nass-micro-station-measurem.../2018-10-12 - Marc/index.org

5.2 KiB

Measurements

Experimental conditions

  • Measurement made in the experiment hutch
  • FS=256Hz
  • Made by Marc Lesourd on the 12 of October 2018
Date 2018-10-12
Sensors Geophones
Excitation Instrumented Hammer
Location Experimental Hutch

Goal:

  • The station is now installed on the experimental hutch with a glued granite (final location).
  • The station is identified again.

Measurements procedure

8 Geophone are used (see table tab:meas_channels):

Natural Frequency [Hz] 4.5
Weight [g] 140
Sensitivity [V/(m/s)] 31.3
L-28LB Geophone characteristics
Natural Frequency [Hz] 1
Weight [g] 2150
Sensitivity [V/(m/s)] 276.8
L-4C Geophone characteristics

The structure is excited using an instrumented hammer with impacts on (see table tab:measurements):

  • Marble
  • Ty
  • Hexapod

Measurement Channels

Les fichiers xxx_raw sont sans traitement dans le domaine temporel (environ 10 impacts par fichier)

Ch. nb Element Location Direction
1 Geophone L-4C Marble Z
2 Geophone L-28LB Ty Z
3 Geophone L-28LB Tilt Z
4 Geophone L-28LB Hexa Z
5 Geophone L-28LB Marble H
6 Geophone L-28LB TY H
7 Geophone L-28LB Tilt H
8 Geophone L-28LB Hexa H
9 Hammer Variable Variable
Description of each measurement channel

Experiments

Meas. nb Location Direction
1 Marble Y
2 Ty Y
3 Hexa Y
4 Marble Z
5 Ty Z
6 Hexa Z
7 Marble X
8 Ty X
9 Hexa X
Description of the location of direction of the excitation for each measurement

Data Analysis

Loading of the data

  load('./data/freq_frf.mat');

  load('./data/frf_hexa_x.mat');
  load('./data/frf_hexa_y.mat');
  load('./data/frf_hexa_z.mat');

  load('./data/frf_marble_x.mat');
  load('./data/frf_marble_y.mat');
  load('./data/frf_marble_z.mat');

  load('./data/frf_ty_x.mat');
  load('./data/frf_ty_y.mat');
  load('./data/frf_ty_z.mat');

  load('./data/phs_hexa_x.mat');
  load('./data/phs_hexa_y.mat');
  load('./data/phs_hexa_z.mat');

  load('./data/phs_marble_x.mat');
  load('./data/phs_marble_y.mat');
  load('./data/phs_marble_z.mat');

  load('./data/phs_ty_x.mat');
  load('./data/phs_ty_y.mat');
  load('./data/phs_ty_z.mat');

test

  figure;
  hold on;
  plot(freq_frf, abs(ReIm7(:, 5))./(2*pi*freq_frf), 'DisplayName', 'Marble')
  plot(freq_frf, abs(ReIm8(:, 6))./(2*pi*freq_frf), 'DisplayName', 'Ty')
  % plot(freq_frf, abs(ReIm5(:, 3))./(2*pi*freq_frf), 'DisplayName', 'Tilt')
  plot(freq_frf, abs(ReIm9(:, 8))./(2*pi*freq_frf), 'DisplayName', 'Hexapod')
  hold off;
  xlim([1, 100]);
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
  legend('location', 'northwest');
  figure;
  hold on;
  plot(freq_frf, abs(ReIm5(:, 1))./(2*pi*freq_frf), 'DisplayName', 'Marble')
  plot(freq_frf, abs(ReIm5(:, 2))./(2*pi*freq_frf), 'DisplayName', 'Ty')
  plot(freq_frf, abs(ReIm5(:, 3))./(2*pi*freq_frf), 'DisplayName', 'Tilt')
  plot(freq_frf, abs(ReIm5(:, 4))./(2*pi*freq_frf), 'DisplayName', 'Hexapod')
  hold off;
  xlim([1, 100]);
  set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
  legend('location', 'northwest');