nass-micro-station-measurem.../slip-ring-test
2019-05-07 14:20:53 +02:00
..
figs Add analysis of LPF, and slip-ring noise 2019-05-07 13:51:35 +02:00
img Add analysis of LPF, and slip-ring noise 2019-05-07 13:51:35 +02:00
mat measure new LPF 2019-05-07 14:20:53 +02:00
analysis.m add slip-ring-noise measurement 2019-04-30 10:38:22 +02:00
index.html Add analysis of LPF, and slip-ring noise 2019-05-07 13:51:35 +02:00
index.org Add analysis of LPF, and slip-ring noise 2019-05-07 13:51:35 +02:00
meas_effect_sr.m Add analysis of LPF, and slip-ring noise 2019-05-07 13:51:35 +02:00
meas_noise_ac_dc.m Add analysis of LPF, and slip-ring noise 2019-05-07 13:51:35 +02:00
meas_slip_ring.m Add analysis of LPF, and slip-ring noise 2019-05-07 13:51:35 +02:00
meas_sr_geophone.m Add analysis of LPF, and slip-ring noise 2019-05-07 13:51:35 +02:00
meas_volt_amp.m Add analysis of LPF, and slip-ring noise 2019-05-07 13:51:35 +02:00
readme.org measure new LPF 2019-05-07 14:20:53 +02:00
run_test.m measure new LPF 2019-05-07 14:20:53 +02:00
setup.m lot of measurements 2019-05-03 17:07:22 +02:00
slip_ring_test.slx add measure with LPF 2019-05-07 10:04:50 +02:00

DONE Measure of the noise of the Voltage Amplifier

CLOSED: [2019-05-06 lun. 09:00]

  • The two inputs (differential) of the voltage amplifier are shunted with 50Ohms
  • The AC/DC option of the Voltage amplifier is on AC
  • The low pass filter is set to 1hHz

Measure: Second Column

meas3: Ampli OFF meas4: Ampli ON 20dB meas5: Ampli ON 40dB meas6: Ampli ON 60dB meas7: Ampli ON 80dB

DONE Measure of the noise induced by the Slip-Ring

CLOSED: [2019-05-06 lun. 09:28] Setup:

  • 0V is generated by the DAC of the Speedgoat
  • Using a T, one part goes to ADC
  • the other part goes to the slip-ring 2 times and then to the ADC
  • Gain of the Voltage Amplifier: 80dB, AC, 1kHz
  • Everything is OFF

We had some diffuculties to not have a lot of noise on the measurement.

First column: Direct measure Second column: Slip-ring measure

Measurements:

  • meas8: Slip-Ring OFF
  • meas9: Slip-Ring ON
  • meas10: Slip-Ring ON and omega=6rpm
  • meas11: Slip-Ring ON and omega=60rpm

DONE Measure of the noise induced by the slip ring when using a geophone

CLOSED: [2019-05-06 lun. 09:28] The geophone is located at the sample location The two Voltage amplifiers have the following settings:

  • AC
  • 60dB
  • 1kHz

The signal from the geophone is split into two using a T-BNC. On part goes directly to the voltage amplifier and then to the ADC. The other part goes to the slip-ring=>voltage amplifier=>ADC.

The other two cables that go through the slip ring have 50Ohms resistors at one end, the other end is open circuit.

First column: Direct measure Second column: Slip-ring measure

  • meas12: Slip-Ring OFF
  • meas13: Slip-Ring ON

Redone the measurements with 1kHz additional low pass filter:

  • meas16: Slip-Ring OFF
  • meas17: Slip-Ring ON

DONE Measure of the influence of the AC/DC option on the voltage amplifiers

CLOSED: [2019-05-06 lun. 09:28] One geophone is located on the marble. It's signal goes to two voltage amplifiers with a gain of 60dB. On voltage amplifier is on the AC option, the other on the DC option.

First column: AC Second column: DC

  • meas14: col-1 = amp1+AC. col-2 = amp2+DC.
  • meas15: col-1 = amp1+DC. col-2 = amp2+AC.

Measurement of the LPF

We are measuring the signal from from Geophone with a BNC T On part goes to column 1 through the LPF The other part goes to column 2 without the LPF

  • meas18

New measurement with C = 150nF => fc = 1kHz Voltage Ampli: 60dB, DC, 1kHz

  • meas19