nass-micro-station-measurem.../2017-11-17 - Marc/index.org
2019-05-14 23:06:50 +02:00

12 KiB

Measurements

Experimental conditions

Date 2017-11-17
Sensors Accelerometers
Excitation Instrumented Hammer
Location Laboratory

Dynamics of the station is evaluated using instrumented hammer and accelerometers fixed on each stage.

Goal:

  • Obtain a first estimation of resonance frequencies
  • Measurement made in a metrology lab
  • The granite is not glued to the floor
  • The Y-Translation stage is powered and in closed-loop
  • The spindle is not powered
  • Mass is placed on top of the Hexapod (how much?) (figure fig:accelerometers).
  • Made by Marc Lesourd on the 17th of November 2017
/tdehaeze/nass-micro-station-measurements/media/commit/336d5880cce9c9261fe6c161a2f8e55dc7e2fd5a/2017-11-17%20-%20Marc/figs/accelerometers.png
Accelerometers position
/tdehaeze/nass-micro-station-measurements/media/commit/336d5880cce9c9261fe6c161a2f8e55dc7e2fd5a/2017-11-17%20-%20Marc/figs/instrumented_hammer.png
Instrumented Hammer used

Measurements procedure

3-axis Accelerometers (specifications table tab:accelerometer) are glued on (see figure fig:accelerometers):

  • Marble
  • Y-Translation stage
  • Tilt stage
  • top of Hexapod
Sensitivity 0.102 V/(m/s2)
Measurement Range 4.9 m/s2 pk
Frequency Range 0.5 to 3000 Hz
resonant frequency >20000 Hz
broadband resolution 0.0005 m/s2 rms
Pieozoelectric acc. 356b18 - 3 axis

The structure is excited using an instrumented hammer with impacts on (see figure fig:instrumented_hammer):

  • Marble
  • Hexapod

Measurement Files

Two measurements files are:

  • id31_microstation_2017_11_17_frf.mat that contains:

    • freq_frf the frequency vector in Hz
    • Computed frequency response functions (see table tab:data_name)
  • id31_microstation_2017_11_17_coh.mat

    • Computed coherence

For each of the measurement, the measured channels are shown on table tab:meas_channels.

Object name Location Direction
frf_hexa_x Hexapod X
frf_hexa_y Hexapod Y
frf_hexa_z Hexapod Z
frf_marble_x Marble X
frf_marble_y Marble Y
frf_marble_z Marble Z
Description of the location of direction of the excitation for each measurement
Ch. nb Element Location Direction
1 Not wired na na
2 Accelerometer Marble X
3 Accelerometer Marble Y
4 Accelerometer Marble Z
5 Accelerometer Ty X
6 Accelerometer Ty Y
7 Accelerometer Ty Z
8 Accelerometer Tilt X
9 Accelerometer Tilt Y
10 Accelerometer Tilt Z
11 Accelerometer Hexapod X
12 Accelerometer Hexapod Y
13 Accelerometer Hexapod Z
Description of each measurement channel

Data Analysis

Loading of the data

  load('./raw_data/id31_microstation_2017_11_17_coh.mat',...
       'coh_hexa_x',...
       'coh_hexa_y',...
       'coh_hexa_z',...
       'coh_marble_x',...
       'coh_marble_y',...
       'coh_marble_z');

  load('./raw_data/id31_microstation_2017_11_17_frf.mat',...
       'freq_frf',...
       'frf_hexa_x',...
       'frf_hexa_y',...
       'frf_hexa_z',...
       'frf_marble_x',...
       'frf_marble_y',...
       'frf_marble_z');

Pre-processing of the data

The FRF data are scaled with the sensitivity of the accelerometer and integrated two times to have the displacement instead of the acceleration.

  accel_sensitivity = 0.102; % [V/(m/s2)]
  w = j*2*pi*freq_frf; % j.omega in [rad/s]

  frf_hexa_x =  1/accel_sensitivity*frf_hexa_x./(w.^2);
  frf_hexa_y = -1/accel_sensitivity*frf_hexa_y./(w.^2);
  frf_hexa_z = -1/accel_sensitivity*frf_hexa_z./(w.^2);

  frf_marble_x =  1/accel_sensitivity*frf_marble_x./(w.^2);
  frf_marble_y =  1/accel_sensitivity*frf_marble_y./(w.^2);
  frf_marble_z = -1/accel_sensitivity*frf_marble_z./(w.^2);

X-direction FRF

  <<plt-matlab>>

/tdehaeze/nass-micro-station-measurements/media/commit/336d5880cce9c9261fe6c161a2f8e55dc7e2fd5a/2017-11-17%20-%20Marc/figs/marble_x_frf.png

Response to a force applied on the marble in the X direction
  <<plt-matlab>>

/tdehaeze/nass-micro-station-measurements/media/commit/336d5880cce9c9261fe6c161a2f8e55dc7e2fd5a/2017-11-17%20-%20Marc/figs/hexa_x_frf.png

Response to a force applied on the hexa in the X direction

Y-direction FRF

  <<plt-matlab>>

/tdehaeze/nass-micro-station-measurements/media/commit/336d5880cce9c9261fe6c161a2f8e55dc7e2fd5a/2017-11-17%20-%20Marc/figs/marble_y_frf.png

Response to a force applied on the marble in the Y direction
  <<plt-matlab>>

/tdehaeze/nass-micro-station-measurements/media/commit/336d5880cce9c9261fe6c161a2f8e55dc7e2fd5a/2017-11-17%20-%20Marc/figs/hexa_y_frf.png

Response to a force applied on the hexa in the Y direction

Z-direction FRF

  <<plt-matlab>>

/tdehaeze/nass-micro-station-measurements/media/commit/336d5880cce9c9261fe6c161a2f8e55dc7e2fd5a/2017-11-17%20-%20Marc/figs/marble_z_frf.png

Response to a force applied on the marble in the Z direction
  <<plt-matlab>>

/tdehaeze/nass-micro-station-measurements/media/commit/336d5880cce9c9261fe6c161a2f8e55dc7e2fd5a/2017-11-17%20-%20Marc/figs/hexa_z_frf.png

Response to a force applied on the hexa in the Z direction

Results

  • Resonances have been identified at 45Hz and 75Hz
  • However, the quality of the measurements are bad at low frequency
  • New measurements should be done with Geophones