Add ASD of displacement

This commit is contained in:
Thomas Dehaeze 2019-04-18 17:25:02 +02:00
parent 36f1e7d875
commit e96bd46b7c
11 changed files with 163 additions and 97 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 51 KiB

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 60 KiB

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 111 KiB

After

Width:  |  Height:  |  Size: 116 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 117 KiB

After

Width:  |  Height:  |  Size: 96 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

After

Width:  |  Height:  |  Size: 83 KiB

View File

@ -3,7 +3,7 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2019-04-18 jeu. 17:11 -->
<!-- 2019-04-18 jeu. 17:24 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>SpeedGoat</title>
@ -276,36 +276,36 @@ for the JavaScript code in this tag.
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#orgeb3ab60">1. Experimental Setup</a></li>
<li><a href="#org17b1fa2">2. Signal Processing</a>
<li><a href="#org3e6baac">1. Experimental Setup</a></li>
<li><a href="#org924e227">2. Signal Processing</a>
<ul>
<li><a href="#orge77a4ee">2.1. Load data</a></li>
<li><a href="#org6b7befd">2.2. Time Domain Data</a></li>
<li><a href="#org4e41681">2.3. Computation of the ASD of the measured voltage</a></li>
<li><a href="#org83cd67f">2.4. Scaling to take into account the sensibility of the geophone and the voltage amplifier</a></li>
<li><a href="#orge0f93a9">2.5. Computation of the ASD of the velocity</a></li>
<li><a href="#orgd178821">2.6. Transfer function between the two geophones</a></li>
<li><a href="#orgaf0dac1">2.7. Estimation of the sensor noise</a></li>
<li><a href="#org8f54945">2.1. Load data</a></li>
<li><a href="#org26953ea">2.2. Time Domain Data</a></li>
<li><a href="#orgea14a3e">2.3. Computation of the ASD of the measured voltage</a></li>
<li><a href="#org10d59fe">2.4. Scaling to take into account the sensibility of the geophone and the voltage amplifier</a></li>
<li><a href="#orgca371f4">2.5. Computation of the ASD of the velocity</a></li>
<li><a href="#orgd108d7b">2.6. Transfer function between the two geophones</a></li>
<li><a href="#orgd3b08ee">2.7. Estimation of the sensor noise</a></li>
</ul>
</li>
<li><a href="#org126e178">3. Compare axis</a>
<li><a href="#orgdb15af9">3. Compare axis</a>
<ul>
<li><a href="#org3f6cac8">3.1. Load data</a></li>
<li><a href="#org608de0c">3.2. Compare PSD</a></li>
<li><a href="#org4db3872">3.3. Compare TF</a></li>
<li><a href="#orgba2e891">3.1. Load data</a></li>
<li><a href="#org4fa1ea3">3.2. Compare PSD</a></li>
<li><a href="#org413e0a4">3.3. Compare TF</a></li>
</ul>
</li>
<li><a href="#org66ca70f">4. Appendix</a>
<li><a href="#org47dea1f">4. Appendix</a>
<ul>
<li><a href="#org7492edb">4.1. Computation of coherence from PSD and CSD</a></li>
<li><a href="#orgc970c0a">4.1. Computation of coherence from PSD and CSD</a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-orgeb3ab60" class="outline-2">
<h2 id="orgeb3ab60"><span class="section-number-2">1</span> Experimental Setup</h2>
<div id="outline-container-org3e6baac" class="outline-2">
<h2 id="org3e6baac"><span class="section-number-2">1</span> Experimental Setup</h2>
<div class="outline-text-2" id="text-1">
<p>
Two L22 geophones are used.
@ -319,14 +319,14 @@ The voltage amplifiers include a low pass filter with a cut-off frequency at 1kH
</p>
<div id="orgfe0dca3" class="figure">
<div id="org1834fe1" class="figure">
<p><img src="./figs/setup.jpg" alt="setup.jpg" width="500px" />
</p>
<p><span class="figure-number">Figure 1: </span>Setup</p>
</div>
<div id="orgbcec6a9" class="figure">
<div id="orgd38e8c5" class="figure">
<p><img src="./figs/geophones.jpg" alt="geophones.jpg" width="500px" />
</p>
<p><span class="figure-number">Figure 2: </span>Geophones</p>
@ -334,8 +334,8 @@ The voltage amplifiers include a low pass filter with a cut-off frequency at 1kH
</div>
</div>
<div id="outline-container-org17b1fa2" class="outline-2">
<h2 id="org17b1fa2"><span class="section-number-2">2</span> Signal Processing</h2>
<div id="outline-container-org924e227" class="outline-2">
<h2 id="org924e227"><span class="section-number-2">2</span> Signal Processing</h2>
<div class="outline-text-2" id="text-2">
<p>
The Matlab computing file for this part is accessible <a href="signal_processing.m">here</a>.
@ -343,8 +343,8 @@ The <code>mat</code> file containing the measurement data is accessible <a href=
</p>
</div>
<div id="outline-container-orge77a4ee" class="outline-3">
<h3 id="orge77a4ee"><span class="section-number-3">2.1</span> Load data</h3>
<div id="outline-container-org8f54945" class="outline-3">
<h3 id="org8f54945"><span class="section-number-3">2.1</span> Load data</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We load the data of the z axis of two geophones.
@ -358,8 +358,8 @@ dt = t<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-high
</div>
</div>
<div id="outline-container-org6b7befd" class="outline-3">
<h3 id="org6b7befd"><span class="section-number-3">2.2</span> Time Domain Data</h3>
<div id="outline-container-org26953ea" class="outline-3">
<h3 id="org26953ea"><span class="section-number-3">2.2</span> Time Domain Data</h3>
<div class="outline-text-3" id="text-2-2">
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
@ -374,7 +374,7 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
<div id="org0161433" class="figure">
<div id="orge43c98a" class="figure">
<p><img src="figs/data_time_domain.png" alt="data_time_domain.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Time domain Data</p>
@ -394,7 +394,7 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
<div id="orgab64b52" class="figure">
<div id="orgb1d4c24" class="figure">
<p><img src="figs/data_time_domain_zoom.png" alt="data_time_domain_zoom.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Time domain Data - Zoom</p>
@ -402,8 +402,8 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
</div>
<div id="outline-container-org4e41681" class="outline-3">
<h3 id="org4e41681"><span class="section-number-3">2.3</span> Computation of the ASD of the measured voltage</h3>
<div id="outline-container-orgea14a3e" class="outline-3">
<h3 id="orgea14a3e"><span class="section-number-3">2.3</span> Computation of the ASD of the measured voltage</h3>
<div class="outline-text-3" id="text-2-3">
<p>
We first define the parameters for the frequency domain analysis.
@ -422,12 +422,12 @@ Fs = <span class="org-highlight-numbers-number">1</span><span class="org-type">/
</div>
</div>
<div id="outline-container-org83cd67f" class="outline-3">
<h3 id="org83cd67f"><span class="section-number-3">2.4</span> Scaling to take into account the sensibility of the geophone and the voltage amplifier</h3>
<div id="outline-container-org10d59fe" class="outline-3">
<h3 id="org10d59fe"><span class="section-number-3">2.4</span> Scaling to take into account the sensibility of the geophone and the voltage amplifier</h3>
<div class="outline-text-3" id="text-2-4">
<p>
The Geophone used are L22.
Their sensibility are shown on figure <a href="#orgf03c4b4">5</a>.
Their sensibility are shown on figure <a href="#org542fee1">5</a>.
</p>
<div class="org-src-container">
@ -438,7 +438,7 @@ S = <span class="org-rainbow-delimiters-depth-1">(</span>s<span class="org-type"
</div>
<div id="orgf03c4b4" class="figure">
<div id="org542fee1" class="figure">
<p><img src="figs/geophone_sensibility.png" alt="geophone_sensibility.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Sensibility of the Geophone</p>
@ -453,7 +453,7 @@ The amplifiers also include a low pass filter with a cut-off frequency set at 1k
<div class="org-src-container">
<pre class="src src-matlab">G0 = <span class="org-highlight-numbers-number">60</span>; <span class="org-comment">% [dB]</span>
G = G0<span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">+</span>s<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">1000</span><span class="org-rainbow-delimiters-depth-1">)</span>;
G = <span class="org-highlight-numbers-number">10</span><span class="org-type">^</span><span class="org-rainbow-delimiters-depth-1">(</span>G0<span class="org-type">/</span><span class="org-highlight-numbers-number">20</span><span class="org-rainbow-delimiters-depth-1">)</span><span class="org-type">/</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span><span class="org-type">+</span>s<span class="org-type">/</span><span class="org-highlight-numbers-number">2</span><span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span><span class="org-highlight-numbers-number">1000</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
@ -463,24 +463,24 @@ We further divide the result by the sensibility of the Geophone to obtain the AS
</p>
<div class="org-src-container">
<pre class="src src-matlab">scaling = <span class="org-highlight-numbers-number">1</span><span class="org-type">./</span>squeeze<span class="org-rainbow-delimiters-depth-1">(</span>abs<span class="org-rainbow-delimiters-depth-2">(</span>freqresp<span class="org-rainbow-delimiters-depth-3">(</span>G, f, <span class="org-string">'Hz'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-3">)</span></span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">)</span></span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">./squeeze</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">abs</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">(</span></span><span class="org-string">freqresp</span><span class="org-string"><span class="org-rainbow-delimiters-depth-3">(</span></span><span class="org-string">S, f, 'Hz'</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<pre class="src src-matlab">scaling = <span class="org-highlight-numbers-number">1</span><span class="org-type">./</span>squeeze<span class="org-rainbow-delimiters-depth-1">(</span>abs<span class="org-rainbow-delimiters-depth-2">(</span>freqresp<span class="org-rainbow-delimiters-depth-3">(</span>G<span class="org-type">*</span>S, f, <span class="org-string">'Hz'</span><span class="org-rainbow-delimiters-depth-3">)</span><span class="org-rainbow-delimiters-depth-2">)</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
</div>
</div>
<div id="outline-container-orge0f93a9" class="outline-3">
<h3 id="orge0f93a9"><span class="section-number-3">2.5</span> Computation of the ASD of the velocity</h3>
<div id="outline-container-orgca371f4" class="outline-3">
<h3 id="orgca371f4"><span class="section-number-3">2.5</span> Computation of the ASD of the velocity</h3>
<div class="outline-text-3" id="text-2-5">
<p>
The ASD of the measured velocity is shown on figure <a href="#org9a56511">6</a>.
The ASD of the measured velocity is shown on figure <a href="#orga342d1d">6</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
hold on;
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxx1<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">./</span>scaling<span class="org-rainbow-delimiters-depth-1">)</span>;
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxx2<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">./</span>scaling<span class="org-rainbow-delimiters-depth-1">)</span>;
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxx1<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">.*</span>scaling<span class="org-rainbow-delimiters-depth-1">)</span>;
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, sqrt<span class="org-rainbow-delimiters-depth-2">(</span>pxx2<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">.*</span>scaling<span class="org-rainbow-delimiters-depth-1">)</span>;
hold off;
<span class="org-type">set</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">gca</span>, <span class="org-string">'xscale', 'log'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
<span class="org-type">set</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">gca</span>, <span class="org-string">'yscale', 'log'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
@ -490,24 +490,47 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
<div id="org9a56511" class="figure">
<div id="orga342d1d" class="figure">
<p><img src="figs/psd_velocity.png" alt="psd_velocity.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Spectral density of the velocity</p>
</div>
<p>
We also plot the ASD in displacement (figure <a href="#orgb224e73">7</a>);
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
hold on;
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, <span class="org-rainbow-delimiters-depth-2">(</span>pxx1<span class="org-type">.*</span>scaling<span class="org-type">./</span>f<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">.^</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span>;
plot<span class="org-rainbow-delimiters-depth-1">(</span>f, <span class="org-rainbow-delimiters-depth-2">(</span>pxx2<span class="org-type">.*</span>scaling<span class="org-type">./</span>f<span class="org-rainbow-delimiters-depth-2">)</span><span class="org-type">.^</span><span class="org-highlight-numbers-number">2</span><span class="org-rainbow-delimiters-depth-1">)</span>;
hold off;
<span class="org-type">set</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-variable-name">gca</span>, <span class="org-string">'xscale', 'log'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">; set</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">gca, 'yscale', 'log'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
xlabel<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'Frequency </span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">[</span></span><span class="org-string">Hz</span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">]</span></span><span class="org-string">'</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">)</span></span><span class="org-string">; ylabel</span><span class="org-string"><span class="org-rainbow-delimiters-depth-1">(</span></span><span class="org-string">'PSD </span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">[</span></span><span class="org-string">m/s/sqrt</span><span class="org-string"><span class="org-rainbow-delimiters-depth-3">(</span></span><span class="org-string">Hz</span><span class="org-string"><span class="org-rainbow-delimiters-depth-3">)</span></span><span class="org-string"><span class="org-rainbow-delimiters-depth-2">]</span></span><span class="org-string">'</span><span class="org-rainbow-delimiters-depth-1">)</span>
xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbow-delimiters-depth-2">[</span><span class="org-highlight-numbers-number">2</span>, <span class="org-highlight-numbers-number">500</span><span class="org-rainbow-delimiters-depth-2">]</span><span class="org-rainbow-delimiters-depth-1">)</span>;
</pre>
</div>
<div id="orgb224e73" class="figure">
<p><img src="figs/asd_displacement.png" alt="asd_displacement.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Amplitude Spectral Density of the displacement as measured by the geophones</p>
</div>
</div>
</div>
<div id="outline-container-orgd178821" class="outline-3">
<h3 id="orgd178821"><span class="section-number-3">2.6</span> Transfer function between the two geophones</h3>
<div id="outline-container-orgd108d7b" class="outline-3">
<h3 id="orgd108d7b"><span class="section-number-3">2.6</span> Transfer function between the two geophones</h3>
<div class="outline-text-3" id="text-2-6">
<p>
We here compute the transfer function from one geophone to the other.
The result is shown on figure <a href="#orgb6c07f9">7</a>.
The result is shown on figure <a href="#org9006692">8</a>.
</p>
<p>
We also compute the coherence between the two signals (figure <a href="#org1b45a36">8</a>).
We also compute the coherence between the two signals (figure <a href="#org9200232">9</a>).
</p>
<div class="org-src-container">
@ -516,10 +539,10 @@ We also compute the coherence between the two signals (figure <a href="#org1b45a
</div>
<div id="orgb6c07f9" class="figure">
<div id="org9006692" class="figure">
<p><img src="figs/tf_geophones.png" alt="tf_geophones.png" />
</p>
<p><span class="figure-number">Figure 7: </span>Estimated transfer function between the two geophones</p>
<p><span class="figure-number">Figure 8: </span>Estimated transfer function between the two geophones</p>
</div>
<div class="org-src-container">
@ -528,16 +551,16 @@ We also compute the coherence between the two signals (figure <a href="#org1b45a
</div>
<div id="org1b45a36" class="figure">
<div id="org9200232" class="figure">
<p><img src="figs/coh_geophones.png" alt="coh_geophones.png" />
</p>
<p><span class="figure-number">Figure 8: </span>Cohererence between the signals of the two geophones</p>
<p><span class="figure-number">Figure 9: </span>Cohererence between the signals of the two geophones</p>
</div>
</div>
</div>
<div id="outline-container-orgaf0dac1" class="outline-3">
<h3 id="orgaf0dac1"><span class="section-number-3">2.7</span> Estimation of the sensor noise</h3>
<div id="outline-container-orgd3b08ee" class="outline-3">
<h3 id="orgd3b08ee"><span class="section-number-3">2.7</span> Estimation of the sensor noise</h3>
<div class="outline-text-3" id="text-2-7">
<p>
The technique to estimate the sensor noise is taken from <a class='org-ref-reference' href="#barzilai98_techn_measur_noise_sensor_presen">barzilai98_techn_measur_noise_sensor_presen</a>.
@ -567,11 +590,11 @@ where:
</ul>
<p>
The <code>mscohere</code> function is compared with this formula on Appendix (section <a href="#orgd085438">4.1</a>), it is shown that it is identical.
The <code>mscohere</code> function is compared with this formula on Appendix (section <a href="#org550fd32">4.1</a>), it is shown that it is identical.
</p>
<p>
Figure <a href="#orga4af110">9</a> illustrate a block diagram model of the system used to determine the sensor noise of the geophone.
Figure <a href="#org72885b4">10</a> illustrate a block diagram model of the system used to determine the sensor noise of the geophone.
</p>
<p>
@ -583,10 +606,10 @@ Each sensor has noise \(N\) and \(M\).
</p>
<div id="orga4af110" class="figure">
<div id="org72885b4" class="figure">
<p><img src="figs/huddle-test.png" alt="huddle-test.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Huddle test block diagram</p>
<p><span class="figure-number">Figure 10: </span>Huddle test block diagram</p>
</div>
<p>
@ -598,7 +621,7 @@ We also assume that \(H_1 = H_2 = 1\).
We then obtain:
</p>
\begin{equation}
\label{org65b3ddf}
\label{orgb78feac}
\gamma_{XY}^2(\omega) = \frac{1}{1 + 2 \left( \frac{|G_N(\omega)|}{|G_U(\omega)|} \right) + \left( \frac{|G_N(\omega)|}{|G_U(\omega)|} \right)^2}
\end{equation}
@ -606,23 +629,23 @@ We then obtain:
Since the input signal \(U\) and the instrumental noise \(N\) are incoherent:
</p>
\begin{equation}
\label{org14038cd}
\label{org8419580}
|G_X(\omega)| = |G_N(\omega)| + |G_U(\omega)|
\end{equation}
<p>
From equations \eqref{org65b3ddf} and \eqref{org14038cd}, we finally obtain
From equations \eqref{orgb78feac} and \eqref{org8419580}, we finally obtain
</p>
<div class="important">
\begin{equation}
\label{org84c455c}
\label{orgbe05867}
|G_N(\omega)| = |G_X(\omega)| \left( 1 - \sqrt{\gamma_{XY}^2(\omega)} \right)
\end{equation}
</div>
<p>
The instrumental noise is computed below. The result in V<sup>2</sup>/Hz is shown on figure <a href="#orgd0b903d">10</a>.
The instrumental noise is computed below. The result in V<sup>2</sup>/Hz is shown on figure <a href="#org40db312">11</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">pxxN = pxx1<span class="org-type">.*</span><span class="org-rainbow-delimiters-depth-1">(</span><span class="org-highlight-numbers-number">1</span> <span class="org-type">-</span> coh12<span class="org-rainbow-delimiters-depth-1">)</span>;
@ -643,14 +666,14 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
<div id="orgd0b903d" class="figure">
<div id="org40db312" class="figure">
<p><img src="figs/intrumental_noise_V.png" alt="intrumental_noise_V.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Instrumental Noise and Measurement in \(V^2/Hz\)</p>
<p><span class="figure-number">Figure 11: </span>Instrumental Noise and Measurement in \(V^2/Hz\)</p>
</div>
<p>
This is then further converted into velocity and compared with the ground velocity measurement. (figure <a href="#org0542ab9">11</a>)
This is then further converted into velocity and compared with the ground velocity measurement. (figure <a href="#org2a811b0">12</a>)
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-type">figure</span>;
@ -666,17 +689,17 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
<div id="org0542ab9" class="figure">
<div id="org2a811b0" class="figure">
<p><img src="figs/intrumental_noise_velocity.png" alt="intrumental_noise_velocity.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Instrumental Noise and Measurement in \(m/s/\sqrt{Hz}\)</p>
<p><span class="figure-number">Figure 12: </span>Instrumental Noise and Measurement in \(m/s/\sqrt{Hz}\)</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org126e178" class="outline-2">
<h2 id="org126e178"><span class="section-number-2">3</span> Compare axis</h2>
<div id="outline-container-orgdb15af9" class="outline-2">
<h2 id="orgdb15af9"><span class="section-number-2">3</span> Compare axis</h2>
<div class="outline-text-2" id="text-3">
<p>
The Matlab computing file for this part is accessible <a href="compare_axis.m">here</a>.
@ -689,8 +712,8 @@ The <code>mat</code> files containing the measurement data are accessible with t
</ul>
</div>
<div id="outline-container-org3f6cac8" class="outline-3">
<h3 id="org3f6cac8"><span class="section-number-3">3.1</span> Load data</h3>
<div id="outline-container-orgba2e891" class="outline-3">
<h3 id="orgba2e891"><span class="section-number-3">3.1</span> Load data</h3>
<div class="outline-text-3" id="text-3-1">
<p>
We first load the data for the three axis.
@ -704,8 +727,8 @@ north = load<span class="org-rainbow-delimiters-depth-1">(</span><span class="or
</div>
</div>
<div id="outline-container-org608de0c" class="outline-3">
<h3 id="org608de0c"><span class="section-number-3">3.2</span> Compare PSD</h3>
<div id="outline-container-org4fa1ea3" class="outline-3">
<h3 id="org4fa1ea3"><span class="section-number-3">3.2</span> Compare PSD</h3>
<div class="outline-text-3" id="text-3-2">
<p>
The PSD for each axis of the two geophones are computed.
@ -723,23 +746,23 @@ The PSD for each axis of the two geophones are computed.
</div>
<p>
We compare them. The result is shown on figure <a href="#orge0ebe78">12</a>.
We compare them. The result is shown on figure <a href="#org8d0a71b">13</a>.
</p>
<div id="orge0ebe78" class="figure">
<div id="org8d0a71b" class="figure">
<p><img src="figs/compare_axis_psd.png" alt="compare_axis_psd.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Compare the measure PSD of the two geophones for the three axis</p>
<p><span class="figure-number">Figure 13: </span>Compare the measure PSD of the two geophones for the three axis</p>
</div>
</div>
</div>
<div id="outline-container-org4db3872" class="outline-3">
<h3 id="org4db3872"><span class="section-number-3">3.3</span> Compare TF</h3>
<div id="outline-container-org413e0a4" class="outline-3">
<h3 id="org413e0a4"><span class="section-number-3">3.3</span> Compare TF</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The transfer functions from one geophone to the other are also computed for each axis.
The result is shown on figure <a href="#org2a4c622">13</a>.
The result is shown on figure <a href="#org167ce04">14</a>.
</p>
<div class="org-src-container">
@ -750,24 +773,24 @@ The result is shown on figure <a href="#org2a4c622">13</a>.
</div>
<div id="org2a4c622" class="figure">
<div id="org167ce04" class="figure">
<p><img src="figs/compare_tf_axis.png" alt="compare_tf_axis.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Compare the transfer function from one geophone to the other for the 3 axis</p>
<p><span class="figure-number">Figure 14: </span>Compare the transfer function from one geophone to the other for the 3 axis</p>
</div>
</div>
</div>
</div>
<div id="outline-container-org66ca70f" class="outline-2">
<h2 id="org66ca70f"><span class="section-number-2">4</span> Appendix</h2>
<div id="outline-container-org47dea1f" class="outline-2">
<h2 id="org47dea1f"><span class="section-number-2">4</span> Appendix</h2>
<div class="outline-text-2" id="text-4">
</div>
<div id="outline-container-org7492edb" class="outline-3">
<h3 id="org7492edb"><span class="section-number-3">4.1</span> Computation of coherence from PSD and CSD</h3>
<div id="outline-container-orgc970c0a" class="outline-3">
<h3 id="orgc970c0a"><span class="section-number-3">4.1</span> Computation of coherence from PSD and CSD</h3>
<div class="outline-text-3" id="text-4-1">
<p>
<a id="orgd085438"></a>
<a id="org550fd32"></a>
</p>
<div class="org-src-container">
<pre class="src src-matlab">load<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-string">'mat/data_001.mat', 't', 'x1', 'x2'</span><span class="org-rainbow-delimiters-depth-1">)</span>;
@ -798,10 +821,10 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
<div id="org0bcdbf7" class="figure">
<div id="org229a280" class="figure">
<p><img src="figs/comp_coherence_formula.png" alt="comp_coherence_formula.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Comparison of <code>mscohere</code> and manual computation</p>
<p><span class="figure-number">Figure 15: </span>Comparison of <code>mscohere</code> and manual computation</p>
</div>
</div>
</div>
@ -816,7 +839,7 @@ xlim<span class="org-rainbow-delimiters-depth-1">(</span><span class="org-rainbo
</div>
<div id="postamble" class="status">
<p class="author">Author: Thomas Dehaeze</p>
<p class="date">Created: 2019-04-18 jeu. 17:11</p>
<p class="date">Created: 2019-04-18 jeu. 17:24</p>
<p class="validation"><a href="http://validator.w3.org/check?uri=referer">Validate</a></p>
</div>
</body>

View File

@ -149,14 +149,14 @@ The amplifiers also include a low pass filter with a cut-off frequency set at 1k
#+begin_src matlab :results none
G0 = 60; % [dB]
G = G0/(1+s/2/pi/1000);
G = 10^(G0/20)/(1+s/2/pi/1000);
#+end_src
We divide the ASD measured (in $\text{V}/\sqrt{\text{Hz}}$) by the transfer function of the voltage amplifier to obtain the ASD of the voltage across the geophone.
We further divide the result by the sensibility of the Geophone to obtain the ASD of the velocity in $m/s/\sqrt{Hz}$.
#+begin_src matlab :results none
scaling = 1./squeeze(abs(freqresp(G, f, 'Hz')))./squeeze(abs(freqresp(S, f, 'Hz')));
scaling = 1./squeeze(abs(freqresp(G*S, f, 'Hz')));
#+end_src
** Computation of the ASD of the velocity
@ -165,8 +165,8 @@ The ASD of the measured velocity is shown on figure [[fig:psd_velocity]].
#+begin_src matlab :results none
figure;
hold on;
plot(f, sqrt(pxx1)./scaling);
plot(f, sqrt(pxx2)./scaling);
plot(f, sqrt(pxx1).*scaling);
plot(f, sqrt(pxx2).*scaling);
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
@ -176,7 +176,7 @@ The ASD of the measured velocity is shown on figure [[fig:psd_velocity]].
#+NAME: fig:psd_velocity
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/psd_velocity.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
#+begin_src matlab :var filepath="figs/psd_velocity.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
@ -185,6 +185,30 @@ The ASD of the measured velocity is shown on figure [[fig:psd_velocity]].
#+RESULTS: fig:psd_velocity
[[file:figs/psd_velocity.png]]
We also plot the ASD in displacement (figure [[fig:asd_displacement]]);
#+begin_src matlab :results none
figure;
hold on;
plot(f, (pxx1.*scaling./f).^2);
plot(f, (pxx2.*scaling./f).^2);
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]')
xlim([2, 500]);
#+end_src
#+NAME: fig:asd_displacement
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/asd_displacement.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:asd_displacement
#+CAPTION: Amplitude Spectral Density of the displacement as measured by the geophones
#+RESULTS: fig:asd_displacement
[[file:figs/asd_displacement.png]]
** Transfer function between the two geophones
We here compute the transfer function from one geophone to the other.
The result is shown on figure [[fig:tf_geophones]].

View File

@ -80,7 +80,7 @@ ylabel('Amplitude [V/(m/s)]')
G0 = 60; % [dB]
G = G0/(1+s/2/pi/1000);
G = 10^(G0/20)/(1+s/2/pi/1000);
@ -88,7 +88,7 @@ G = G0/(1+s/2/pi/1000);
% We further divide the result by the sensibility of the Geophone to obtain the ASD of the velocity in $m/s/\sqrt{Hz}$.
scaling = 1./squeeze(abs(freqresp(G, f, 'Hz')))./squeeze(abs(freqresp(S, f, 'Hz')));
scaling = 1./squeeze(abs(freqresp(G*S, f, 'Hz')));
% Computation of the ASD of the velocity
% The ASD of the measured velocity is shown on figure [[fig:psd_velocity]].
@ -96,14 +96,33 @@ scaling = 1./squeeze(abs(freqresp(G, f, 'Hz')))./squeeze(abs(freqresp(S, f, 'Hz'
figure;
hold on;
plot(f, sqrt(pxx1)./scaling);
plot(f, sqrt(pxx2)./scaling);
plot(f, sqrt(pxx1).*scaling);
plot(f, sqrt(pxx2).*scaling);
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]')
xlim([2, 500]);
% #+NAME: fig:psd_velocity
% #+CAPTION: Spectral density of the velocity
% #+RESULTS: fig:psd_velocity
% [[file:figs/psd_velocity.png]]
% We also plot the ASD in displacement (figure [[fig:asd_displacement]]);
figure;
hold on;
plot(f, (pxx1.*scaling./f).^2);
plot(f, (pxx2.*scaling./f).^2);
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]')
xlim([2, 500]);
% Transfer function between the two geophones
% We here compute the transfer function from one geophone to the other.
% The result is shown on figure [[fig:tf_geophones]].