nass-micro-station-measurem.../modal-analysis/mathematical_model.html

259 lines
8.2 KiB
HTML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-11-12 jeu. 10:29 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Modal Analysis - Derivation of Mathematical Models</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
<script>MathJax = {
tex: {
tags: 'ams',
macros: {bm: ["\\boldsymbol{#1}",1],}
}
};
</script>
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
<a accesskey="h" href="../index.html"> UP </a>
|
<a accesskey="H" href="../index.html"> HOME </a>
</div><div id="content">
<h1 class="title">Modal Analysis - Derivation of Mathematical Models</h1>
<div id="table-of-contents">
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org2a87d8f">1. Type of Model</a></li>
<li><a href="#orgdb0ed87">2. Extract Physical Matrices</a></li>
<li><a href="#orgcc897f4">3. Some notes about constraining the number of degrees of freedom</a></li>
</ul>
</div>
</div>
<div id="outline-container-org2a87d8f" class="outline-2">
<h2 id="org2a87d8f"><span class="section-number-2">1</span> Type of Model</h2>
<div class="outline-text-2" id="text-1">
<p>
The model that we want to obtain is a <b>multi-body model</b>.
It is composed of several <b>solid bodies connected with springs and dampers</b>.
The solid bodies are represented with different colors on figure <a href="#orga016307">1</a>.
</p>
<p>
In the simscape model, the solid bodies are:
</p>
<ul class="org-ul">
<li>the granite (1 or 2 solids)</li>
<li>the translation stage</li>
<li>the tilt stage</li>
<li>the spindle and slip-ring</li>
<li>the hexapod</li>
</ul>
<div id="orga016307" class="figure">
<p><img src="img/nass_solidworks.png" alt="nass_solidworks.png" width="800px" />
</p>
<p><span class="figure-number">Figure 1: </span>CAD view of the ID31 Micro-Station</p>
</div>
<p>
However, each of the DOF of the system may not be relevant for the modes present in the frequency band of interest.
For instance, the translation stage may not vibrate in the Z direction for all the modes identified. Then, we can block this DOF and this simplifies the model.
</p>
<p>
The modal identification done here will thus permit us to determine <b>which DOF can be neglected</b>.
</p>
</div>
</div>
<div id="outline-container-orgdb0ed87" class="outline-2">
<h2 id="orgdb0ed87"><span class="section-number-2">2</span> Extract Physical Matrices</h2>
<div class="outline-text-2" id="text-2">
<p>
(<a href="#citeproc_bib_item_2">Wang, Zhang, and Tee 2011</a>)
</p>
<p>
Let&rsquo;s recall that:
\[ \Lambda = \begin{bmatrix}
s_1 & & 0 \\
& \ddots & \\
0 & & s_N
\end{bmatrix}_{N \times N}; \quad \Psi = \begin{bmatrix}
& & \\
\{\psi_1\} & \dots & \{\psi_N\} \\
& &
\end{bmatrix}_{M \times N} ; \quad A = \begin{bmatrix}
a_1 & & 0 \\
& \ddots & \\
0 & & a_N
\end{bmatrix}_{N \times N}; \]
</p>
\begin{align}
M &= \frac{1}{2} \left[ \text{Re}(\Psi A^{-1} \Lambda \Psi^T ) \right]^{-1} \\
C &= -2 M \text{Re}(\Psi A^{-1} \Lambda^2 A^{-1} \Psi^T ) M \\
K &= -\frac{1}{2} \left[ \text{Re}(\Psi \Lambda^{-1} A^{-1} \Psi^T) \right]^{-1}
\end{align}
<div class="org-src-container">
<pre class="src src-matlab">psi = eigen_vec_CoM;
a = modal_a_M;
lambda = eigen_val_M;
M = 0.5<span class="org-type">*</span>inv(real(psi<span class="org-type">*</span>inv(a)<span class="org-type">*</span>lambda<span class="org-type">*</span>psi<span class="org-type">'</span>));
C = <span class="org-type">-</span>2<span class="org-type">*</span>M<span class="org-type">*</span>real(psi<span class="org-type">*</span>inv(a)<span class="org-type">*</span>lambda<span class="org-type">^</span>2<span class="org-type">*</span>inv(a)<span class="org-type">*</span>psi<span class="org-type">'</span>)<span class="org-type">*</span>M;
K = <span class="org-type">-</span>0.5<span class="org-type">*</span>inv(real(psi<span class="org-type">*</span>inv(lambda)<span class="org-type">*</span>inv(a)<span class="org-type">*</span>psi<span class="org-type">'</span>));
</pre>
</div>
<p>
From (<a href="#citeproc_bib_item_1">Ewins 2000</a>)
</p>
\begin{align}
[M] &= [\Phi]^{-T} [I] [\Phi]^{-1} \\
[K] &= [\Phi]^{-T} [\lambda_r^2] [\Phi]^{-1}
\end{align}
</div>
</div>
<div id="outline-container-orgcc897f4" class="outline-2">
<h2 id="orgcc897f4"><span class="section-number-2">3</span> Some notes about constraining the number of degrees of freedom</h2>
<div class="outline-text-2" id="text-3">
<p>
We want to have the two eigen matrices.
</p>
<p>
They should have the same size \(n \times n\) where \(n\) is the number of modes as well as the number of degrees of freedom.
Thus, if we consider 21 modes, we should restrict our system to have only 21 DOFs.
</p>
<p>
Actually, we are measured 6 DOFs of 6 solids, thus we have 36 DOFs.
</p>
<p>
From the mode shapes animations, it seems that in the frequency range of interest, the two marbles can be considered as one solid.
We thus have 5 solids and 30 DOFs.
</p>
<p>
In order to determine which DOF can be neglected, two solutions seems possible:
</p>
<ul class="org-ul">
<li>compare the mode shapes</li>
<li>compare the FRFs</li>
</ul>
<p>
The question is: in which base (frame) should be express the modes shapes and FRFs?
Is it meaningful to compare mode shapes as they give no information about the amplitudes of vibration?
</p>
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
<colgroup>
<col class="org-left" />
<col class="org-right" />
<col class="org-right" />
<col class="org-right" />
<col class="org-left" />
</colgroup>
<thead>
<tr>
<th scope="col" class="org-left">Stage</th>
<th scope="col" class="org-right">Motion DOFs</th>
<th scope="col" class="org-right">Parasitic DOF</th>
<th scope="col" class="org-right">Total DOF</th>
<th scope="col" class="org-left">Description of DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td class="org-left">Granite</td>
<td class="org-right">0</td>
<td class="org-right">3</td>
<td class="org-right">3</td>
<td class="org-left">&#xa0;</td>
</tr>
<tr>
<td class="org-left">Ty</td>
<td class="org-right">1</td>
<td class="org-right">2</td>
<td class="org-right">3</td>
<td class="org-left">Ty, Rz</td>
</tr>
<tr>
<td class="org-left">Ry</td>
<td class="org-right">1</td>
<td class="org-right">2</td>
<td class="org-right">3</td>
<td class="org-left">Ry,</td>
</tr>
<tr>
<td class="org-left">Rz</td>
<td class="org-right">1</td>
<td class="org-right">2</td>
<td class="org-right">3</td>
<td class="org-left">Rz, Rx, Ry</td>
</tr>
<tr>
<td class="org-left">Hexapod</td>
<td class="org-right">6</td>
<td class="org-right">0</td>
<td class="org-right">6</td>
<td class="org-left">Txyz, Rxyz</td>
</tr>
</tbody>
<tbody>
<tr>
<td class="org-left">&#xa0;</td>
<td class="org-right">9</td>
<td class="org-right">9</td>
<td class="org-right">18</td>
<td class="org-left">&#xa0;</td>
</tr>
</tbody>
</table>
</div>
</div>
<p>
</p>
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
<div class="csl-bib-body">
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Ewins, DJ. 2000. <i>Modal Testing: Theory, Practice and Application</i>. <i>Research Studies Pre, 2nd Ed., ISBN-13</i>. Baldock, Hertfordshire, England Philadelphia, PA: Wiley-Blackwell.</div>
<div class="csl-entry"><a name="citeproc_bib_item_2"></a>Wang, Tong, Lingmi Zhang, and Kong Fah Tee. 2011. “Extraction of Real Modes and Physical Matrices from Modal Testing.” <i>Earthquake Engineering and Engineering Vibration</i> 10 (2):21927. <a href="https://doi.org/10.1007/s11803-011-0060-6">https://doi.org/10.1007/s11803-011-0060-6</a>.</div>
</div>
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-12 jeu. 10:29</p>
</div>
</body>
</html>