318 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Matlab
		
	
	
	
	
	
			
		
		
	
	
			318 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Matlab
		
	
	
	
	
	
| %% Clear Workspace and Close figures
 | |
| clear; close all; clc;
 | |
| 
 | |
| %% Intialize Laplace variable
 | |
| s = zpk('s');
 | |
| 
 | |
| % Windowing
 | |
| % Windowing is used on the force and response signals.
 | |
| 
 | |
| % A boxcar window (figure [[fig:windowing_force_signal]]) is used for the force signal as once the impact on the structure is done, the measured signal is meaningless.
 | |
| % The parameters are:
 | |
| % - *Start*: $3\%$
 | |
| % - *Stop*: $7\%$
 | |
| 
 | |
| 
 | |
| figure;
 | |
| plot(100*[0, 0.03, 0.03, 0.07, 0.07, 1], [0, 0, 1, 1, 0, 0]);
 | |
| xlabel('Time [%]'); ylabel('Amplitude');
 | |
| xlim([0, 100]); ylim([0, 1]);
 | |
| 
 | |
| 
 | |
| 
 | |
| % #+NAME: fig:windowing_force_signal
 | |
| % #+CAPTION: Window used for the force signal
 | |
| % [[file:figs/windowing_force_signal.png]]
 | |
| 
 | |
| % An exponential window (figure [[fig:windowing_response_signal]]) is used for the response signal as we are measuring transient signals and most of the information is located at the beginning of the signal.
 | |
| % The parameters are:
 | |
| % - FlatTop:
 | |
| %   - *Start*: $3\%$
 | |
| %   - *Stop*: $2.96\%$
 | |
| % - Decreasing point:
 | |
| %   - *X*: $60.4\%$
 | |
| %   - *Y*: $14.7\%$
 | |
| 
 | |
| 
 | |
| x0 = 0.296;
 | |
| xd = 0.604;
 | |
| yd = 0.147;
 | |
| 
 | |
| alpha = log(yd)/(x0 - xd);
 | |
| 
 | |
| t = x0:0.01:1.01;
 | |
| y = exp(-alpha*(t-x0));
 | |
| 
 | |
| figure;
 | |
| plot(100*[0, 0.03, 0.03, x0, t], [0, 0, 1, 1, y]);
 | |
| xlabel('Time [%]'); ylabel('Amplitude');
 | |
| xlim([0, 100]); ylim([0, 1]);
 | |
| 
 | |
| % Force and Response signals
 | |
| % Let's load some obtained data to look at the force and response signals.
 | |
| 
 | |
| 
 | |
| meas1_raw = load('mat/meas_raw_1.mat');
 | |
| 
 | |
| % Raw Force Data
 | |
| % The force input for the first measurement is shown on figure [[fig:raw_data_force]]. We can see 10 impacts, one zoom on one impact is shown on figure [[fig:raw_data_force_zoom]].
 | |
| 
 | |
| % The Fourier transform of the force is shown on figure [[fig:fourier_transfor_force_impact]]. This has been obtained without any windowing.
 | |
| 
 | |
| 
 | |
| time = linspace(0, meas1_raw.Track1_X_Resolution*length(meas1_raw.Track1), length(meas1_raw.Track1));
 | |
| 
 | |
| figure;
 | |
| plot(time, meas1_raw.Track1);
 | |
| xlabel('Time [s]');
 | |
| ylabel('Force [N]');
 | |
| 
 | |
| 
 | |
| 
 | |
| % #+NAME: fig:raw_data_force
 | |
| % #+CAPTION: Raw Force Data from Hammer Blow
 | |
| % [[file:figs/raw_data_force.png]]
 | |
| 
 | |
| 
 | |
| figure;
 | |
| plot(time, meas1_raw.Track1);
 | |
| xlabel('Time [s]');
 | |
| ylabel('Force [N]');
 | |
| xlim([22.1, 22.3]);
 | |
| 
 | |
| 
 | |
| 
 | |
| % #+NAME: fig:raw_data_force_zoom
 | |
| % #+CAPTION: Raw Force Data from Hammer Blow - Zoom
 | |
| % [[file:figs/raw_data_force_zoom.png]]
 | |
| 
 | |
| 
 | |
| Fs = 1/meas1_raw.Track1_X_Resolution; % Sampling Frequency [Hz]
 | |
| impacts = [5.9, 11.2, 16.6, 22.2, 27.3, 32.7, 38.1, 43.8, 50.4]; % Time just before the impact occurs [s]
 | |
| 
 | |
| L = 8194;
 | |
| f = Fs*(0:(L/2))/L; % Frequency vector [Hz]
 | |
| 
 | |
| F_fft = zeros((8193+1)/2+1, length(impacts));
 | |
| 
 | |
| for i = 1:length(impacts)
 | |
|   t0 = impacts(i);
 | |
|   [~, i_start] = min(abs(time-t0));
 | |
|   i_end = i_start + 8193;
 | |
| 
 | |
|   Y = fft(meas1_raw.Track1(i_start:i_end));
 | |
| 
 | |
|   P2 = abs(Y/L);
 | |
|   P1 = P2(1:L/2+1);
 | |
|   P1(2:end-1) = 2*P1(2:end-1);
 | |
|   F_fft(:, i) = P1;
 | |
| end
 | |
| 
 | |
| figure;
 | |
| hold on;
 | |
| for i = 1:length(impacts)
 | |
|   plot(f, F_fft(:, i), '-k');
 | |
| end
 | |
| hold off;
 | |
| xlim([0, 200]);
 | |
| xlabel('Frequency [Hz]'); ylabel('Force [N]');
 | |
| 
 | |
| % Raw Response Data
 | |
| % The response signal for the first measurement is shown on figure [[fig:raw_data_acceleration]]. One zoom on one response is shown on figure [[fig:raw_data_acceleration_zoom]].
 | |
| 
 | |
| % The Fourier transform of the response signals is shown on figure [[fig:fourier_transform_response_signals]]. This has been obtained without any windowing.
 | |
| 
 | |
| 
 | |
| figure;
 | |
| plot(time, meas1_raw.Track2);
 | |
| xlabel('Time [s]');
 | |
| ylabel('Acceleration [m/s2]');
 | |
| 
 | |
| 
 | |
| 
 | |
| % #+NAME: fig:raw_data_acceleration
 | |
| % #+CAPTION: Raw Acceleration Data from Accelerometer
 | |
| % [[file:figs/raw_data_acceleration.png]]
 | |
| 
 | |
| 
 | |
| figure;
 | |
| plot(time, meas1_raw.Track2);
 | |
| xlabel('Time [s]');
 | |
| ylabel('Acceleration [m/s2]');
 | |
| xlim([22.1, 22.5]);
 | |
| 
 | |
| 
 | |
| 
 | |
| % #+NAME: fig:raw_data_acceleration_zoom
 | |
| % #+CAPTION: Raw Acceleration Data from Accelerometer - Zoom
 | |
| % [[file:figs/raw_data_acceleration_zoom.png]]
 | |
| 
 | |
| 
 | |
| X_fft = zeros((8193+1)/2+1, length(impacts));
 | |
| 
 | |
| for i = 1:length(impacts)
 | |
|   t0 = impacts(i);
 | |
|   [~, i_start] = min(abs(time-t0));
 | |
|   i_end = i_start + 8193;
 | |
| 
 | |
|   Y = fft(meas1_raw.Track2(i_start:i_end));
 | |
| 
 | |
|   P2 = abs(Y/L);
 | |
|   P1 = P2(1:L/2+1);
 | |
|   P1(2:end-1) = 2*P1(2:end-1);
 | |
|   X_fft(:, i) = P1;
 | |
| end
 | |
| 
 | |
| figure;
 | |
| hold on;
 | |
| for i = 1:length(impacts)
 | |
|   plot(f, X_fft(:, i), '-k');
 | |
| end
 | |
| hold off;
 | |
| xlim([0, 200]);
 | |
| set(gca, 'Yscale', 'log');
 | |
| xlabel('Frequency [Hz]'); ylabel('Acceleration [$m/s^2$]');
 | |
| 
 | |
| % Computation of one Frequency Response Function
 | |
| % Now that we have obtained the Fourier transform of both the force input and the response signal, we can compute the Frequency Response Function from the force to the acceleration.
 | |
| 
 | |
| % We then compare the result obtained with the FRF computed by the modal software (figure [[fig:frf_comparison_software]]).
 | |
| 
 | |
| % The slight difference can probably be explained by the use of windows.
 | |
| 
 | |
| % In the following analysis, FRF computed from the software will be used.
 | |
| 
 | |
| 
 | |
| meas1 = load('mat/meas_frf_coh_1.mat');
 | |
| 
 | |
| figure;
 | |
| hold on;
 | |
| for i = 1:length(impacts)
 | |
|   plot(f, X_fft(:, i)./F_fft(:, i), '-k');
 | |
| end
 | |
| plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_AvSpc_2_RMS_Y_Val)
 | |
| hold off;
 | |
| xlim([0, 200]);
 | |
| set(gca, 'Yscale', 'log');
 | |
| xlabel('Frequency [Hz]'); ylabel('Acceleration/Force [$m/s^2/N$]');
 | |
| 
 | |
| % Frequency Response Functions and Coherence Results
 | |
| % Let's see one computed Frequency Response Function and one coherence in order to attest the quality of the measurement.
 | |
| 
 | |
| % First, we load the data.
 | |
| 
 | |
| meas1 = load('mat/meas_frf_coh_1.mat');
 | |
| 
 | |
| 
 | |
| 
 | |
| % And we plot on figure [[fig:frf_result_example]] the frequency response function from the force applied in the $X$ direction at the location of the accelerometer number 11 to the acceleration in the $X$ direction as measured by the first accelerometer located on the top platform of the hexapod.
 | |
| 
 | |
| % The coherence associated is shown on figure [[fig:frf_result_example]].
 | |
| 
 | |
| 
 | |
| figure;
 | |
| ax1 = subplot(2, 1, 1);
 | |
| plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_AvXSpc_2_1_RMS_Y_Mod);
 | |
| set(gca, 'Yscale', 'log');
 | |
| set(gca, 'XTickLabel',[]);
 | |
| ylabel('Magnitude');
 | |
| 
 | |
| ax2 = subplot(2, 1, 2);
 | |
| plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_AvXSpc_2_1_RMS_Y_Phas);
 | |
| ylim([-180, 180]);
 | |
| yticks([-180, -90, 0, 90, 180]);
 | |
| xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
 | |
| 
 | |
| linkaxes([ax1,ax2],'x');
 | |
| 
 | |
| 
 | |
| 
 | |
| % #+NAME: fig:frf_result_example
 | |
| % #+CAPTION: Example of one measured FRF
 | |
| % [[file:figs/frf_result_example.png]]
 | |
| 
 | |
| 
 | |
| figure;
 | |
| plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_Coh_2_1_RMS_Y_Val);
 | |
| xlabel('Frequency [Hz]');
 | |
| ylabel('Coherence');
 | |
| 
 | |
| % Generation of a FRF matrix and a Coherence matrix from the measurements
 | |
| % We want here to combine all the Frequency Response Functions measured into one big array called the *Frequency Response Matrix*.
 | |
| 
 | |
| % The frequency response matrix is an $n \times p \times q$:
 | |
| % - $n$ is the number of measurements: $23 \times 3$ (23 accelerometers measuring 3 directions each)
 | |
| % - $p$ is the number of excitation inputs: $3$
 | |
| % - $q$ is the number of frequency points $\omega_i$
 | |
| 
 | |
| % Thus, the FRF matrix is an $69 \times 3 \times 801$ matrix.
 | |
| 
 | |
| 
 | |
| % #+begin_important
 | |
| % For each frequency point $\omega_i$, we obtain a 2D matrix:
 | |
| % \begin{equation}
 | |
| %   \text{FRF}(\omega_i) = \begin{bmatrix}
 | |
| %   \frac{D_{1_x}}{F_x}(\omega_i) & \frac{D_{1_x}}{F_y}(\omega_i) & \frac{D_{1_x}}{F_z}(\omega_i) \\
 | |
| %   \frac{D_{1_y}}{F_x}(\omega_i) & \frac{D_{1_y}}{F_y}(\omega_i) & \frac{D_{1_y}}{F_z}(\omega_i) \\
 | |
| %   \frac{D_{1_z}}{F_x}(\omega_i) & \frac{D_{1_z}}{F_y}(\omega_i) & \frac{D_{1_z}}{F_z}(\omega_i) \\
 | |
| %   \frac{D_{2_x}}{F_x}(\omega_i) & \frac{D_{2_x}}{F_y}(\omega_i) & \frac{D_{2_x}}{F_z}(\omega_i) \\
 | |
| %   \vdots              & \vdots              & \vdots              \\
 | |
| %   \frac{D_{23_z}}{F_x}(\omega_i) & \frac{D_{23_z}}{F_y}(\omega_i) & \frac{D_{23_z}}{F_z}(\omega_i) \\
 | |
| % \end{bmatrix}
 | |
| % \end{equation}
 | |
| % #+end_important
 | |
| 
 | |
| % We generate such FRF matrix from the measurements using the following script.
 | |
| 
 | |
| n_meas = 24;
 | |
| n_acc = 23;
 | |
| 
 | |
| dirs = 'XYZ';
 | |
| 
 | |
| % Number of Accelerometer * DOF for each acccelerometer / Number of excitation / frequency points
 | |
| FRFs = zeros(3*n_acc, 3, 801);
 | |
| COHs = zeros(3*n_acc, 3, 801);
 | |
| 
 | |
| % Loop through measurements
 | |
| for i = 1:n_meas
 | |
|   % Load the measurement file
 | |
|   meas = load(sprintf('mat/meas_frf_coh_%i.mat', i));
 | |
| 
 | |
|   % First: determine what is the exitation (direction and sign)
 | |
|   exc_dir = meas.FFT1_AvXSpc_2_1_RMS_RfName(end);
 | |
|   exc_sign = meas.FFT1_AvXSpc_2_1_RMS_RfName(end-1);
 | |
|   % Determine what is the correct excitation sign
 | |
|   exc_factor = str2num([exc_sign, '1']);
 | |
|   if exc_dir ~= 'Z'
 | |
|     exc_factor = exc_factor*(-1);
 | |
|   end
 | |
| 
 | |
|   % Then: loop through the nine measurements and store them at the correct location
 | |
|   for j = 2:10
 | |
|     % Determine what is the accelerometer and direction
 | |
|     [indices_acc_i] = strfind(meas.(sprintf('FFT1_H1_%i_1_RpName', j)), '.');
 | |
|     acc_i = str2num(meas.(sprintf('FFT1_H1_%i_1_RpName', j))(indices_acc_i(1)+1:indices_acc_i(2)-1));
 | |
| 
 | |
|     meas_dir  = meas.(sprintf('FFT1_H1_%i_1_RpName', j))(end);
 | |
|     meas_sign = meas.(sprintf('FFT1_H1_%i_1_RpName', j))(end-1);
 | |
|     % Determine what is the correct measurement sign
 | |
|     meas_factor = str2num([meas_sign, '1']);
 | |
|     if meas_dir ~= 'Z'
 | |
|       meas_factor = meas_factor*(-1);
 | |
|     end
 | |
| 
 | |
|     % FRFs(acc_i+n_acc*(find(dirs==meas_dir)-1), find(dirs==exc_dir), :) = exc_factor*meas_factor*meas.(sprintf('FFT1_H1_%i_1_Y_ReIm', j));
 | |
|     % COHs(acc_i+n_acc*(find(dirs==meas_dir)-1), find(dirs==exc_dir), :) = meas.(sprintf('FFT1_Coh_%i_1_RMS_Y_Val', j));
 | |
| 
 | |
|     FRFs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = exc_factor*meas_factor*meas.(sprintf('FFT1_H1_%i_1_Y_ReIm', j));
 | |
|     COHs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = meas.(sprintf('FFT1_Coh_%i_1_RMS_Y_Val', j));
 | |
|   end
 | |
| end
 | |
| freqs = meas.FFT1_Coh_10_1_RMS_X_Val;
 | |
| 
 | |
| 
 | |
| 
 | |
| % And we save the obtained FRF matrix and Coherence matrix in a =.mat= file.
 | |
| 
 | |
| save('./mat/frf_coh_matrices.mat', 'FRFs', 'COHs', 'freqs');
 |