Add links to matlab and mat files

This commit is contained in:
Thomas Dehaeze 2019-04-18 17:11:25 +02:00
parent 97755ac9f0
commit 36f1e7d875
4 changed files with 341 additions and 2 deletions

View File

@ -0,0 +1,81 @@
% Matlab Init :noexport:ignore:
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Initialize ans with org-babel
ans = 0;
% Load data
% We first load the data for the three axis.
z = load('mat/data_001.mat', 't', 'x1', 'x2');
east = load('mat/data_002.mat', 't', 'x1', 'x2');
north = load('mat/data_003.mat', 't', 'x1', 'x2');
% Compare PSD
% The PSD for each axis of the two geophones are computed.
[pz1, fz] = pwelch(z.x1, hanning(ceil(length(z.x1)/100)), [], [], 1/(z.t(2)-z.t(1)));
[pz2, ~] = pwelch(z.x2, hanning(ceil(length(z.x2)/100)), [], [], 1/(z.t(2)-z.t(1)));
[pe1, fe] = pwelch(east.x1, hanning(ceil(length(east.x1)/100)), [], [], 1/(east.t(2)-east.t(1)));
[pe2, ~] = pwelch(east.x2, hanning(ceil(length(east.x2)/100)), [], [], 1/(east.t(2)-east.t(1)));
[pn1, fn] = pwelch(north.x1, hanning(ceil(length(north.x1)/100)), [], [], 1/(north.t(2)-north.t(1)));
[pn2, ~] = pwelch(north.x2, hanning(ceil(length(north.x2)/100)), [], [], 1/(north.t(2)-north.t(1)));
% We compare them. The result is shown on figure [[fig:compare_axis_psd]].
figure;
hold on;
plot(fz, sqrt(pz1), '-', 'Color', [0 0.4470 0.7410], 'DisplayName', 'z');
plot(fz, sqrt(pz2), '--', 'Color', [0 0.4470 0.7410], 'HandleVisibility', 'off');
plot(fe, sqrt(pe1), '-', 'Color', [0.8500 0.3250 0.0980], 'DisplayName', 'east');
plot(fe, sqrt(pe2), '--', 'Color', [0.8500 0.3250 0.0980], 'HandleVisibility', 'off');
plot(fn, sqrt(pn1), '-', 'Color', [0.9290 0.6940 0.1250], 'DisplayName', 'north');
plot(fn, sqrt(pn2), '--', 'Color', [0.9290 0.6940 0.1250], 'HandleVisibility', 'off');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]');
legend('Location', 'northeast');
xlim([0, 500]);
% Compare TF
% The transfer functions from one geophone to the other are also computed for each axis.
% The result is shown on figure [[fig:compare_tf_axis]].
[Tz, fz] = tfestimate(z.x1, z.x2, hanning(ceil(length(z.x1)/100)), [], [], 1/(z.t(2)-z.t(1)));
[Te, fe] = tfestimate(east.x1, east.x2, hanning(ceil(length(east.x1)/100)), [], [], 1/(east.t(2)-east.t(1)));
[Tn, fn] = tfestimate(north.x1, north.x2, hanning(ceil(length(north.x1)/100)), [], [], 1/(north.t(2)-north.t(1)));
figure;
ax1 = subplot(2, 1, 1);
hold on;
plot(fz, abs(Tz), 'DisplayName', 'z');
plot(fe, abs(Te), 'DisplayName', 'east');
plot(fn, abs(Tn), 'DisplayName', 'north');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
legend('Location', 'southwest');
ax2 = subplot(2, 1, 2);
hold on;
plot(fz, mod(180+180/pi*phase(Tz), 360)-180);
plot(fe, mod(180+180/pi*phase(Te), 360)-180);
plot(fn, mod(180+180/pi*phase(Tn), 360)-180);
hold off;
set(gca, 'xscale', 'log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase');
linkaxes([ax1,ax2],'x');
xlim([1, 500]);

Binary file not shown.

View File

@ -18,7 +18,7 @@
#+PROPERTY: header-args:matlab+ :output-dir figs
:END:
* Setup
* Experimental Setup
Two L22 geophones are used.
They are placed on the ID31 granite.
They are leveled.
@ -37,6 +37,13 @@ The voltage amplifiers include a low pass filter with a cut-off frequency at 1kH
[[file:./figs/geophones.jpg]]
* Signal Processing
:PROPERTIES:
:header-args:matlab+: :tangle signal_processing.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
The Matlab computing file for this part is accessible [[file:signal_processing.m][here]].
The =mat= file containing the measurement data is accessible [[file:mat/data_001.mat][here]].
** Matlab Init :noexport:ignore:
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
@ -44,6 +51,7 @@ The voltage amplifiers include a low pass filter with a cut-off frequency at 1kH
** Load data
We load the data of the z axis of two geophones.
#+begin_src matlab :results none
load('mat/data_001.mat', 't', 'x1', 'x2');
dt = t(2) - t(1);
@ -346,12 +354,23 @@ This is then further converted into velocity and compared with the ground veloci
[[file:figs/intrumental_noise_velocity.png]]
* Compare axis
:PROPERTIES:
:header-args:matlab+: :tangle compare_axis.m
:header-args:matlab+: :comments org :mkdirp yes
:END:
The Matlab computing file for this part is accessible [[file:compare_axis.m][here]].
The =mat= files containing the measurement data are accessible with the following links:
- z axis: [[file:mat/data_001.mat][here]].
- east axis: [[file:mat/data_002.mat][here]].
- north axis: [[file:mat/data_003.mat][here]].
** Matlab Init :noexport:ignore:
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
** Load data
We first load the data for the three axis.
#+begin_src matlab :results none
z = load('mat/data_001.mat', 't', 'x1', 'x2');
east = load('mat/data_002.mat', 't', 'x1', 'x2');
@ -359,6 +378,7 @@ This is then further converted into velocity and compared with the ground veloci
#+end_src
** Compare PSD
The PSD for each axis of the two geophones are computed.
#+begin_src matlab :results none
[pz1, fz] = pwelch(z.x1, hanning(ceil(length(z.x1)/100)), [], [], 1/(z.t(2)-z.t(1)));
[pz2, ~] = pwelch(z.x2, hanning(ceil(length(z.x2)/100)), [], [], 1/(z.t(2)-z.t(1)));
@ -370,7 +390,8 @@ This is then further converted into velocity and compared with the ground veloci
[pn2, ~] = pwelch(north.x2, hanning(ceil(length(north.x2)/100)), [], [], 1/(north.t(2)-north.t(1)));
#+end_src
#+begin_src matlab :results none :exports none
We compare them. The result is shown on figure [[fig:compare_axis_psd]].
#+begin_src matlab :results none :exports none
figure;
hold on;
plot(fz, sqrt(pz1), '-', 'Color', [0 0.4470 0.7410], 'DisplayName', 'z');
@ -398,6 +419,9 @@ This is then further converted into velocity and compared with the ground veloci
[[file:figs/compare_axis_psd.png]]
** Compare TF
The transfer functions from one geophone to the other are also computed for each axis.
The result is shown on figure [[fig:compare_tf_axis]].
#+begin_src matlab :results none
[Tz, fz] = tfestimate(z.x1, z.x2, hanning(ceil(length(z.x1)/100)), [], [], 1/(z.t(2)-z.t(1)));
[Te, fe] = tfestimate(east.x1, east.x2, hanning(ceil(length(east.x1)/100)), [], [], 1/(east.t(2)-east.t(1)));
@ -442,6 +466,7 @@ This is then further converted into velocity and compared with the ground veloci
#+CAPTION: Compare the transfer function from one geophone to the other for the 3 axis
#+RESULTS: fig:compare_tf_axis
[[file:figs/compare_tf_axis.png]]
* Appendix
** Computation of coherence from PSD and CSD
<<sec:coherence>>

View File

@ -0,0 +1,233 @@
% Matlab Init :noexport:ignore:
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Initialize ans with org-babel
ans = 0;
% Load data
% We load the data of the z axis of two geophones.
load('mat/data_001.mat', 't', 'x1', 'x2');
dt = t(2) - t(1);
% Time Domain Data
figure;
hold on;
plot(t, x1);
plot(t, x2);
hold off;
xlabel('Time [s]');
ylabel('Voltage [V]');
xlim([t(1), t(end)]);
% #+NAME: fig:data_time_domain
% #+CAPTION: Time domain Data
% #+RESULTS: fig:data_time_domain
% [[file:figs/data_time_domain.png]]
figure;
hold on;
plot(t, x1);
plot(t, x2);
hold off;
xlabel('Time [s]');
ylabel('Voltage [V]');
xlim([0 1]);
% Computation of the ASD of the measured voltage
% We first define the parameters for the frequency domain analysis.
win = hanning(ceil(length(x1)/100));
Fs = 1/dt;
[pxx1, f] = pwelch(x1, win, [], [], Fs);
[pxx2, ~] = pwelch(x2, win, [], [], Fs);
% Scaling to take into account the sensibility of the geophone and the voltage amplifier
% The Geophone used are L22.
% Their sensibility are shown on figure [[fig:geophone_sensibility]].
S0 = 88; % Sensitivity [V/(m/s)]
f0 = 2; % Cut-off frequnecy [Hz]
S = (s/2/pi/f0)/(1+s/2/pi/f0);
figure;
bodeFig({S});
ylabel('Amplitude [V/(m/s)]')
% #+NAME: fig:geophone_sensibility
% #+CAPTION: Sensibility of the Geophone
% #+RESULTS: fig:geophone_sensibility
% [[file:figs/geophone_sensibility.png]]
% We also take into account the gain of the electronics which is here set to be $60dB$.
% The amplifiers also include a low pass filter with a cut-off frequency set at 1kHz.
G0 = 60; % [dB]
G = G0/(1+s/2/pi/1000);
% We divide the ASD measured (in $\text{V}/\sqrt{\text{Hz}}$) by the transfer function of the voltage amplifier to obtain the ASD of the voltage across the geophone.
% We further divide the result by the sensibility of the Geophone to obtain the ASD of the velocity in $m/s/\sqrt{Hz}$.
scaling = 1./squeeze(abs(freqresp(G, f, 'Hz')))./squeeze(abs(freqresp(S, f, 'Hz')));
% Computation of the ASD of the velocity
% The ASD of the measured velocity is shown on figure [[fig:psd_velocity]].
figure;
hold on;
plot(f, sqrt(pxx1)./scaling);
plot(f, sqrt(pxx2)./scaling);
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]')
xlim([2, 500]);
% Transfer function between the two geophones
% We here compute the transfer function from one geophone to the other.
% The result is shown on figure [[fig:tf_geophones]].
% We also compute the coherence between the two signals (figure [[fig:coh_geophones]]).
[T12, ~] = tfestimate(x1, x2, win, [], [], Fs);
figure;
ax1 = subplot(2, 1, 1);
plot(f, abs(T12));
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
set(gca, 'XTickLabel',[]);
ylabel('Magnitude');
ax2 = subplot(2, 1, 2);
plot(f, mod(180+180/pi*phase(T12), 360)-180);
set(gca, 'xscale', 'log');
ylim([-180, 180]);
yticks([-180, -90, 0, 90, 180]);
xlabel('Frequency [Hz]'); ylabel('Phase');
linkaxes([ax1,ax2],'x');
xlim([1, 500]);
% #+NAME: fig:tf_geophones
% #+CAPTION: Estimated transfer function between the two geophones
% #+RESULTS: fig:tf_geophones
% [[file:figs/tf_geophones.png]]
[coh12, ~] = mscohere(x1, x2, win, [], [], Fs);
figure;
plot(f, coh12);
set(gca, 'xscale', 'log');
xlabel('Frequency [Hz]'); ylabel('Coherence');
ylim([0,1]); xlim([1, 500]);
% Estimation of the sensor noise
% The technique to estimate the sensor noise is taken from cite:barzilai98_techn_measur_noise_sensor_presen.
% The coherence between signals $X$ and $Y$ is defined as follow
% \[ \gamma^2_{XY}(\omega) = \frac{|G_{XY}(\omega)|^2}{|G_{X}(\omega)| |G_{Y}(\omega)|} \]
% where $|G_X(\omega)|$ is the output Power Spectral Density (PSD) of signal $X$ and $|G_{XY}(\omega)|$ is the Cross Spectral Density (CSD) of signal $X$ and $Y$.
% The PSD and CSD are defined as follow:
% \begin{align}
% |G_X(\omega)| &= \frac{2}{n_d T} \sum^{n_d}_{n=1} \left| X_k(\omega, T) \right|^2 \\
% |G_{XY}(\omega)| &= \frac{2}{n_d T} \sum^{n_d}_{n=1} [ X_k^*(\omega, T) ] [ Y_k(\omega, T) ]
% \end{align}
% where:
% - $n_d$ is the number for records averaged
% - $T$ is the length of each record
% - $X_k(\omega, T)$ is the finite Fourier transform of the kth record
% - $X_k^*(\omega, T)$ is its complex conjugate
% The =mscohere= function is compared with this formula on Appendix (section [[sec:coherence]]), it is shown that it is identical.
% Figure [[fig:huddle_test]] illustrate a block diagram model of the system used to determine the sensor noise of the geophone.
% Two geophones are mounted side by side to ensure that they are exposed by the same motion input $U$.
% Each sensor has noise $N$ and $M$.
% #+NAME: fig:huddle_test
% #+CAPTION: Huddle test block diagram
% [[file:figs/huddle-test.png]]
% We here assume that each sensor has the same magnitude of instrumental noise ($N = M$).
% We also assume that $H_1 = H_2 = 1$.
% We then obtain:
% #+NAME: eq:coh_bis
% \begin{equation}
% \gamma_{XY}^2(\omega) = \frac{1}{1 + 2 \left( \frac{|G_N(\omega)|}{|G_U(\omega)|} \right) + \left( \frac{|G_N(\omega)|}{|G_U(\omega)|} \right)^2}
% \end{equation}
% Since the input signal $U$ and the instrumental noise $N$ are incoherent:
% #+NAME: eq:incoherent_noise
% \begin{equation}
% |G_X(\omega)| = |G_N(\omega)| + |G_U(\omega)|
% \end{equation}
% From equations [[eq:coh_bis]] and [[eq:incoherent_noise]], we finally obtain
% #+begin_important
% #+NAME: eq:noise_psd
% \begin{equation}
% |G_N(\omega)| = |G_X(\omega)| \left( 1 - \sqrt{\gamma_{XY}^2(\omega)} \right)
% \end{equation}
% #+end_important
% The instrumental noise is computed below. The result in V^2/Hz is shown on figure [[fig:intrumental_noise_V]].
pxxN = pxx1.*(1 - coh12);
figure;
hold on;
plot(f, pxx1, '-');
plot(f, pxx2, '-');
plot(f, pxxN, 'k--');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD [$V^2/Hz$]');
xlim([1, 500]);
% #+NAME: fig:intrumental_noise_V
% #+CAPTION: Instrumental Noise and Measurement in $V^2/Hz$
% #+RESULTS: fig:intrumental_noise_V
% [[file:figs/intrumental_noise_V.png]]
% This is then further converted into velocity and compared with the ground velocity measurement. (figure [[fig:intrumental_noise_velocity]])
figure;
hold on;
plot(f, sqrt(pxx1).*scaling, '-');
plot(f, sqrt(pxx2).*scaling, '-');
plot(f, sqrt(pxxN).*scaling, 'k--');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]');
xlim([1, 500]);