765 lines
28 KiB
Org Mode
765 lines
28 KiB
Org Mode
#+TITLE:Effect on the control system of each stages on the vibration of the station
|
|
:DRAWER:
|
|
#+STARTUP: overview
|
|
|
|
#+LANGUAGE: en
|
|
#+EMAIL: dehaeze.thomas@gmail.com
|
|
#+AUTHOR: Dehaeze Thomas
|
|
|
|
#+HTML_LINK_HOME: ../index.html
|
|
#+HTML_LINK_UP: ../index.html
|
|
|
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
|
|
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
|
|
|
|
#+HTML_MATHJAX: align: center tagside: right font: TeX
|
|
|
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
#+PROPERTY: header-args:matlab+ :comments org
|
|
#+PROPERTY: header-args:matlab+ :results none
|
|
#+PROPERTY: header-args:matlab+ :exports both
|
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
|
|
#+PROPERTY: header-args:shell :eval no-export
|
|
:END:
|
|
|
|
* Introduction :ignore:
|
|
This file is organized as follow:
|
|
- Section [[sec:effect_control_all]]:
|
|
- One geophone on the marble and one at the sample location
|
|
- Each stage is turned on one by one
|
|
- Section [[sec:effect_control_one]]:
|
|
- One geophone on the marble and one at the sample location
|
|
- Each stage is turned on one at a time
|
|
- Section [[sec:effect_symetrie_driver]]:
|
|
- We check if the Symetrie driver induces some vibrations when placed on the marble
|
|
|
|
* Effect of all the control systems on the Sample vibrations
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/effect_control_all.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:effect_control_all>>
|
|
|
|
** ZIP file containing the data and matlab files :ignore:
|
|
#+begin_src bash :exports none :results none
|
|
if [ matlab/effect_control_all.m -nt data/effect_control_all.zip ]; then
|
|
cp matlab/effect_control_all.m effect_control_all.m;
|
|
zip data/effect_control_all \
|
|
mat/data_003.mat \
|
|
mat/data_004.mat \
|
|
mat/data_005.mat \
|
|
mat/data_006.mat \
|
|
mat/data_007.mat \
|
|
mat/data_008.mat \
|
|
effect_control_all.m;
|
|
rm effect_control_all.m;
|
|
fi
|
|
#+end_src
|
|
|
|
#+begin_note
|
|
All the files (data and Matlab scripts) are accessible [[file:data/effect_control_all.zip][here]].
|
|
#+end_note
|
|
|
|
** Experimental Setup
|
|
We here measure the signals of two L22 geophones:
|
|
- One is located on top of the Sample platform
|
|
- One is located on the marble
|
|
|
|
The signals are amplified with voltage amplifiers with the following settings:
|
|
- gain of 60dB
|
|
- AC/DC option set on AC
|
|
- Low pass filter set at 1kHz
|
|
|
|
The signal from the top geophone does not go trought the slip-ring.
|
|
|
|
First, all the control systems are turned ON, then, they are turned one by one.
|
|
Each measurement are done during 50s.
|
|
|
|
#+name: tab:control_system_on_off
|
|
#+caption: Summary of the measurements and the states of the control systems
|
|
| Ty | Ry | Slip Ring | Spindle | Hexapod | Meas. file |
|
|
|------+------+-----------+---------+---------+----------------|
|
|
| *ON* | *ON* | *ON* | *ON* | *ON* | =meas_003.mat= |
|
|
| OFF | *ON* | *ON* | *ON* | *ON* | =meas_004.mat= |
|
|
| OFF | OFF | *ON* | *ON* | *ON* | =meas_005.mat= |
|
|
| OFF | OFF | OFF | *ON* | *ON* | =meas_006.mat= |
|
|
| OFF | OFF | OFF | OFF | *ON* | =meas_007.mat= |
|
|
| OFF | OFF | OFF | OFF | OFF | =meas_008.mat= |
|
|
|
|
Each of the =mat= file contains one array =data= with 3 columns:
|
|
| Column number | Description |
|
|
|---------------+-------------------|
|
|
| 1 | Geophone - Marble |
|
|
| 2 | Geophone - Sample |
|
|
| 3 | Time |
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
addpath('../src');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
** Load data
|
|
We load the data of the z axis of two geophones.
|
|
#+begin_src matlab
|
|
d3 = load('mat/data_003.mat', 'data'); d3 = d3.data;
|
|
d4 = load('mat/data_004.mat', 'data'); d4 = d4.data;
|
|
d5 = load('mat/data_005.mat', 'data'); d5 = d5.data;
|
|
d6 = load('mat/data_006.mat', 'data'); d6 = d6.data;
|
|
d7 = load('mat/data_007.mat', 'data'); d7 = d7.data;
|
|
d8 = load('mat/data_008.mat', 'data'); d8 = d8.data;
|
|
#+end_src
|
|
|
|
** Analysis - Time Domain
|
|
First, we can look at the time domain data and compare all the measurements:
|
|
- comparison for the geophone at the sample location (figure [[fig:time_domain_sample]])
|
|
- comparison for the geophone on the granite (figure [[fig:time_domain_marble]])
|
|
|
|
#+begin_src matlab
|
|
figure;
|
|
hold on;
|
|
plot(d3(:, 3), d3(:, 2), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
|
|
plot(d4(:, 3), d4(:, 2), 'DisplayName', 'Hexa, Rz, SR, Ry');
|
|
plot(d5(:, 3), d5(:, 2), 'DisplayName', 'Hexa, Rz, SR');
|
|
plot(d6(:, 3), d6(:, 2), 'DisplayName', 'Hexa, Rz');
|
|
plot(d7(:, 3), d7(:, 2), 'DisplayName', 'Hexa');
|
|
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'All OFF');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
xlim([0, 50]);
|
|
legend('Location', 'bestoutside');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/time_domain_sample.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:time_domain_sample
|
|
#+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location
|
|
#+RESULTS:
|
|
[[file:figs/time_domain_sample.png]]
|
|
|
|
#+begin_src matlab :results none
|
|
figure;
|
|
hold on;
|
|
plot(d3(:, 3), d3(:, 1), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
|
|
plot(d4(:, 3), d4(:, 1), 'DisplayName', 'Hexa, Rz, SR, Ry');
|
|
plot(d5(:, 3), d5(:, 1), 'DisplayName', 'Hexa, Rz, SR');
|
|
plot(d6(:, 3), d6(:, 1), 'DisplayName', 'Hexa, Rz');
|
|
plot(d7(:, 3), d7(:, 1), 'DisplayName', 'Hexa');
|
|
plot(d8(:, 3), d8(:, 1), 'DisplayName', 'All OFF');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
xlim([0, 50]);
|
|
legend('Location', 'bestoutside');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/time_domain_marble.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:time_domain_marble
|
|
#+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble
|
|
#+RESULTS:
|
|
[[file:figs/time_domain_marble.png]]
|
|
|
|
** Analysis - Frequency Domain
|
|
#+begin_src matlab :exports none
|
|
dt = d3(2, 3) - d3(1, 3);
|
|
|
|
Fs = 1/dt;
|
|
win = hanning(ceil(10*Fs));
|
|
#+end_src
|
|
|
|
*** Vibrations at the sample location
|
|
First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
|
|
#+begin_src matlab :results none
|
|
[px3, f] = pwelch(d3(:, 2), win, [], [], Fs);
|
|
[px4, ~] = pwelch(d4(:, 2), win, [], [], Fs);
|
|
[px5, ~] = pwelch(d5(:, 2), win, [], [], Fs);
|
|
[px6, ~] = pwelch(d6(:, 2), win, [], [], Fs);
|
|
[px7, ~] = pwelch(d7(:, 2), win, [], [], Fs);
|
|
[px8, ~] = pwelch(d8(:, 2), win, [], [], Fs);
|
|
#+end_src
|
|
|
|
And we compare all the signals (figures [[fig:psd_sample_comp]] and [[fig:psd_sample_comp_high_freq]]).
|
|
#+begin_src matlab :results none
|
|
figure;
|
|
hold on;
|
|
plot(f, sqrt(px3), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
|
|
plot(f, sqrt(px4), 'DisplayName', 'Hexa, Rz, SR, Ry');
|
|
plot(f, sqrt(px5), 'DisplayName', 'Hexa, Rz, SR');
|
|
plot(f, sqrt(px6), 'DisplayName', 'Hexa, Rz');
|
|
plot(f, sqrt(px7), 'DisplayName', 'Hexa');
|
|
plot(f, sqrt(px8), 'DisplayName', 'All OFF');
|
|
hold off;
|
|
set(gca, 'xscale', 'log');
|
|
set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
xlim([0.1, 500]);
|
|
legend('Location', 'southwest');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_sample_comp.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_sample_comp
|
|
#+caption: Amplitude Spectral Density of the signal coming from the top geophone
|
|
#+RESULTS:
|
|
[[file:figs/psd_sample_comp.png]]
|
|
|
|
#+begin_src matlab :results none :tangle no :exports none
|
|
xlim([80, 500]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_sample_comp_high_freq.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_sample_comp_high_freq
|
|
#+caption: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies)
|
|
#+RESULTS:
|
|
[[file:figs/psd_sample_comp_high_freq.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px3)))), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
|
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px4)))), 'DisplayName', 'Hexa, Rz, SR, Ry');
|
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px5)))), 'DisplayName', 'Hexa, Rz, SR');
|
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px6)))), 'DisplayName', 'Hexa, Rz');
|
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px7)))), 'DisplayName', 'Hexa');
|
|
plot(f, sqrt(flip(-cumtrapz(flip(f), flip(px8)))), 'DisplayName', 'All OFF');
|
|
hold off;
|
|
xlabel('Frequency [Hz]');
|
|
ylabel('CAS [V]');
|
|
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
|
legend('location', 'southwest');
|
|
xlim([0.1, 300]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/cas_sample_comp.pdf', 'width', 'full', 'height', 'full')
|
|
#+end_src
|
|
|
|
#+name: fig:cas_sample_comp
|
|
#+caption:
|
|
#+RESULTS:
|
|
[[file:figs/cas_sample_comp.png]]
|
|
|
|
*** Vibrations on the marble
|
|
Now we plot the same curves for the geophone located on the marble.
|
|
#+begin_src matlab :results none
|
|
[px3, f] = pwelch(d3(:, 1), win, [], [], Fs);
|
|
[px4, ~] = pwelch(d4(:, 1), win, [], [], Fs);
|
|
[px5, ~] = pwelch(d5(:, 1), win, [], [], Fs);
|
|
[px6, ~] = pwelch(d6(:, 1), win, [], [], Fs);
|
|
[px7, ~] = pwelch(d7(:, 1), win, [], [], Fs);
|
|
[px8, ~] = pwelch(d8(:, 1), win, [], [], Fs);
|
|
#+end_src
|
|
|
|
And we compare the Amplitude Spectral Densities (figures [[fig:psd_marble_comp]] and [[fig:psd_marble_comp_high_freq]])
|
|
#+begin_src matlab :results none
|
|
figure;
|
|
hold on;
|
|
plot(f, sqrt(px3), 'DisplayName', 'Hexa, Rz, SR, Ry, Ty');
|
|
plot(f, sqrt(px4), 'DisplayName', 'Hexa, Rz, SR, Ry');
|
|
plot(f, sqrt(px5), 'DisplayName', 'Hexa, Rz, SR');
|
|
plot(f, sqrt(px6), 'DisplayName', 'Hexa, Rz');
|
|
plot(f, sqrt(px7), 'DisplayName', 'Hexa');
|
|
plot(f, sqrt(px8), 'DisplayName', 'All OFF');
|
|
hold off;
|
|
set(gca, 'xscale', 'log');
|
|
set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
xlim([0.1, 500]);
|
|
legend('Location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_marble_comp.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_marble_comp
|
|
#+caption: Amplitude Spectral Density of the signal coming from the top geophone
|
|
#+RESULTS:
|
|
[[file:figs/psd_marble_comp.png]]
|
|
|
|
#+begin_src matlab :results none :tangle no :exports none
|
|
legend('Location', 'southwest');
|
|
xlim([80, 500]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_marble_comp_high_freq.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_marble_comp_high_freq
|
|
#+caption: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies)
|
|
#+RESULTS:
|
|
[[file:figs/psd_marble_comp_high_freq.png]]
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
- The control system of the Ty stage induces a lot of vibrations of the marble above 100Hz
|
|
- The hexapod control system add vibrations of the sample only above 200Hz
|
|
- When the Slip-Ring is ON, white noise appears at high frequencies. This is studied [[file:../slip-ring-electrical-noise/index.org][here]]
|
|
#+end_important
|
|
|
|
* Effect of all the control systems on the Sample vibrations - One stage at a time
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/effect_control_one.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:effect_control_one>>
|
|
|
|
** ZIP file containing the data and matlab files :ignore:
|
|
#+begin_src bash :exports none :results none
|
|
if [ matlab/effect_control_one.m -nt data/effect_control_one.zip ]; then
|
|
cp matlab/effect_control_one.m effect_control_one.m;
|
|
zip data/effect_control_one \
|
|
mat/data_013.mat \
|
|
mat/data_014.mat \
|
|
mat/data_015.mat \
|
|
mat/data_016.mat \
|
|
mat/data_017.mat \
|
|
mat/data_018.mat \
|
|
effect_control_one.m
|
|
rm effect_control_one.m;
|
|
fi
|
|
#+end_src
|
|
|
|
#+begin_note
|
|
All the files (data and Matlab scripts) are accessible [[file:data/effect_control_one.zip][here]].
|
|
#+end_note
|
|
|
|
** Experimental Setup
|
|
We here measure the signals of two geophones:
|
|
- One is located on top of the Sample platform
|
|
- One is located on the marble
|
|
|
|
The signal from the top geophone does go trought the slip-ring.
|
|
|
|
All the control systems are turned OFF, then, they are turned on one at a time.
|
|
|
|
Each measurement are done during 100s.
|
|
|
|
The settings of the voltage amplifier are shown on figure [[fig:amplifier_settings]]:
|
|
- gain of 60dB
|
|
- AC/DC option set on DC
|
|
- Low pass filter set at 1kHz
|
|
|
|
A first order low pass filter with a cut-off frequency of 1kHz is added before the voltage amplifier.
|
|
|
|
#+name: tab:control_system_on_off
|
|
#+caption: Summary of the measurements and the states of the control systems
|
|
| Ty | Ry | Slip Ring | Spindle | Hexapod | Meas. file |
|
|
|------+------+-----------+---------+---------+----------------|
|
|
| OFF | OFF | OFF | OFF | OFF | =meas_013.mat= |
|
|
| *ON* | OFF | OFF | OFF | OFF | =meas_014.mat= |
|
|
| OFF | *ON* | OFF | OFF | OFF | =meas_015.mat= |
|
|
| OFF | OFF | *ON* | OFF | OFF | =meas_016.mat= |
|
|
| OFF | OFF | OFF | *ON* | OFF | =meas_017.mat= |
|
|
| OFF | OFF | OFF | OFF | *ON* | =meas_018.mat= |
|
|
|
|
Each of the =mat= file contains one array =data= with 3 columns:
|
|
| Column number | Description |
|
|
|---------------+-------------------|
|
|
| 1 | Geophone - Marble |
|
|
| 2 | Geophone - Sample |
|
|
| 3 | Time |
|
|
|
|
#+name: fig:amplifier_settings
|
|
#+caption: Voltage amplifier settings for the measurement
|
|
#+attr_html: :width 500px
|
|
[[file:./img/IMG_20190507_101459.jpg]]
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
addpath('../src');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
** Load data
|
|
We load the data of the z axis of two geophones.
|
|
#+begin_src matlab :results none
|
|
d_of = load('mat/data_013.mat', 'data'); d_of = d_of.data;
|
|
d_ty = load('mat/data_014.mat', 'data'); d_ty = d_ty.data;
|
|
d_ry = load('mat/data_015.mat', 'data'); d_ry = d_ry.data;
|
|
d_sr = load('mat/data_016.mat', 'data'); d_sr = d_sr.data;
|
|
d_rz = load('mat/data_017.mat', 'data'); d_rz = d_rz.data;
|
|
d_he = load('mat/data_018.mat', 'data'); d_he = d_he.data;
|
|
#+end_src
|
|
|
|
** Voltage to Velocity
|
|
We convert the measured voltage to velocity using the function =voltageToVelocityL22= (accessible [[file:~/Cloud/thesis/meas/srcindex.org][here]]).
|
|
|
|
#+begin_src matlab
|
|
gain = 60; % [dB]
|
|
|
|
d_of(:, 1) = voltageToVelocityL22(d_of(:, 1), d_of(:, 3), gain);
|
|
d_ty(:, 1) = voltageToVelocityL22(d_ty(:, 1), d_ty(:, 3), gain);
|
|
d_ry(:, 1) = voltageToVelocityL22(d_ry(:, 1), d_ry(:, 3), gain);
|
|
d_sr(:, 1) = voltageToVelocityL22(d_sr(:, 1), d_sr(:, 3), gain);
|
|
d_rz(:, 1) = voltageToVelocityL22(d_rz(:, 1), d_rz(:, 3), gain);
|
|
d_he(:, 1) = voltageToVelocityL22(d_he(:, 1), d_he(:, 3), gain);
|
|
|
|
d_of(:, 2) = voltageToVelocityL22(d_of(:, 2), d_of(:, 3), gain);
|
|
d_ty(:, 2) = voltageToVelocityL22(d_ty(:, 2), d_ty(:, 3), gain);
|
|
d_ry(:, 2) = voltageToVelocityL22(d_ry(:, 2), d_ry(:, 3), gain);
|
|
d_sr(:, 2) = voltageToVelocityL22(d_sr(:, 2), d_sr(:, 3), gain);
|
|
d_rz(:, 2) = voltageToVelocityL22(d_rz(:, 2), d_rz(:, 3), gain);
|
|
d_he(:, 2) = voltageToVelocityL22(d_he(:, 2), d_he(:, 3), gain);
|
|
#+end_src
|
|
|
|
** Analysis - Time Domain
|
|
First, we can look at the time domain data and compare all the measurements:
|
|
- comparison for the geophone at the sample location (figure [[fig:time_domain_sample_lpf]])
|
|
- comparison for the geophone on the granite (figure [[fig:time_domain_marble_lpf]])
|
|
- relative displacement of the sample with respect to the marble (figure [[fig:time_domain_marble_lpf]])
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(d_of(:, 3), d_of(:, 2), 'DisplayName', 'All OFF');
|
|
plot(d_ty(:, 3), d_ty(:, 2), 'DisplayName', 'Ty ON');
|
|
plot(d_ry(:, 3), d_ry(:, 2), 'DisplayName', 'Ry ON');
|
|
plot(d_sr(:, 3), d_sr(:, 2), 'DisplayName', 'S-R ON');
|
|
plot(d_rz(:, 3), d_rz(:, 2), 'DisplayName', 'Rz ON');
|
|
plot(d_he(:, 3), d_he(:, 2), 'DisplayName', 'Hexa ON');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Velocity [m/s]');
|
|
xlim([0, 50]);
|
|
legend('Location', 'bestoutside');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/time_domain_sample_lpf.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:time_domain_sample_lpf
|
|
#+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location
|
|
#+RESULTS:
|
|
[[file:figs/time_domain_sample_lpf.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(d_of(:, 3), d_of(:, 1), 'DisplayName', 'All OFF');
|
|
plot(d_ty(:, 3), d_ty(:, 1), 'DisplayName', 'Ty ON');
|
|
plot(d_ry(:, 3), d_ry(:, 1), 'DisplayName', 'Ry ON');
|
|
plot(d_sr(:, 3), d_sr(:, 1), 'DisplayName', 'S-R ON');
|
|
plot(d_rz(:, 3), d_rz(:, 1), 'DisplayName', 'Rz ON');
|
|
plot(d_he(:, 3), d_he(:, 1), 'DisplayName', 'Hexa ON');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Velocity [m/s]');
|
|
xlim([0, 50]);
|
|
legend('Location', 'bestoutside');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/time_domain_marble_lpf.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:time_domain_marble_lpf
|
|
#+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone on the marble
|
|
#+RESULTS:
|
|
[[file:figs/time_domain_marble_lpf.png]]
|
|
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(d_of(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_of(:, 2)-d_of(:, 1), d_of(:, 3)), 'DisplayName', 'All OFF');
|
|
plot(d_ty(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_ty(:, 2)-d_ty(:, 1), d_ty(:, 3)), 'DisplayName', 'Ty ON');
|
|
plot(d_ry(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_ry(:, 2)-d_ry(:, 1), d_ry(:, 3)), 'DisplayName', 'Ry ON');
|
|
plot(d_sr(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_sr(:, 2)-d_sr(:, 1), d_sr(:, 3)), 'DisplayName', 'S-R ON');
|
|
plot(d_rz(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_rz(:, 2)-d_rz(:, 1), d_rz(:, 3)), 'DisplayName', 'Rz ON');
|
|
plot(d_he(:, 3), 1e6*lsim(1/(1+s/(2*pi*0.5)), d_he(:, 2)-d_he(:, 1), d_he(:, 3)), 'DisplayName', 'Hexa ON');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Relative Displacement [$\mu m$]');
|
|
xlim([0, 50]);
|
|
legend('Location', 'bestoutside');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/time_domain_relative_disp.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:time_domain_relative_disp
|
|
#+caption: Relative displacement of the sample with respect to the marble
|
|
#+RESULTS:
|
|
[[file:figs/time_domain_relative_disp.png]]
|
|
|
|
** Analysis - Frequency Domain
|
|
#+begin_src matlab :results none
|
|
dt = d_of(2, 3) - d_of(1, 3);
|
|
|
|
Fs = 1/dt;
|
|
win = hanning(ceil(10*Fs));
|
|
#+end_src
|
|
|
|
*** Vibrations at the sample location
|
|
First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
|
|
#+begin_src matlab :results none
|
|
[px_of, f] = pwelch(d_of(:, 2), win, [], [], Fs);
|
|
[px_ty, ~] = pwelch(d_ty(:, 2), win, [], [], Fs);
|
|
[px_ry, ~] = pwelch(d_ry(:, 2), win, [], [], Fs);
|
|
[px_sr, ~] = pwelch(d_sr(:, 2), win, [], [], Fs);
|
|
[px_rz, ~] = pwelch(d_rz(:, 2), win, [], [], Fs);
|
|
[px_he, ~] = pwelch(d_he(:, 2), win, [], [], Fs);
|
|
#+end_src
|
|
|
|
And we compare all the signals (figures [[fig:psd_sample_comp_lpf]] and [[fig:psd_sample_comp_high_freq_lpf]]).
|
|
#+begin_src matlab :results none
|
|
figure;
|
|
hold on;
|
|
plot(f, sqrt(px_of), 'DisplayName', 'All OFF');
|
|
plot(f, sqrt(px_ty), 'DisplayName', 'Ty ON');
|
|
plot(f, sqrt(px_ry), 'DisplayName', 'Ry ON');
|
|
plot(f, sqrt(px_sr), 'DisplayName', 'S-R ON');
|
|
plot(f, sqrt(px_rz), 'DisplayName', 'Rz ON');
|
|
plot(f, sqrt(px_he), 'DisplayName', 'Hexa ON');
|
|
hold off;
|
|
set(gca, 'xscale', 'log');
|
|
set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
|
|
xlim([0.1, 500]);
|
|
legend('Location', 'southwest');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_sample_comp_lpf.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_sample_comp_lpf
|
|
#+caption: Amplitude Spectral Density of the sample velocity
|
|
#+RESULTS:
|
|
[[file:figs/psd_sample_comp_lpf.png]]
|
|
|
|
|
|
#+begin_src matlab :results none :tangle no :exports none
|
|
xlim([80, 500]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_sample_comp_high_freq_lpf.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_sample_comp_high_freq_lpf
|
|
#+caption: Amplitude Spectral Density of the sample velocity (zoom at high frequencies)
|
|
#+RESULTS:
|
|
[[file:figs/psd_sample_comp_high_freq_lpf.png]]
|
|
|
|
*** Vibrations on the marble
|
|
Now we plot the same curves for the geophone located on the marble.
|
|
#+begin_src matlab :exports none
|
|
[px_of, f] = pwelch(d_of(:, 1), win, [], [], Fs);
|
|
[px_ty, ~] = pwelch(d_ty(:, 1), win, [], [], Fs);
|
|
[px_ry, ~] = pwelch(d_ry(:, 1), win, [], [], Fs);
|
|
[px_sr, ~] = pwelch(d_sr(:, 1), win, [], [], Fs);
|
|
[px_rz, ~] = pwelch(d_rz(:, 1), win, [], [], Fs);
|
|
[px_he, ~] = pwelch(d_he(:, 1), win, [], [], Fs);
|
|
#+end_src
|
|
|
|
And we compare the Amplitude Spectral Densities (figures [[fig:psd_marble_comp_lpf]] and [[fig:psd_marble_lpf_high_freq]])
|
|
#+begin_src matlab :exports none
|
|
figure;
|
|
hold on;
|
|
plot(f, sqrt(px_of), 'DisplayName', 'All OFF');
|
|
plot(f, sqrt(px_ty), 'DisplayName', 'Ty ON');
|
|
plot(f, sqrt(px_ry), 'DisplayName', 'Ry ON');
|
|
plot(f, sqrt(px_sr), 'DisplayName', 'S-R ON');
|
|
plot(f, sqrt(px_rz), 'DisplayName', 'Rz ON');
|
|
plot(f, sqrt(px_he), 'DisplayName', 'Hexa ON');
|
|
hold off;
|
|
set(gca, 'xscale', 'log');
|
|
set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
|
|
xlim([0.1, 500]);
|
|
legend('Location', 'northeast');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_marble_comp_lpf.pdf', 'width', 'full', 'height', 'full')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_marble_comp_lpf
|
|
#+caption: Amplitude Spectral Density of the marble velocity
|
|
#+RESULTS:
|
|
[[file:figs/psd_marble_comp_lpf.png]]
|
|
|
|
#+begin_src matlab :results none :tangle no :exports none
|
|
legend('Location', 'southwest');
|
|
xlim([80, 500]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_marble_lpf_high_freq.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_marble_lpf_high_freq
|
|
#+caption: Amplitude Spectral Density of the marble velocity (zoom at high frequencies)
|
|
#+RESULTS:
|
|
[[file:figs/psd_marble_lpf_high_freq.png]]
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
- The Ty stage induces vibrations of the marble and at the sample location above 100Hz
|
|
- The hexapod stage induces vibrations at the sample position above 220Hz
|
|
#+end_important
|
|
|
|
* Effect of the Symetrie Driver
|
|
:PROPERTIES:
|
|
:header-args:matlab+: :tangle matlab/effect_symetrie_driver.m
|
|
:header-args:matlab+: :comments org :mkdirp yes
|
|
:END:
|
|
<<sec:effect_symetrie_driver>>
|
|
|
|
** ZIP file containing the data and matlab files :ignore:
|
|
#+begin_src bash :exports none :results none
|
|
if [ matlab/effect_symetrie_driver.m -nt data/effect_symetrie_driver.zip ]; then
|
|
cp matlab/effect_symetrie_driver.m effect_symetrie_driver.m;
|
|
zip data/effect_symetrie_driver \
|
|
mat/data_018.mat \
|
|
mat/data_019.mat \
|
|
effect_symetrie_driver.m
|
|
rm effect_symetrie_driver.m;
|
|
fi
|
|
#+end_src
|
|
|
|
#+begin_note
|
|
All the files (data and Matlab scripts) are accessible [[file:data/effect_symetrie_driver.zip][here]].
|
|
#+end_note
|
|
|
|
** Experimental Setup
|
|
We here measure the signals of two geophones:
|
|
- One is located on top of the Sample platform
|
|
- One is located on the marble
|
|
|
|
The signal from the top geophone does go trought the slip-ring.
|
|
|
|
All the control systems are turned OFF except the Hexapod one.
|
|
|
|
Each measurement are done during 100s.
|
|
|
|
The settings of the voltage amplifier are:
|
|
- gain of 60dB
|
|
- AC/DC option set on DC
|
|
- Low pass filter set at 1kHz
|
|
|
|
A first order low pass filter with a cut-off frequency of 1kHz is added before the voltage amplifier.
|
|
|
|
The measurements are:
|
|
- =meas_018.mat=: Hexapod's driver on the granite
|
|
- =meas_019.mat=: Hexapod's driver on the ground
|
|
|
|
Each of the =mat= file contains one array =data= with 3 columns:
|
|
| Column number | Description |
|
|
|---------------+-------------------|
|
|
| 1 | Geophone - Marble |
|
|
| 2 | Geophone - Sample |
|
|
| 3 | Time |
|
|
|
|
** Matlab Init :noexport:ignore:
|
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
<<matlab-dir>>
|
|
#+end_src
|
|
|
|
#+begin_src matlab :exports none :results silent :noweb yes
|
|
<<matlab-init>>
|
|
#+end_src
|
|
|
|
** Load data
|
|
We load the data of the z axis of two geophones.
|
|
#+begin_src matlab :results none
|
|
d_18 = load('mat/data_018.mat', 'data'); d_18 = d_18.data;
|
|
d_19 = load('mat/data_019.mat', 'data'); d_19 = d_19.data;
|
|
#+end_src
|
|
|
|
** Analysis - Time Domain
|
|
#+begin_src matlab :results none
|
|
figure;
|
|
hold on;
|
|
plot(d_19(:, 3), d_19(:, 1), 'DisplayName', 'Driver - Ground');
|
|
plot(d_18(:, 3), d_18(:, 1), 'DisplayName', 'Driver - Granite');
|
|
hold off;
|
|
xlabel('Time [s]'); ylabel('Voltage [V]');
|
|
xlim([0, 50]);
|
|
legend('Location', 'bestoutside');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/time_domain_hexa_driver.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:time_domain_hexa_driver
|
|
#+caption: Comparison of the time domain data when turning off the control system of the stages - Geophone at the sample location
|
|
#+RESULTS:
|
|
[[file:figs/time_domain_hexa_driver.png]]
|
|
|
|
** Analysis - Frequency Domain
|
|
#+begin_src matlab :results none
|
|
dt = d_18(2, 3) - d_18(1, 3);
|
|
|
|
Fs = 1/dt;
|
|
win = hanning(ceil(10*Fs));
|
|
#+end_src
|
|
|
|
*** Vibrations at the sample location
|
|
First, we compute the Power Spectral Density of the signals coming from the Geophone located at the sample location.
|
|
#+begin_src matlab :results none
|
|
[px_18, f] = pwelch(d_18(:, 1), win, [], [], Fs);
|
|
[px_19, ~] = pwelch(d_19(:, 1), win, [], [], Fs);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :results none
|
|
figure;
|
|
hold on;
|
|
plot(f, sqrt(px_19), 'DisplayName', 'Driver - Ground');
|
|
plot(f, sqrt(px_18), 'DisplayName', 'Driver - Granite');
|
|
hold off;
|
|
set(gca, 'xscale', 'log');
|
|
set(gca, 'yscale', 'log');
|
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
xlim([0.1, 500]);
|
|
legend('Location', 'southwest');
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_hexa_driver.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_hexa_driver
|
|
#+caption: Amplitude Spectral Density of the signal coming from the top geophone
|
|
#+RESULTS:
|
|
[[file:figs/psd_hexa_driver.png]]
|
|
|
|
#+begin_src matlab :results none :tangle no :exports none
|
|
xlim([80, 500]);
|
|
#+end_src
|
|
|
|
#+begin_src matlab :tangle no :exports results :results file replace
|
|
exportFig('figs/psd_hexa_driver_high_freq.pdf', 'width', 'full', 'height', 'tall')
|
|
#+end_src
|
|
|
|
#+name: fig:psd_hexa_driver_high_freq
|
|
#+caption: Amplitude Spectral Density of the signal coming from the top geophone (zoom at high frequencies)
|
|
#+RESULTS:
|
|
[[file:figs/psd_hexa_driver_high_freq.png]]
|
|
|
|
** Conclusion
|
|
#+begin_important
|
|
Even tough the Hexapod's driver vibrates quite a lot, it does not generate significant vibrations of the granite when either placed on the granite or on the ground.
|
|
#+end_important
|