - This could be due to less good electromagnetic isolation.
 | 
						|
 | 
						|
  *Questions*:
 | 
						|
  - Can the sharp peak on figure [[fig:sr_geophone_asd_zoom]] be due to the Aliasing?
 | 
						|
#+end_important
 | 
						|
 | 
						|
** Measurement using an oscilloscope
 | 
						|
*** Measurement Setup
 | 
						|
Know we are measuring the same signals but using an oscilloscope instead of the Speedgoat ADC.
 | 
						|
 | 
						|
*** Observations
 | 
						|
Then the Slip-Ring is ON (figure [[fig:oscilloscope_sr_on]]), we observe a signal at 40kHz with a peak-to-peak amplitude of 200mV for the direct measure and 100mV for the signal going through the Slip-Ring.
 | 
						|
 | 
						|
Then the Slip-Ring is OFF, we don't observe this 40kHz anymore (figure [[fig:oscilloscope_sr_off]]).
 | 
						|
 | 
						|
#+name: fig:oscilloscope_sr_on
 | 
						|
#+caption: Signals measured by the oscilloscope - Slip-Ring ON - Yellow: Direct measure - Blue: Through Slip-Ring
 | 
						|
#+attr_html: :width 500px
 | 
						|
[[file:./img/IMG_20190506_160420.jpg]]
 | 
						|
 | 
						|
#+name: fig:oscilloscope_sr_off
 | 
						|
#+caption: Signals measured by the oscilloscope - Slip-Ring OFF - Yellow: Direct measure - Blue: Through Slip-Ring
 | 
						|
#+attr_html: :width 500px
 | 
						|
[[file:./img/IMG_20190506_160438.jpg]]
 | 
						|
 | 
						|
*** Conclusion
 | 
						|
#+begin_important
 | 
						|
  - By looking at the signals using an oscilloscope, there is a lot of high frequency noise when turning on the Slip-Ring
 | 
						|
  - This can eventually saturate the voltage amplifiers (seen by a led indicating saturation)
 | 
						|
  - The choice is to *add a Low pass filter before the voltage amplifiers* to not saturate them and filter the noise.
 | 
						|
#+end_important
 | 
						|
 | 
						|
** New measurements with a LPF before the Voltage Amplifiers
 | 
						|
*** Setup description
 | 
						|
A first order low pass filter is added before the Voltage Amplifiers with the following values:
 | 
						|
\begin{aligned}
 | 
						|
  R &= 1k\Omega \\
 | 
						|
  C &= 1\mu F
 | 
						|
\end{aligned}
 | 
						|
 | 
						|
And we have a cut-off frequency of $f_c = \frac{1}{RC} = 160Hz$.
 | 
						|
 | 
						|
We are measuring the signal from a geophone put on the marble with and without the added LPF:
 | 
						|
- with the slip ring OFF: =mat/data_016.mat=
 | 
						|
- with the slip ring ON: =mat/data_017.mat=
 | 
						|
 | 
						|
*** Load data
 | 
						|
We load the data of the z axis of two geophones.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  sr_lpf_off = load('mat/data_016.mat', 'data'); sr_lpf_off = sr_lpf_off.data;
 | 
						|
  sr_lpf_on  = load('mat/data_017.mat', 'data'); sr_lpf_on  = sr_lpf_on.data;
 | 
						|
#+end_src
 | 
						|
 | 
						|
*** Time Domain
 | 
						|
We compare the signal when the Slip-Ring is OFF (figure [[fig:sr_lpf_geophone_time_off]]) and when it is ON (figure [[fig:sr_lpf_geophone_time_on]]).
 | 
						|
 | 
						|
#+begin_src matlab :results none :exports none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(sr_lpf_off(:, 3), sr_lpf_off(:, 1), 'DisplayName', 'Direct');
 | 
						|
  plot(sr_lpf_off(:, 3), sr_lpf_off(:, 2), 'DisplayName', 'Slip-Ring');
 | 
						|
  hold off;
 | 
						|
  legend('Location', 'northeast');
 | 
						|
  xlabel('Time [s]');
 | 
						|
  ylabel('Voltage [V]');
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_lpf_geophone_time_off
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_lpf_geophone_time_off.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_lpf_geophone_time_off
 | 
						|
#+CAPTION: Comparison of the time domain signals when the slip-ring is OFF
 | 
						|
#+RESULTS: fig:sr_lpf_geophone_time_off
 | 
						|
[[file:figs/sr_lpf_geophone_time_off.png]]
 | 
						|
 | 
						|
#+begin_src matlab :results none :exports none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(sr_lpf_on(:, 3),  sr_lpf_on(:, 1),  'DisplayName', 'Direct');
 | 
						|
  plot(sr_lpf_on(:, 3),  sr_lpf_on(:, 2),  'DisplayName', 'Slip-Ring');
 | 
						|
  hold off;
 | 
						|
  legend('Location', 'northeast');
 | 
						|
  xlabel('Time [s]');
 | 
						|
  ylabel('Voltage [V]');
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_lpf_geophone_time_on
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_lpf_geophone_time_on.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_lpf_geophone_time_on
 | 
						|
#+CAPTION: Comparison of the time domain signals when the slip-ring is ON
 | 
						|
#+RESULTS: fig:sr_lpf_geophone_time_on
 | 
						|
[[file:figs/sr_lpf_geophone_time_on.png]]
 | 
						|
 | 
						|
*** Frequency Domain
 | 
						|
We first compute some parameters that will be used for the PSD computation.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  dt = sr_lpf_off(2, 3)-sr_lpf_off(1, 3);
 | 
						|
 | 
						|
  Fs = 1/dt; % [Hz]
 | 
						|
 | 
						|
  win = hanning(ceil(10*Fs));
 | 
						|
#+end_src
 | 
						|
 | 
						|
Then we compute the Power Spectral Density using =pwelch= function.
 | 
						|
#+begin_src matlab :results none
 | 
						|
  % Direct measure
 | 
						|
  [pxd_lpf_off, ~] = pwelch(sr_lpf_off(:, 1), win, [], [], Fs);
 | 
						|
  [pxd_lpf_on,  ~] = pwelch(sr_lpf_on(:, 1),  win, [], [], Fs);
 | 
						|
 | 
						|
  % Slip-Ring measure
 | 
						|
  [pxsr_lpf_off, f] = pwelch(sr_lpf_off(:, 2), win, [], [], Fs);
 | 
						|
  [pxsr_lpf_on,  ~] = pwelch(sr_lpf_on(:, 2),  win, [], [], Fs);
 | 
						|
#+end_src
 | 
						|
 | 
						|
Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:sr_lpf_geophone_asd]]);
 | 
						|
 | 
						|
#+begin_src matlab :results none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(f, sqrt(pxd_lpf_off), 'DisplayName', 'Direct - OFF');
 | 
						|
  plot(f, sqrt(pxsr_lpf_off), 'DisplayName', 'Slip-Ring - OFF');
 | 
						|
  plot(f, sqrt(pxd_lpf_on),  'DisplayName', 'Direct - ON');
 | 
						|
  plot(f, sqrt(pxsr_lpf_on),  'DisplayName', 'Slip-Ring - ON');
 | 
						|
  hold off;
 | 
						|
  set(gca, 'xscale', 'log');
 | 
						|
  set(gca, 'yscale', 'log');
 | 
						|
  xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
 | 
						|
  legend('Location', 'northeast');
 | 
						|
  xlim([0.1, 500]);
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_lpf_geophone_asd
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_lpf_geophone_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_lpf_geophone_asd
 | 
						|
#+CAPTION: Comparison of the Amplitude Spectral Sensity
 | 
						|
#+RESULTS: fig:sr_lpf_geophone_asd
 | 
						|
[[file:figs/sr_lpf_geophone_asd.png]]
 | 
						|
 | 
						|
#+begin_src matlab :results none :exports none
 | 
						|
  xlim([100, 500]);
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_lpf_geophone_asd_zoom
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/sr_lpf_geophone_asd_zoom.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:sr_lpf_geophone_asd_zoom
 | 
						|
#+CAPTION: Comparison of the Amplitude Spectral Sensity - Zoom
 | 
						|
#+RESULTS: fig:sr_lpf_geophone_asd_zoom
 | 
						|
[[file:figs/sr_lpf_geophone_asd_zoom.png]]
 | 
						|
 | 
						|
*** Comparison of with and without LPF
 | 
						|
#+begin_src matlab :results none
 | 
						|
  figure;
 | 
						|
  hold on;
 | 
						|
  plot(f, sqrt(pxdon),  'DisplayName', 'Direct - ON');
 | 
						|
  plot(f, sqrt(pxsron),  'DisplayName', 'Slip-Ring - ON');
 | 
						|
  plot(f, sqrt(pxd_lpf_on),  'DisplayName', 'Direct - ON - LPF');
 | 
						|
  plot(f, sqrt(pxsr_lpf_on),  'DisplayName', 'Slip-Ring - ON - LPF');
 | 
						|
  hold off;
 | 
						|
  set(gca, 'xscale', 'log');
 | 
						|
  set(gca, 'yscale', 'log');
 | 
						|
  xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
 | 
						|
  legend('Location', 'northeast');
 | 
						|
  xlim([0.1, 500]);
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:comp_with_without_lpf
 | 
						|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
 | 
						|
#+begin_src matlab :var filepath="figs/comp_with_without_lpf.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
 | 
						|
  <<plt-matlab>>
 | 
						|
#+end_src
 | 
						|
 | 
						|
#+NAME: fig:comp_with_without_lpf
 | 
						|
#+CAPTION: Comparison of the measured signals with and without LPF
 | 
						|
#+RESULTS: fig:comp_with_without_lpf
 | 
						|
[[file:figs/comp_with_without_lpf.png]]
 | 
						|
 | 
						|
*** Conclusion
 | 
						|
#+begin_important
 | 
						|
  - Using the LPF, we don't have any perturbation coming from the slip-ring when it is on.
 | 
						|
  - However, we should use a smaller value of the capacitor to have a cut-off frequency at $1kHz$.
 | 
						|
#+end_important
 |