[WIP] Breaking Change - Use Update
Folder name is changed, rework the html templates Change the organisation.
4
.gitignore
vendored
@ -1,8 +1,10 @@
|
||||
auto/
|
||||
*.tex
|
||||
|
||||
**/figs/*.pdf
|
||||
**/figs/*.svg
|
||||
=======
|
||||
**/figs/*.tex
|
||||
|
||||
# Emacs
|
||||
auto/
|
||||
|
||||
|
@ -1,27 +1,5 @@
|
||||
#+TITLE: Measurements
|
||||
:drawer:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
||||
|
||||
#+LATEX_CLASS: cleanreport
|
||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:end:
|
||||
|
||||
[[../index.org][Back to main page]].
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
* Experimental conditions
|
||||
- Measurement made in a metrology lab
|
||||
@ -33,12 +11,12 @@
|
||||
|
||||
#+name: fig:accelerometers
|
||||
#+caption: Accelerometers position
|
||||
#+attr_latex: :width 0.5\linewidth
|
||||
#+attr_html: :width 500px
|
||||
[[file:./figs/accelerometers.png]]
|
||||
|
||||
#+name: fig:instrumented_hammer
|
||||
#+caption: Instrumented Hammer used
|
||||
#+attr_latex: :width 0.5\linewidth
|
||||
#+attr_html: :width 500px
|
||||
[[file:./figs/instrumented_hammer.png]]
|
||||
|
||||
* Measurements procedure
|
||||
@ -101,7 +79,11 @@ For each of the measurement, the measured channels are shown on table [[tab:meas
|
||||
|
||||
* Data Analysis
|
||||
** Loading of the data
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
|
@ -1,27 +1,5 @@
|
||||
#+TITLE: Measurements
|
||||
:drawer:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
||||
|
||||
#+LATEX_CLASS: cleanreport
|
||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:end:
|
||||
|
||||
[[../index.org][Back to main page]].
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
* Experimental conditions
|
||||
- The granite is not glued to the floor
|
||||
@ -72,7 +50,11 @@ The structure is excited using an *instrumented hammer* with impacts on
|
||||
|
||||
* Data Analysis
|
||||
** Loading and pre-processing of the data
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
|
@ -378,4 +378,3 @@ legend(leg1,leg6,'Location','SouthEast');
|
||||
grid
|
||||
% saveas(gcf,'comp_frf_z_hammer_hexa','fig')
|
||||
% print -dpng comp_frf_z_hammer_hexa
|
||||
|
||||
|
@ -1,27 +1,5 @@
|
||||
#+TITLE: Measurements
|
||||
:drawer:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
||||
|
||||
#+LATEX_CLASS: cleanreport
|
||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:end:
|
||||
|
||||
[[../index.org][Back to main page]].
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
* Experimental conditions
|
||||
- Measurement made in the experiment hutch
|
||||
@ -87,7 +65,11 @@ Les fichiers xxx_raw sont sans traitement dans le domaine temporel (environ 10 i
|
||||
|
||||
* Data Analysis
|
||||
** Loading of the data
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
|
@ -1,34 +1,18 @@
|
||||
#+TITLE: Measurement Analysis
|
||||
:drawer:
|
||||
#+STARTUP: overview
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
||||
* Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+LATEX_CLASS: cleanreport
|
||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:end:
|
||||
|
||||
[[../index.org][Back to main page]].
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
* Measurement Description
|
||||
#+name: fig:setup_picture
|
||||
#+attr_html: :width 500px
|
||||
#+caption: Picture of the setup for the measurement
|
||||
[[file:./figs/setup_picture.png]]
|
||||
|
||||
|
@ -1,29 +1,12 @@
|
||||
#+TITLE: Ground Motion Measurements
|
||||
:drawer:
|
||||
#+STARTUP: overview
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
||||
* Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+LATEX_CLASS: cleanreport
|
||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:end:
|
||||
|
||||
[[../index.org][Back to main page]].
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
|
Before Width: | Height: | Size: 45 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 26 KiB |
@ -1,110 +0,0 @@
|
||||
Error X et Y
|
||||
|
||||
LSCxtot =
|
||||
|
||||
0.3872
|
||||
|
||||
|
||||
LSCytot =
|
||||
|
||||
0.2419
|
||||
|
||||
|
||||
LSCxsync =
|
||||
|
||||
0.1577
|
||||
|
||||
|
||||
LSCysync =
|
||||
|
||||
0.1602
|
||||
|
||||
|
||||
LSCxasync =
|
||||
|
||||
0.2946
|
||||
|
||||
|
||||
LSCyasync =
|
||||
|
||||
0.1103
|
||||
|
||||
|
||||
LSCxytot =
|
||||
|
||||
0.3519
|
||||
|
||||
|
||||
Error X2 et Y2
|
||||
|
||||
|
||||
LSCxtot =
|
||||
|
||||
0.3354
|
||||
|
||||
|
||||
LSCytot =
|
||||
|
||||
0.3202
|
||||
|
||||
|
||||
LSCxsync =
|
||||
|
||||
0.1101
|
||||
|
||||
|
||||
LSCysync =
|
||||
|
||||
0.0808
|
||||
|
||||
|
||||
LSCxasync =
|
||||
|
||||
0.2588
|
||||
|
||||
|
||||
LSCyasync =
|
||||
|
||||
0.2791
|
||||
|
||||
|
||||
LSCxytot =
|
||||
|
||||
0.3642
|
||||
|
||||
|
||||
|
||||
ErrorZ
|
||||
LSCxtot =
|
||||
|
||||
0.0775
|
||||
|
||||
|
||||
LSCytot =
|
||||
|
||||
0.0775
|
||||
|
||||
|
||||
LSCxsync =
|
||||
|
||||
0.0390
|
||||
|
||||
|
||||
LSCysync =
|
||||
|
||||
0.0390
|
||||
|
||||
|
||||
LSCxasync =
|
||||
|
||||
0.0617
|
||||
|
||||
|
||||
LSCyasync =
|
||||
|
||||
0.0617
|
||||
|
||||
|
||||
LSCxytot =
|
||||
|
||||
0.1000
|
Before Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 47 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 85 KiB |
2407
Static/data/data.txt
@ -1,27 +1,5 @@
|
||||
#+TITLE: Equipment
|
||||
:drawer:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
||||
|
||||
#+LATEX_CLASS: cleanreport
|
||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:end:
|
||||
|
||||
[[../index.org][Back to main page]].
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
* Sensors
|
||||
** Accelerometers
|
||||
@ -160,7 +138,11 @@ We define the parameters of the geophone and we plot its bode plot (figure [[fig
|
||||
| Weight [g] | 2150 |
|
||||
| Sensitivity [V/(m/s)] | 276.8 |
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
|
27
config.org
Normal file
@ -0,0 +1,27 @@
|
||||
#+STARTUP: overview
|
||||
|
||||
#+LANGUAGE: en
|
||||
#+EMAIL: dehaeze.thomas@gmail.com
|
||||
#+AUTHOR: Dehaeze Thomas
|
||||
|
||||
#+HTML_LINK_HOME: ../index.html
|
||||
#+HTML_LINK_UP: ../index.html
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
||||
|
||||
#+HTML_MATHJAX: align: center tagside: right font: TeX
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :results none
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
|
||||
#+PROPERTY: header-args:shell :eval no-export
|
@ -1,28 +1,15 @@
|
||||
#+TITLE:Measurement of the sample vibrations when rotating the Spindle
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :results output
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:END:
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
* Experimental Setup
|
||||
|
||||
* Signal Processing
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
|
@ -1,15 +1,5 @@
|
||||
#+TITLE: Equipment used to make the measurements
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
||||
:END:
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
* Geophone
|
||||
L22
|
||||
|
3
huddle-test-geophones/figs/.gitignore
vendored
@ -1,3 +0,0 @@
|
||||
*.svg
|
||||
*.pdf
|
||||
*.tex
|
Before Width: | Height: | Size: 3.7 MiB After Width: | Height: | Size: 3.7 MiB |
Before Width: | Height: | Size: 3.8 MiB After Width: | Height: | Size: 3.8 MiB |
@ -1,22 +1,5 @@
|
||||
#+TITLE:Huddle Test of the L22 Geophones
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :results output
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:END:
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
* Experimental Setup
|
||||
Two L22 geophones are used.
|
||||
@ -31,23 +14,40 @@ The voltage amplifiers includes:
|
||||
#+name: fig:figure_name
|
||||
#+caption: Setup
|
||||
#+attr_html: :width 500px
|
||||
[[file:./figs/setup.jpg]]
|
||||
[[file:./img/setup.jpg]]
|
||||
|
||||
#+name: fig:figure_name
|
||||
#+caption: Geophones
|
||||
#+attr_html: :width 500px
|
||||
[[file:./figs/geophones.jpg]]
|
||||
[[file:./img/geophones.jpg]]
|
||||
|
||||
* Signal Processing
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle signal_processing.m
|
||||
:header-args:matlab+: :tangle matlab/huddle_test_signal_processing.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
The Matlab computing file for this part is accessible [[file:signal_processing.m][here]].
|
||||
The =mat= file containing the measurement data is accessible [[file:mat/data_001.mat][here]].
|
||||
<<sec:huddle_test_signal_processing>>
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ matlab/huddle_test_signal_processing.m -nt data/huddle_test_signal_processing.zip ]; then
|
||||
cp matlab/huddle_test_signal_processing.m huddle_test_signal_processing.m;
|
||||
zip data/huddle_test_signal_processing \
|
||||
mat/data_001.mat \
|
||||
huddle_test_signal_processing.m;
|
||||
rm huddle_test_signal_processing.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/huddle_test_signal_processing.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
@ -407,17 +407,33 @@ This is then further converted into velocity and compared with the ground veloci
|
||||
|
||||
* Compare axis
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle compare_axis.m
|
||||
:header-args:matlab+: :tangle matlab/huddle_test_compare_axis.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
The Matlab computing file for this part is accessible [[file:compare_axis.m][here]].
|
||||
The =mat= files containing the measurement data are accessible with the following links:
|
||||
- z axis: [[file:mat/data_001.mat][here]].
|
||||
- east axis: [[file:mat/data_002.mat][here]].
|
||||
- north axis: [[file:mat/data_003.mat][here]].
|
||||
<<sec:huddle_test_compare_axis>>
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ matlab/huddle_test_compare_axis.m -nt data/huddle_test_compare_axis.zip ]; then
|
||||
cp matlab/huddle_test_compare_axis.m huddle_test_compare_axis.m;
|
||||
zip data/huddle_test_compare_axis \
|
||||
mat/data_001.mat \
|
||||
mat/data_002.mat \
|
||||
mat/data_003.mat \
|
||||
huddle_test_compare_axis.m;
|
||||
rm huddle_test_compare_axis.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/huddle_test_compare_axis.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
|
@ -1,5 +1,10 @@
|
||||
% Matlab Init :noexport:ignore:
|
||||
|
||||
current_dir='/home/thomas/MEGA/These/meas/huddle-test-geophones/';
|
||||
%% Go to current Directory
|
||||
cd(current_dir);
|
||||
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
@ -1,5 +1,10 @@
|
||||
% Matlab Init :noexport:ignore:
|
||||
|
||||
current_dir='/home/thomas/MEGA/These/meas/huddle-test-geophones/';
|
||||
%% Go to current Directory
|
||||
cd(current_dir);
|
||||
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
@ -47,24 +52,44 @@ xlim([0 1]);
|
||||
% Computation of the ASD of the measured voltage
|
||||
% We first define the parameters for the frequency domain analysis.
|
||||
|
||||
win = hanning(ceil(length(x1)/100));
|
||||
Fs = 1/dt;
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
|
||||
|
||||
|
||||
% Then we compute the Power Spectral Density using =pwelch= function.
|
||||
|
||||
[pxx1, f] = pwelch(x1, win, [], [], Fs);
|
||||
[pxx2, ~] = pwelch(x2, win, [], [], Fs);
|
||||
|
||||
|
||||
|
||||
% And we plot the result on figure [[fig:asd_voltage]].
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxx1));
|
||||
plot(f, sqrt(pxx2));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
|
||||
% Scaling to take into account the sensibility of the geophone and the voltage amplifier
|
||||
% The Geophone used are L22.
|
||||
% Their sensibility are shown on figure [[fig:geophone_sensibility]].
|
||||
% The Geophone used are L22. Their sensibility is shown on figure [[fig:geophone_sensibility]].
|
||||
|
||||
|
||||
S0 = 88; % Sensitivity [V/(m/s)]
|
||||
f0 = 2; % Cut-off frequnecy [Hz]
|
||||
S = (s/2/pi/f0)/(1+s/2/pi/f0);
|
||||
|
||||
S = S0*(s/2/pi/f0)/(1+s/2/pi/f0);
|
||||
|
||||
figure;
|
||||
bodeFig({S});
|
||||
ylabel('Amplitude [V/(m/s)]')
|
||||
bodeFig({S}, logspace(-1, 2, 1000));
|
||||
ylabel('Amplitude $\left[\frac{V}{m/s}\right]$')
|
||||
|
||||
|
||||
|
||||
@ -75,20 +100,19 @@ ylabel('Amplitude [V/(m/s)]')
|
||||
|
||||
|
||||
% We also take into account the gain of the electronics which is here set to be $60dB$.
|
||||
% The amplifiers also include a low pass filter with a cut-off frequency set at 1kHz.
|
||||
|
||||
|
||||
G0 = 60; % [dB]
|
||||
G0_db = 60; % [dB]
|
||||
|
||||
G = 10^(G0/20)/(1+s/2/pi/1000);
|
||||
G0 = 10^(60/G0_db); % [abs]
|
||||
|
||||
|
||||
|
||||
% We divide the ASD measured (in $\text{V}/\sqrt{\text{Hz}}$) by the transfer function of the voltage amplifier to obtain the ASD of the voltage across the geophone.
|
||||
% We divide the ASD measured (in $\text{V}/\sqrt{\text{Hz}}$) by the gain of the voltage amplifier to obtain the ASD of the voltage across the geophone.
|
||||
% We further divide the result by the sensibility of the Geophone to obtain the ASD of the velocity in $m/s/\sqrt{Hz}$.
|
||||
|
||||
|
||||
scaling = 1./squeeze(abs(freqresp(G*S, f, 'Hz')));
|
||||
scaling = 1./squeeze(abs(freqresp(G0*S, f, 'Hz')));
|
||||
|
||||
% Computation of the ASD of the velocity
|
||||
% The ASD of the measured velocity is shown on figure [[fig:psd_velocity]].
|
||||
@ -101,13 +125,13 @@ plot(f, sqrt(pxx2).*scaling);
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]')
|
||||
xlim([2, 500]);
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
|
||||
|
||||
|
||||
% #+NAME: fig:psd_velocity
|
||||
% #+CAPTION: Spectral density of the velocity
|
||||
% #+CAPTION: Amplitude Spectral Density of the Velocity
|
||||
% #+RESULTS: fig:psd_velocity
|
||||
% [[file:figs/psd_velocity.png]]
|
||||
|
||||
@ -116,12 +140,12 @@ xlim([2, 500]);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, (pxx1.*scaling./f).^2);
|
||||
plot(f, (pxx2.*scaling./f).^2);
|
||||
plot(f, (sqrt(pxx1).*scaling)./(2*pi*f));
|
||||
plot(f, (sqrt(pxx2).*scaling)./(2*pi*f));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]')
|
||||
xlim([2, 500]);
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the displacement $\left[\frac{m}{\sqrt{Hz}}\right]$')
|
||||
xlim([0.1, 500]);
|
||||
|
||||
% Transfer function between the two geophones
|
||||
% We here compute the transfer function from one geophone to the other.
|
||||
@ -144,10 +168,10 @@ plot(f, mod(180+180/pi*phase(T12), 360)-180);
|
||||
set(gca, 'xscale', 'log');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([1, 500]);
|
||||
xlim([0.1, 500]);
|
||||
|
||||
|
||||
|
||||
@ -163,7 +187,7 @@ figure;
|
||||
plot(f, coh12);
|
||||
set(gca, 'xscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Coherence');
|
||||
ylim([0,1]); xlim([1, 500]);
|
||||
ylim([0,1]); xlim([0.1, 500]);
|
||||
|
||||
% Estimation of the sensor noise
|
||||
% The technique to estimate the sensor noise is taken from cite:barzilai98_techn_measur_noise_sensor_presen.
|
||||
@ -196,7 +220,7 @@ ylim([0,1]); xlim([1, 500]);
|
||||
% [[file:figs/huddle-test.png]]
|
||||
|
||||
% We here assume that each sensor has the same magnitude of instrumental noise ($N = M$).
|
||||
% We also assume that $H_1 = H_2 = 1$.
|
||||
% We also assume that $S_1 = S_2 = 1$.
|
||||
|
||||
% We then obtain:
|
||||
% #+NAME: eq:coh_bis
|
||||
@ -229,8 +253,8 @@ plot(f, pxx2, '-');
|
||||
plot(f, pxxN, 'k--');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('PSD [$V^2/Hz$]');
|
||||
xlim([1, 500]);
|
||||
xlabel('Frequency [Hz]'); ylabel('PSD of the measured Voltage $\left[\frac{V^2}{Hz}\right]$');
|
||||
xlim([0.1, 500]);
|
||||
|
||||
|
||||
|
||||
@ -248,5 +272,5 @@ plot(f, sqrt(pxx2).*scaling, '-');
|
||||
plot(f, sqrt(pxxN).*scaling, 'k--');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]');
|
||||
xlim([1, 500]);
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the Velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
|
||||
xlim([0.1, 500]);
|
@ -1,47 +0,0 @@
|
||||
tg = slrt;
|
||||
|
||||
%% TODO - Build this application if updated
|
||||
|
||||
%%
|
||||
if tg.Connected == "Yes"
|
||||
if tg.Status == "stopped"
|
||||
%% Load the application
|
||||
tg.load('test');
|
||||
|
||||
%% Run the application
|
||||
tg.start;
|
||||
pause(10);
|
||||
tg.stop;
|
||||
|
||||
%% Load the data
|
||||
f = SimulinkRealTime.openFTP(tg);
|
||||
mget(f, 'data/data_001.dat');
|
||||
close(f);
|
||||
end
|
||||
end
|
||||
|
||||
%% Convert the Data
|
||||
data = SimulinkRealTime.utils.getFileScopeData('data/data_001.dat').data;
|
||||
|
||||
t = data(:, end);
|
||||
x1 = data(:, 1);
|
||||
x2 = data(:, 2);
|
||||
|
||||
save('mat/data_003.mat', 't', 'x1', 'x2');
|
||||
|
||||
%% Plot the data
|
||||
figure;
|
||||
hold on;
|
||||
plot(t, x1);
|
||||
plot(t, x2);
|
||||
hold off
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
|
||||
%% Compute the PSD
|
||||
dt = t(2)-t(1);
|
||||
|
||||
window_L = ceil(length(x1)/10);
|
||||
window_han = .5*(1 - cos(2*pi*(1:window_L)'/(window_L+1)));
|
||||
|
||||
[pxx, f] = pwelch(x1, window_han, 0, [], 1/dt);
|
@ -1 +0,0 @@
|
||||
Ts = 1e-3; % [s]
|
23
index.org
@ -29,9 +29,11 @@ Dynamics of the station is evaluated using instrumented hammer and accelerometer
|
||||
- Obtain a first estimation of resonance frequencies
|
||||
|
||||
*** Results
|
||||
Resonances have been identified at 45Hz and 75Hz.
|
||||
However, the quality of the measurements are bad at low frequency.
|
||||
New measurements should be done with Geophones.
|
||||
#+begin_important
|
||||
- Resonances have been identified at 45Hz and 75Hz
|
||||
- However, the quality of the measurements are bad at low frequency
|
||||
- New measurements should be done with Geophones
|
||||
#+end_important
|
||||
|
||||
** Measurement 2
|
||||
[[file:2018-01-12%20-%20Marc/index.org][Link to the analysis]]
|
||||
@ -47,10 +49,12 @@ New measurements should be done with Geophones.
|
||||
Obtain better coherence at low frequency.
|
||||
|
||||
*** Results
|
||||
Resonances at 42Hz, 70Hz and 125Hz have been identified.
|
||||
The coherence is much better than when using accelerometers.
|
||||
#+begin_important
|
||||
- Resonances at 42Hz, 70Hz and 125Hz have been identified
|
||||
- The coherence is much better than when using accelerometers
|
||||
#+end_important
|
||||
|
||||
** Measurement 3
|
||||
** TODO Measurement 3
|
||||
[[file:2018-10-12%20-%20Marc/index.org][Link to the analysis]]
|
||||
|
||||
*** Notes
|
||||
@ -64,6 +68,9 @@ The station is now installed on the experimental hutch with a glued granite (fin
|
||||
The station is identified again.
|
||||
|
||||
*** Results
|
||||
#+begin_important
|
||||
|
||||
#+end_important
|
||||
|
||||
* Measurements of perturbations
|
||||
** Noise coming from the control loop of each stage
|
||||
@ -129,11 +136,11 @@ The goal is to estimate all the error motions induced by the Spindle
|
||||
*** Results
|
||||
|
||||
* Ressources
|
||||
[[file:actuators-sensors/index.org][Actuators and Sensors]]
|
||||
- [[file:actuators-sensors/index.org][Actuators and Sensors]]
|
||||
- [[file:equipment/equipment.org][Equipment used for the measurements]]
|
||||
|
||||
* Other measurements
|
||||
- [[file:huddle-test-geophones/index.org][Huddle Test - Geophones]]
|
||||
- [[file:disturbance-measurement/index.org][Disturbance Measurement]]
|
||||
- [[file:slip-ring-test/index.org][Slip Ring - Noise measurement]]
|
||||
- [[file:static-measurements/index.org][Control System Measurement]]
|
||||
- [[file:equipment/equipment.org][Equipment used for the measurements]]
|
||||
|
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 64 KiB |
Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 75 KiB |
Before Width: | Height: | Size: 158 KiB After Width: | Height: | Size: 158 KiB |
Before Width: | Height: | Size: 172 KiB After Width: | Height: | Size: 172 KiB |
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 55 KiB |
Before Width: | Height: | Size: 144 KiB After Width: | Height: | Size: 144 KiB |
Before Width: | Height: | Size: 37 KiB After Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 2.5 KiB After Width: | Height: | Size: 2.5 KiB |
Before Width: | Height: | Size: 4.5 MiB After Width: | Height: | Size: 4.5 MiB |
Before Width: | Height: | Size: 3.1 MiB After Width: | Height: | Size: 3.1 MiB |
BIN
instrumentation/index.html
Normal file
510
instrumentation/index.org
Normal file
@ -0,0 +1,510 @@
|
||||
#+TITLE: Measurements on the instrumentation
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
* Measure of the noise of the Voltage Amplifier
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/meas_volt_amp.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:meas_volt_amp>>
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ meas_volt_amp.m -nt data/meas_volt_amp.zip ]; then
|
||||
zip data/meas_volt_amp \
|
||||
mat/data_003.mat \
|
||||
mat/data_004.mat \
|
||||
mat/data_005.mat \
|
||||
mat/data_006.mat \
|
||||
meas_volt_amp.m
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/meas_volt_amp.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Measurement Description
|
||||
*Goal*:
|
||||
- Determine the Voltage Amplifier noise
|
||||
|
||||
*Setup*:
|
||||
- The two inputs (differential) of the voltage amplifier are shunted with 50Ohms
|
||||
- The AC/DC option of the Voltage amplifier is on AC
|
||||
- The low pass filter is set to 1hHz
|
||||
- We measure the output of the voltage amplifier with a 16bits ADC of the Speedgoat
|
||||
|
||||
*Measurements*:
|
||||
- =data_003=: Ampli OFF
|
||||
- =data_004=: Ampli ON set to 20dB
|
||||
- =data_005=: Ampli ON set to 40dB
|
||||
- =data_006=: Ampli ON set to 60dB
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** Load data
|
||||
#+begin_src matlab :results none
|
||||
amp_off = load('mat/data_003.mat', 'data'); amp_off = amp_off.data(:, [1,3]);
|
||||
amp_20d = load('mat/data_004.mat', 'data'); amp_20d = amp_20d.data(:, [1,3]);
|
||||
amp_40d = load('mat/data_005.mat', 'data'); amp_40d = amp_40d.data(:, [1,3]);
|
||||
amp_60d = load('mat/data_006.mat', 'data'); amp_60d = amp_60d.data(:, [1,3]);
|
||||
#+end_src
|
||||
|
||||
** Time Domain
|
||||
The time domain signals are shown on figure [[fig:ampli_noise_time]].
|
||||
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(amp_off(:, 2), amp_off(:, 1), 'DisplayName', 'OFF');
|
||||
plot(amp_20d(:, 2), amp_20d(:, 1), 'DisplayName', '20dB');
|
||||
plot(amp_40d(:, 2), amp_40d(:, 1), 'DisplayName', '40dB');
|
||||
plot(amp_60d(:, 2), amp_60d(:, 1), 'DisplayName', '60dB');
|
||||
hold off;
|
||||
legend('Location', 'northeast');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_time
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ampli_noise_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_time
|
||||
#+CAPTION: Output of the amplifier
|
||||
#+RESULTS: fig:ampli_noise_time
|
||||
[[file:figs/ampli_noise_time.png]]
|
||||
|
||||
** Frequency Domain
|
||||
We first compute some parameters that will be used for the PSD computation.
|
||||
#+begin_src matlab :results none
|
||||
dt = amp_off(2, 2)-amp_off(1, 2);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
Then we compute the Power Spectral Density using =pwelch= function.
|
||||
#+begin_src matlab :results none
|
||||
[pxoff, f] = pwelch(amp_off(:,1), win, [], [], Fs);
|
||||
[px20d, ~] = pwelch(amp_20d(:,1), win, [], [], Fs);
|
||||
[px40d, ~] = pwelch(amp_40d(:,1), win, [], [], Fs);
|
||||
[px60d, ~] = pwelch(amp_60d(:,1), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
We compute the theoretical ADC noise.
|
||||
#+begin_src matlab :results none
|
||||
q = 20/2^16; % quantization
|
||||
Sq = q^2/12/1000; % PSD of the ADC noise
|
||||
#+end_src
|
||||
|
||||
Finally, the ASD is shown on figure [[fig:ampli_noise_psd]].
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
|
||||
plot(f, sqrt(px20d), 'DisplayName', '20dB');
|
||||
plot(f, sqrt(px40d), 'DisplayName', '40dB');
|
||||
plot(f, sqrt(px60d), 'DisplayName', '60dB');
|
||||
plot([0.1, 500], [sqrt(Sq), sqrt(Sq)], 'k--');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_psd
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ampli_noise_psd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_psd
|
||||
#+CAPTION: Amplitude Spectral Density of the measured voltage at the output of the voltage amplifier
|
||||
#+RESULTS: fig:ampli_noise_psd
|
||||
[[file:figs/ampli_noise_psd.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
*Questions*:
|
||||
- Where does those sharp peaks comes from? Can this be due to aliasing?
|
||||
|
||||
Noise induced by the voltage amplifiers seems not to be a limiting factor as we have the same noise when they are OFF and ON.
|
||||
#+end_important
|
||||
|
||||
* Measure of the influence of the AC/DC option on the voltage amplifiers
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/meas_noise_ac_dc.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:meas_noise_ac_dc>>
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ meas_noise_ac_dc.m -nt data/meas_noise_ac_dc.zip ]; then
|
||||
zip data/meas_noise_ac_dc \
|
||||
mat/data_012.mat \
|
||||
mat/data_013.mat \
|
||||
meas_noise_ac_dc.m
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/meas_noise_ac_dc.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Measurement Description
|
||||
*Goal*:
|
||||
- Measure the influence of the high-pass filter option of the voltage amplifiers
|
||||
|
||||
*Setup*:
|
||||
- One geophone is located on the marble.
|
||||
- It's signal goes to two voltage amplifiers with a gain of 60dB.
|
||||
- One voltage amplifier is on the AC option, the other is on the DC option.
|
||||
|
||||
*Measurements*:
|
||||
First measurement (=mat/data_014.mat= file):
|
||||
| Column | Signal |
|
||||
|--------+----------------------------|
|
||||
| 1 | Amplifier 1 with AC option |
|
||||
| 2 | Amplifier 2 with DC option |
|
||||
| 3 | Time |
|
||||
|
||||
Second measurement (=mat/data_015.mat= file):
|
||||
| Column | Signal |
|
||||
|--------+----------------------------|
|
||||
| 1 | Amplifier 1 with DC option |
|
||||
| 2 | Amplifier 2 with AC option |
|
||||
| 3 | Time |
|
||||
|
||||
#+name: fig:volt_amp_setup
|
||||
#+caption: Picture of the two voltages amplifiers
|
||||
#+attr_html: :width 500px
|
||||
[[file:./img/IMG_20190503_170936.jpg]]
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
meas14 = load('mat/data_014.mat', 'data'); meas14 = meas14.data;
|
||||
meas15 = load('mat/data_015.mat', 'data'); meas15 = meas15.data;
|
||||
#+end_src
|
||||
|
||||
** Time Domain
|
||||
The signals are shown on figure [[fig:ac_dc_option_time]].
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(meas14(:, 3), meas14(:, 1), 'DisplayName', 'Amp1 - AC');
|
||||
plot(meas14(:, 3), meas14(:, 2), 'DisplayName', 'Amp2 - DC');
|
||||
plot(meas15(:, 3), meas15(:, 1), 'DisplayName', 'Amp1 - DC');
|
||||
plot(meas15(:, 3), meas15(:, 2), 'DisplayName', 'Amp2 - AC');
|
||||
hold off;
|
||||
legend('Location', 'bestoutside');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
xlim([0, 100]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_time
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ac_dc_option_time.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_time
|
||||
#+CAPTION: Comparison of the signals going through the Voltage amplifiers
|
||||
#+RESULTS: fig:ac_dc_option_time
|
||||
[[file:figs/ac_dc_option_time.png]]
|
||||
|
||||
** Frequency Domain
|
||||
We first compute some parameters that will be used for the PSD computation.
|
||||
#+begin_src matlab :results none
|
||||
dt = meas14(2, 3)-meas14(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
Then we compute the Power Spectral Density using =pwelch= function.
|
||||
#+begin_src matlab :results none
|
||||
[pxamp1ac, f] = pwelch(meas14(:, 1), win, [], [], Fs);
|
||||
[pxamp2dc, ~] = pwelch(meas14(:, 2), win, [], [], Fs);
|
||||
|
||||
[pxamp1dc, ~] = pwelch(meas15(:, 1), win, [], [], Fs);
|
||||
[pxamp2ac, ~] = pwelch(meas15(:, 2), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
The ASD of the signals are compare on figure [[fig:ac_dc_option_asd]].
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxamp1ac), 'DisplayName', 'Amp1 - AC');
|
||||
plot(f, sqrt(pxamp2dc), 'DisplayName', 'Amp2 - DC');
|
||||
plot(f, sqrt(pxamp1dc), 'DisplayName', 'Amp1 - DC');
|
||||
plot(f, sqrt(pxamp2ac), 'DisplayName', 'Amp2 - AC');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_asd
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ac_dc_option_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_asd
|
||||
#+CAPTION: Amplitude Spectral Density of the measured signals
|
||||
#+RESULTS: fig:ac_dc_option_asd
|
||||
[[file:figs/ac_dc_option_asd.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
- The voltage amplifiers include some very sharp high pass filters at 1.5Hz (maybe 4th order)
|
||||
- There is a DC offset on the time domain signal because the DC-offset knob was not set to zero
|
||||
#+end_important
|
||||
|
||||
* Transfer function of the Low Pass Filter
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/low_pass_filter_measurements.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:low_pass_filter_measurements>>
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ low_pass_filter_measurements.m -nt data/low_pass_filter_measurements.zip ]; then
|
||||
zip data/low_pass_filter_measurements \
|
||||
mat/data_018.mat \
|
||||
mat/data_019.mat \
|
||||
low_pass_filter_measurements.m
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
The computation files for this section are accessible [[file:data/low_pass_filter_measurements.zip][here]].
|
||||
|
||||
** First LPF with a Cut-off frequency of 160Hz
|
||||
*** Measurement Description
|
||||
*Goal*:
|
||||
- Measure the Low Pass Filter Transfer Function
|
||||
|
||||
The values of the components are:
|
||||
\begin{aligned}
|
||||
R &= 1k\Omega \\
|
||||
C &= 1\mu F
|
||||
\end{aligned}
|
||||
Which makes a cut-off frequency of $f_c = \frac{1}{RC} = 1000 rad/s = 160Hz$.
|
||||
|
||||
#+NAME: fig:lpf
|
||||
#+HEADER: :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/MEGA/These/LaTeX/}{config.tex}")
|
||||
#+HEADER: :imagemagick t :fit yes :iminoptions -scale 100% -density 150 :imoutoptions -quality 100
|
||||
#+HEADER: :results raw replace :buffer no :eval no-export :exports both :mkdirp yes
|
||||
#+HEADER: :output-dir figs
|
||||
#+begin_src latex :file lpf.pdf :post pdf2svg(file=*this*, ext="png") :exports both
|
||||
\begin{tikzpicture}
|
||||
\draw (0,2)
|
||||
to [R=\(R\)] ++(2,0) node[circ]
|
||||
to ++(2,0)
|
||||
++(-2,0)
|
||||
to [C=\(C\)] ++(0,-2) node[circ]
|
||||
++(-2,0)
|
||||
to ++(2,0)
|
||||
to ++(2,0)
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:lpf
|
||||
#+CAPTION: Schematic of the Low Pass Filter used
|
||||
#+RESULTS: fig:lpf
|
||||
[[file:figs/lpf.png]]
|
||||
|
||||
|
||||
*Setup*:
|
||||
- We are measuring the signal from from Geophone with a BNC T
|
||||
- On part goes to column 1 through the LPF
|
||||
- The other part goes to column 2 without the LPF
|
||||
|
||||
*Measurements*:
|
||||
=mat/data_018.mat=:
|
||||
| Column | Signal |
|
||||
|--------+----------------------|
|
||||
| 1 | Amplifier 1 with LPF |
|
||||
| 2 | Amplifier 2 |
|
||||
| 3 | Time |
|
||||
|
||||
#+name: fig:lpf_picture
|
||||
#+caption: Picture of the low pass filter used
|
||||
#+attr_html: :width 500px
|
||||
[[file:./img/IMG_20190507_102756.jpg]]
|
||||
|
||||
*** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
*** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
data = load('mat/data_018.mat', 'data'); data = data.data;
|
||||
#+end_src
|
||||
|
||||
*** Transfer function of the LPF
|
||||
We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
||||
#+begin_src matlab :results none
|
||||
dt = data(2, 3)-data(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1000rad/s$.
|
||||
We obtain the result on figure [[fig:Glpf_bode]].
|
||||
#+begin_src matlab :results none
|
||||
Gth = 1/(1+s/1000)
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(f, abs(Glpf));
|
||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:Glpf_bode
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/Glpf_bode.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:Glpf_bode
|
||||
#+CAPTION: Bode Diagram of the measured Low Pass filter and the theoritical one
|
||||
#+RESULTS: fig:Glpf_bode
|
||||
[[file:figs/Glpf_bode.png]]
|
||||
*** Conclusion
|
||||
#+begin_important
|
||||
As we want to measure things up to $500Hz$, we chose to change the value of the capacitor to obtain a cut-off frequency of $1kHz$.
|
||||
#+end_important
|
||||
|
||||
** Second LPF with a Cut-off frequency of 1000Hz
|
||||
*** Measurement description
|
||||
This time, the value are
|
||||
\begin{aligned}
|
||||
R &= 1k\Omega \\
|
||||
C &= 150nF
|
||||
\end{aligned}
|
||||
Which makes a low pass filter with a cut-off frequency of $f_c = 1060Hz$.
|
||||
|
||||
*** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
data = load('mat/data_019.mat', 'data'); data = data.data;
|
||||
#+end_src
|
||||
|
||||
*** Transfer function of the LPF
|
||||
We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
||||
#+begin_src matlab :results none
|
||||
dt = data(2, 3)-data(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1060Hz$.
|
||||
We obtain the result on figure [[fig:Glpf_bode_bis]].
|
||||
#+begin_src matlab :results none
|
||||
Gth = 1/(1+s/1060/2/pi);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(f, abs(Glpf));
|
||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:Glpf_bode_bis
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/Glpf_bode_bis.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:Glpf_bode_bis
|
||||
#+CAPTION: Bode Diagram of the measured Low Pass filter and the theoritical one
|
||||
#+RESULTS: fig:Glpf_bode_bis
|
||||
[[file:figs/Glpf_bode_bis.png]]
|
||||
*** Conclusion
|
||||
#+begin_important
|
||||
The added LPF has the expected behavior.
|
||||
#+end_important
|
BIN
instrumentation/mat/data_018.mat
Normal file
BIN
instrumentation/mat/data_019.mat
Normal file
@ -1,11 +0,0 @@
|
||||
data1 = load('mat/data_001.mat', 't', 'x1', 'x2');
|
||||
data2 = load('mat/data_002.mat', 't', 'x1', 'x2');
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(data1.t, data1.x1-data1.x2);
|
||||
plot(data2.t, data2.x1-data2.x2);
|
||||
hold off
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
legend({'Slip-ring OFF', 'Slip-ring ON'});
|
3
slip-ring-test/figs/.gitignore
vendored
@ -1,3 +0,0 @@
|
||||
*.tex
|
||||
*.pdf
|
||||
*.svg
|
Before Width: | Height: | Size: 324 KiB |
Before Width: | Height: | Size: 110 KiB After Width: | Height: | Size: 110 KiB |
Before Width: | Height: | Size: 572 KiB |
Before Width: | Height: | Size: 62 KiB After Width: | Height: | Size: 62 KiB |
Before Width: | Height: | Size: 4.4 MiB After Width: | Height: | Size: 4.4 MiB |
Before Width: | Height: | Size: 3.5 MiB After Width: | Height: | Size: 3.5 MiB |
@ -1,39 +1,165 @@
|
||||
#+TITLE: Measurements
|
||||
:DRAWER:
|
||||
#+STARTUP: overview
|
||||
#+TITLE: Measurements On the Slip-Ring
|
||||
#+SETUPFILE: ../config.org
|
||||
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
||||
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
||||
|
||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||
#+PROPERTY: header-args:matlab+ :comments org
|
||||
#+PROPERTY: header-args:matlab+ :results output
|
||||
#+PROPERTY: header-args:matlab+ :exports both
|
||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||
:END:
|
||||
|
||||
* Effect of the rotation of the Slip-Ring
|
||||
* Effect of the Slip-Ring on the signal
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_effect_sr.m
|
||||
:header-args:matlab+: :tangle matlab/meas_slip_ring_geophone.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:meas_slip_ring_geophone>>
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ meas_effect_sr.m -nt data/meas_effect_sr.zip ]; then
|
||||
zip data/meas_effect_sr \
|
||||
mat/data_001.mat \
|
||||
mat/data_002.mat \
|
||||
meas_effect_sr.m
|
||||
if [ matlab/meas_slip_ring_geophone.m -nt data/meas_slip_ring_geophone.zip ]; then
|
||||
cp matlab/meas_slip_ring_geophone.m meas_slip_ring_geophone.m;
|
||||
zip data/meas_slip_ring_geophone \
|
||||
mat/data_018.mat \
|
||||
mat/data_019.mat \
|
||||
meas_slip_ring_geophone.m;
|
||||
rm meas_slip_ring_geophone.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_effect_sr.zip][here]].
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/meas_slip_ring_geophone.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Experimental Setup
|
||||
Two measurements are made with the control systems of all the stages turned OFF.
|
||||
|
||||
One geophone is located on the marble while the other is located at the sample location (figure [[fig:setup_slipring]]).
|
||||
|
||||
#+name: fig:setup_slipring
|
||||
#+caption: Experimental Setup
|
||||
#+attr_html: :width 500px
|
||||
[[file:./img/IMG_20190430_112615.jpg]]
|
||||
|
||||
The two measurements are:
|
||||
| Measurement File | Description |
|
||||
|------------------+------------------------------------------------------------------|
|
||||
| =meas_018.mat= | Signal from the top geophone does not goes through the Slip-ring |
|
||||
| =meas_019.mat= | Signal goes through the Slip-ring (as shown on the figure above) |
|
||||
|
||||
Each of the measurement =mat= file contains one =data= array with 3 columns:
|
||||
| Column number | Description |
|
||||
|---------------+-------------------|
|
||||
| 1 | Geophone - Marble |
|
||||
| 2 | Geophone - Sample |
|
||||
| 3 | Time |
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
|
||||
#+begin_src matlab :results none
|
||||
d8 = load('mat/data_018.mat', 'data'); d8 = d8.data;
|
||||
d9 = load('mat/data_019.mat', 'data'); d9 = d9.data;
|
||||
#+end_src
|
||||
|
||||
** Analysis - Time Domain
|
||||
First, we compare the time domain signals for the two experiments (figure [[fig:slipring_time]]).
|
||||
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
hold on;
|
||||
plot(d9(:, 3), d9(:, 2), 'DisplayName', 'Slip-Ring');
|
||||
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Wire');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
xlim([0, 50]);
|
||||
legend('location', 'northeast');
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:slipring_time
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/slipring_time.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:slipring_time
|
||||
#+CAPTION: Effect of the Slip-Ring on the measured signal - Time domain
|
||||
#+RESULTS: fig:slipring_time
|
||||
[[file:figs/slipring_time.png]]
|
||||
|
||||
** Analysis - Frequency Domain
|
||||
We then compute the Power Spectral Density of the two signals and we compare them (figure [[fig:slipring_asd]]).
|
||||
#+begin_src matlab :results none
|
||||
dt = d8(2, 3) - d8(1, 3);
|
||||
Fs = 1/dt;
|
||||
|
||||
win = hanning(ceil(1*Fs));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
[pxx8, f] = pwelch(d8(:, 2), win, [], [], Fs);
|
||||
[pxx9, ~] = pwelch(d9(:, 2), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxx9), 'DisplayName', 'Slip-Ring');
|
||||
plot(f, sqrt(pxx8), 'DisplayName', 'Wire');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
xlim([1, 500]);
|
||||
legend('Location', 'southwest');
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:slipring_asd
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/slipring_asd.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:slipring_asd
|
||||
#+CAPTION: Effect of the Slip-Ring on the measured signal - Frequency domain
|
||||
#+RESULTS: fig:slipring_asd
|
||||
[[file:figs/slipring_asd.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
- Connecting the geophone through the Slip-Ring seems to induce a lot of noise.
|
||||
#+end_important
|
||||
|
||||
#+begin_note
|
||||
*Remaining questions to answer*:
|
||||
- Why is there a sharp peak at 300Hz?
|
||||
- Why the use of the Slip-Ring does induce a noise?
|
||||
- Can the capacitive/inductive properties of the wires in the Slip-ring does not play well with the geophone? (resonant RLC circuit)
|
||||
#+end_note
|
||||
|
||||
* Effect of the rotation of the Slip-Ring
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle matlab/meas_effect_sr.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:meas_effect_sr>>
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ matlab/meas_effect_sr.m -nt data/meas_effect_sr.zip ]; then
|
||||
cp matlab/meas_effect_sr.m meas_effect_sr.m;
|
||||
zip data/meas_effect_sr \
|
||||
mat/data_001.mat \
|
||||
mat/data_002.mat \
|
||||
meas_effect_sr.m;
|
||||
rm meas_effect_sr.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/meas_effect_sr.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Measurement Description
|
||||
Random Signal is generated by one DAC of the SpeedGoat.
|
||||
@ -60,7 +186,11 @@ The goal is to determine is the signal is altered when the spindle is rotating.
|
||||
Here, the rotation speed of the Slip-Ring is set to 1rpm.
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
@ -159,159 +289,29 @@ We now look at the difference between the signal directly measured by the ADC an
|
||||
- Should the measurement be redone using voltage amplifiers?
|
||||
- Use higher rotation speed and measure for longer periods (to have multiple revolutions) ?
|
||||
#+end_note
|
||||
* Measure of the noise of the Voltage Amplifier
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_volt_amp.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ meas_volt_amp.m -nt data/meas_volt_amp.zip ]; then
|
||||
zip data/meas_volt_amp \
|
||||
mat/data_003.mat \
|
||||
mat/data_004.mat \
|
||||
mat/data_005.mat \
|
||||
mat/data_006.mat \
|
||||
meas_volt_amp.m
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_volt_amp.zip][here]].
|
||||
|
||||
** Measurement Description
|
||||
*Goal*:
|
||||
- Determine the Voltage Amplifier noise
|
||||
|
||||
*Setup*:
|
||||
- The two inputs (differential) of the voltage amplifier are shunted with 50Ohms
|
||||
- The AC/DC option of the Voltage amplifier is on AC
|
||||
- The low pass filter is set to 1hHz
|
||||
- We measure the output of the voltage amplifier with a 16bits ADC of the Speedgoat
|
||||
|
||||
*Measurements*:
|
||||
- =data_003=: Ampli OFF
|
||||
- =data_004=: Ampli ON set to 20dB
|
||||
- =data_005=: Ampli ON set to 40dB
|
||||
- =data_006=: Ampli ON set to 60dB
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** Load data
|
||||
#+begin_src matlab :results none
|
||||
amp_off = load('mat/data_003.mat', 'data'); amp_off = amp_off.data(:, [1,3]);
|
||||
amp_20d = load('mat/data_004.mat', 'data'); amp_20d = amp_20d.data(:, [1,3]);
|
||||
amp_40d = load('mat/data_005.mat', 'data'); amp_40d = amp_40d.data(:, [1,3]);
|
||||
amp_60d = load('mat/data_006.mat', 'data'); amp_60d = amp_60d.data(:, [1,3]);
|
||||
#+end_src
|
||||
|
||||
** Time Domain
|
||||
The time domain signals are shown on figure [[fig:ampli_noise_time]].
|
||||
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(amp_off(:, 2), amp_off(:, 1), 'DisplayName', 'OFF');
|
||||
plot(amp_20d(:, 2), amp_20d(:, 1), 'DisplayName', '20dB');
|
||||
plot(amp_40d(:, 2), amp_40d(:, 1), 'DisplayName', '40dB');
|
||||
plot(amp_60d(:, 2), amp_60d(:, 1), 'DisplayName', '60dB');
|
||||
hold off;
|
||||
legend('Location', 'northeast');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_time
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ampli_noise_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_time
|
||||
#+CAPTION: Output of the amplifier
|
||||
#+RESULTS: fig:ampli_noise_time
|
||||
[[file:figs/ampli_noise_time.png]]
|
||||
|
||||
** Frequency Domain
|
||||
We first compute some parameters that will be used for the PSD computation.
|
||||
#+begin_src matlab :results none
|
||||
dt = amp_off(2, 2)-amp_off(1, 2);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
Then we compute the Power Spectral Density using =pwelch= function.
|
||||
#+begin_src matlab :results none
|
||||
[pxoff, f] = pwelch(amp_off(:,1), win, [], [], Fs);
|
||||
[px20d, ~] = pwelch(amp_20d(:,1), win, [], [], Fs);
|
||||
[px40d, ~] = pwelch(amp_40d(:,1), win, [], [], Fs);
|
||||
[px60d, ~] = pwelch(amp_60d(:,1), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
We compute the theoretical ADC noise.
|
||||
#+begin_src matlab :results none
|
||||
q = 20/2^16; % quantization
|
||||
Sq = q^2/12/1000; % PSD of the ADC noise
|
||||
#+end_src
|
||||
|
||||
Finally, the ASD is shown on figure [[fig:ampli_noise_psd]].
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
|
||||
plot(f, sqrt(px20d), 'DisplayName', '20dB');
|
||||
plot(f, sqrt(px40d), 'DisplayName', '40dB');
|
||||
plot(f, sqrt(px60d), 'DisplayName', '60dB');
|
||||
plot([0.1, 500], [sqrt(Sq), sqrt(Sq)], 'k--');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_psd
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ampli_noise_psd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ampli_noise_psd
|
||||
#+CAPTION: Amplitude Spectral Density of the measured voltage at the output of the voltage amplifier
|
||||
#+RESULTS: fig:ampli_noise_psd
|
||||
[[file:figs/ampli_noise_psd.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
*Questions*:
|
||||
- Where does those sharp peaks comes from? Can this be due to aliasing?
|
||||
|
||||
Noise induced by the voltage amplifiers seems not to be a limiting factor as we have the same noise when they are OFF and ON.
|
||||
#+end_important
|
||||
|
||||
* Measure of the noise induced by the Slip-Ring
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_slip_ring.m
|
||||
:header-args:matlab+: :tangle matlab/meas_slip_ring.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:meas_slip_ring>>
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ meas_slip_ring.m -nt data/meas_slip_ring.zip ]; then
|
||||
if [ matlab/meas_slip_ring.m -nt data/meas_slip_ring.zip ]; then
|
||||
cp matlab/meas_slip_ring.m meas_slip_ring.m;
|
||||
zip data/meas_slip_ring \
|
||||
mat/data_008.mat \
|
||||
mat/data_009.mat \
|
||||
mat/data_010.mat \
|
||||
mat/data_011.mat \
|
||||
meas_slip_ring.m
|
||||
meas_slip_ring.m;
|
||||
rm meas_slip_ring.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_slip_ring.zip][here]].
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/meas_slip_ring.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Measurement Description
|
||||
*Goal*:
|
||||
@ -343,7 +343,11 @@ Second column: Slip-ring measure
|
||||
[[file:./img/VID_20190503_161401.gif]]
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
@ -463,22 +467,36 @@ And we plot the ASD of the measured signals (figure [[fig:sr_psd_compare]]);
|
||||
|
||||
* Measure of the noise induced by the slip ring when using a geophone
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_sr_geophone.m
|
||||
:header-args:matlab+: :tangle matlab/meas_sr_geophone.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
<<sec:meas_sr_geophone>>
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ meas_sr_geophone.m -nt data/meas_sr_geophone.zip ]; then
|
||||
if [ matlab/meas_sr_geophone.m -nt data/meas_sr_geophone.zip ]; then
|
||||
cp matlab/meas_sr_geophone.m meas_sr_geophone.m;
|
||||
zip data/meas_sr_geophone \
|
||||
mat/data_012.mat \
|
||||
mat/data_013.mat \
|
||||
mat/data_016.mat \
|
||||
mat/data_017.mat \
|
||||
meas_sr_geophone.m
|
||||
meas_sr_geophone.m;
|
||||
rm meas_sr_geophone.m;
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_sr_geophone.zip][here]].
|
||||
#+begin_note
|
||||
All the files (data and Matlab scripts) are accessible [[file:data/meas_sr_geophone.zip][here]].
|
||||
#+end_note
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none :results silent :noweb yes
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** First Measurement without LPF
|
||||
*** Measurement Description
|
||||
@ -502,11 +520,6 @@ Second column: Slip-ring measure
|
||||
- =data_012=: Slip-Ring OFF
|
||||
- =data_013=: Slip-Ring ON
|
||||
|
||||
*** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
*** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
@ -825,357 +838,3 @@ Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:
|
||||
- Using the LPF, we don't have any perturbation coming from the slip-ring when it is on.
|
||||
- However, we should use a smaller value of the capacitor to have a cut-off frequency at $1kHz$.
|
||||
#+end_important
|
||||
|
||||
* Measure of the influence of the AC/DC option on the voltage amplifiers
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle meas_noise_ac_dc.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ meas_noise_ac_dc.m -nt data/meas_noise_ac_dc.zip ]; then
|
||||
zip data/meas_noise_ac_dc \
|
||||
mat/data_012.mat \
|
||||
mat/data_013.mat \
|
||||
meas_noise_ac_dc.m
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
The data and matlab files are accessible [[file:data/meas_noise_ac_dc.zip][here]].
|
||||
|
||||
** Measurement Description
|
||||
*Goal*:
|
||||
- Measure the influence of the high-pass filter option of the voltage amplifiers
|
||||
|
||||
*Setup*:
|
||||
- One geophone is located on the marble.
|
||||
- It's signal goes to two voltage amplifiers with a gain of 60dB.
|
||||
- One voltage amplifier is on the AC option, the other is on the DC option.
|
||||
|
||||
*Measurements*:
|
||||
First measurement (=mat/data_014.mat= file):
|
||||
| Column | Signal |
|
||||
|--------+----------------------------|
|
||||
| 1 | Amplifier 1 with AC option |
|
||||
| 2 | Amplifier 2 with DC option |
|
||||
| 3 | Time |
|
||||
|
||||
Second measurement (=mat/data_015.mat= file):
|
||||
| Column | Signal |
|
||||
|--------+----------------------------|
|
||||
| 1 | Amplifier 1 with DC option |
|
||||
| 2 | Amplifier 2 with AC option |
|
||||
| 3 | Time |
|
||||
|
||||
#+name: fig:volt_amp_setup
|
||||
#+caption: Picture of the two voltages amplifiers
|
||||
#+attr_html: :width 500px
|
||||
[[file:./img/IMG_20190503_170936.jpg]]
|
||||
|
||||
** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
meas14 = load('mat/data_014.mat', 'data'); meas14 = meas14.data;
|
||||
meas15 = load('mat/data_015.mat', 'data'); meas15 = meas15.data;
|
||||
#+end_src
|
||||
|
||||
** Time Domain
|
||||
The signals are shown on figure [[fig:ac_dc_option_time]].
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(meas14(:, 3), meas14(:, 1), 'DisplayName', 'Amp1 - AC');
|
||||
plot(meas14(:, 3), meas14(:, 2), 'DisplayName', 'Amp2 - DC');
|
||||
plot(meas15(:, 3), meas15(:, 1), 'DisplayName', 'Amp1 - DC');
|
||||
plot(meas15(:, 3), meas15(:, 2), 'DisplayName', 'Amp2 - AC');
|
||||
hold off;
|
||||
legend('Location', 'bestoutside');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
xlim([0, 100]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_time
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ac_dc_option_time.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_time
|
||||
#+CAPTION: Comparison of the signals going through the Voltage amplifiers
|
||||
#+RESULTS: fig:ac_dc_option_time
|
||||
[[file:figs/ac_dc_option_time.png]]
|
||||
|
||||
** Frequency Domain
|
||||
We first compute some parameters that will be used for the PSD computation.
|
||||
#+begin_src matlab :results none
|
||||
dt = meas14(2, 3)-meas14(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
Then we compute the Power Spectral Density using =pwelch= function.
|
||||
#+begin_src matlab :results none
|
||||
[pxamp1ac, f] = pwelch(meas14(:, 1), win, [], [], Fs);
|
||||
[pxamp2dc, ~] = pwelch(meas14(:, 2), win, [], [], Fs);
|
||||
|
||||
[pxamp1dc, ~] = pwelch(meas15(:, 1), win, [], [], Fs);
|
||||
[pxamp2ac, ~] = pwelch(meas15(:, 2), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
The ASD of the signals are compare on figure [[fig:ac_dc_option_asd]].
|
||||
#+begin_src matlab :results none :exports none
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxamp1ac), 'DisplayName', 'Amp1 - AC');
|
||||
plot(f, sqrt(pxamp2dc), 'DisplayName', 'Amp2 - DC');
|
||||
plot(f, sqrt(pxamp1dc), 'DisplayName', 'Amp1 - DC');
|
||||
plot(f, sqrt(pxamp2ac), 'DisplayName', 'Amp2 - AC');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_asd
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/ac_dc_option_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:ac_dc_option_asd
|
||||
#+CAPTION: Amplitude Spectral Density of the measured signals
|
||||
#+RESULTS: fig:ac_dc_option_asd
|
||||
[[file:figs/ac_dc_option_asd.png]]
|
||||
|
||||
** Conclusion
|
||||
#+begin_important
|
||||
- The voltage amplifiers include some very sharp high pass filters at 1.5Hz (maybe 4th order)
|
||||
- There is a DC offset on the time domain signal because the DC-offset knob was not set to zero
|
||||
#+end_important
|
||||
|
||||
* Transfer function of the Low Pass Filter
|
||||
:PROPERTIES:
|
||||
:header-args:matlab+: :tangle low_pass_filter_measurements.m
|
||||
:header-args:matlab+: :comments org :mkdirp yes
|
||||
:END:
|
||||
|
||||
#+begin_src bash :exports none :results none
|
||||
if [ low_pass_filter_measurements.m -nt data/low_pass_filter_measurements.zip ]; then
|
||||
zip data/low_pass_filter_measurements \
|
||||
mat/data_018.mat \
|
||||
mat/data_019.mat \
|
||||
low_pass_filter_measurements.m
|
||||
fi
|
||||
#+end_src
|
||||
|
||||
The computation files for this section are accessible [[file:data/low_pass_filter_measurements.zip][here]].
|
||||
|
||||
** First LPF with a Cut-off frequency of 160Hz
|
||||
*** Measurement Description
|
||||
*Goal*:
|
||||
- Measure the Low Pass Filter Transfer Function
|
||||
|
||||
The values of the components are:
|
||||
\begin{aligned}
|
||||
R &= 1k\Omega \\
|
||||
C &= 1\mu F
|
||||
\end{aligned}
|
||||
Which makes a cut-off frequency of $f_c = \frac{1}{RC} = 1000 rad/s = 160Hz$.
|
||||
|
||||
#+NAME: fig:lpf
|
||||
#+HEADER: :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/MEGA/These/LaTeX/}{config.tex}")
|
||||
#+HEADER: :imagemagick t :fit yes :iminoptions -scale 100% -density 150 :imoutoptions -quality 100
|
||||
#+HEADER: :results raw replace :buffer no :eval no-export :exports both :mkdirp yes
|
||||
#+HEADER: :output-dir figs
|
||||
#+begin_src latex :file lpf.pdf :post pdf2svg(file=*this*, ext="png") :exports both
|
||||
\begin{tikzpicture}
|
||||
\draw (0,2)
|
||||
to [R=\(R\)] ++(2,0) node[circ]
|
||||
to ++(2,0)
|
||||
++(-2,0)
|
||||
to [C=\(C\)] ++(0,-2) node[circ]
|
||||
++(-2,0)
|
||||
to ++(2,0)
|
||||
to ++(2,0)
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:lpf
|
||||
#+CAPTION: Schematic of the Low Pass Filter used
|
||||
#+RESULTS: fig:lpf
|
||||
[[file:figs/lpf.png]]
|
||||
|
||||
|
||||
*Setup*:
|
||||
- We are measuring the signal from from Geophone with a BNC T
|
||||
- On part goes to column 1 through the LPF
|
||||
- The other part goes to column 2 without the LPF
|
||||
|
||||
*Measurements*:
|
||||
=mat/data_018.mat=:
|
||||
| Column | Signal |
|
||||
|--------+----------------------|
|
||||
| 1 | Amplifier 1 with LPF |
|
||||
| 2 | Amplifier 2 |
|
||||
| 3 | Time |
|
||||
|
||||
#+name: fig:lpf_picture
|
||||
#+caption: Picture of the low pass filter used
|
||||
#+attr_html: :width 500px
|
||||
[[file:./img/IMG_20190507_102756.jpg]]
|
||||
|
||||
*** Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-init>>
|
||||
#+end_src
|
||||
|
||||
*** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
data = load('mat/data_018.mat', 'data'); data = data.data;
|
||||
#+end_src
|
||||
|
||||
*** Transfer function of the LPF
|
||||
We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
||||
#+begin_src matlab :results none
|
||||
dt = data(2, 3)-data(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1000rad/s$.
|
||||
We obtain the result on figure [[fig:Glpf_bode]].
|
||||
#+begin_src matlab :results none
|
||||
Gth = 1/(1+s/1000)
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(f, abs(Glpf));
|
||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:Glpf_bode
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/Glpf_bode.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:Glpf_bode
|
||||
#+CAPTION: Bode Diagram of the measured Low Pass filter and the theoritical one
|
||||
#+RESULTS: fig:Glpf_bode
|
||||
[[file:figs/Glpf_bode.png]]
|
||||
*** Conclusion
|
||||
#+begin_important
|
||||
As we want to measure things up to $500Hz$, we chose to change the value of the capacitor to obtain a cut-off frequency of $1kHz$.
|
||||
#+end_important
|
||||
|
||||
** Second LPF with a Cut-off frequency of 1000Hz
|
||||
*** Measurement description
|
||||
This time, the value are
|
||||
\begin{aligned}
|
||||
R &= 1k\Omega \\
|
||||
C &= 150nF
|
||||
\end{aligned}
|
||||
Which makes a low pass filter with a cut-off frequency of $f_c = 1060Hz$.
|
||||
|
||||
*** Load data
|
||||
We load the data of the z axis of two geophones.
|
||||
#+begin_src matlab :results none
|
||||
data = load('mat/data_019.mat', 'data'); data = data.data;
|
||||
#+end_src
|
||||
|
||||
*** Transfer function of the LPF
|
||||
We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
||||
#+begin_src matlab :results none
|
||||
dt = data(2, 3)-data(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
||||
#+end_src
|
||||
|
||||
We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1060Hz$.
|
||||
We obtain the result on figure [[fig:Glpf_bode_bis]].
|
||||
#+begin_src matlab :results none
|
||||
Gth = 1/(1+s/1060/2/pi);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :results none
|
||||
figure;
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(f, abs(Glpf));
|
||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([1, 500]);
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:Glpf_bode_bis
|
||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||
#+begin_src matlab :var filepath="figs/Glpf_bode_bis.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||
<<plt-matlab>>
|
||||
#+end_src
|
||||
|
||||
#+NAME: fig:Glpf_bode_bis
|
||||
#+CAPTION: Bode Diagram of the measured Low Pass filter and the theoritical one
|
||||
#+RESULTS: fig:Glpf_bode_bis
|
||||
[[file:figs/Glpf_bode_bis.png]]
|
||||
*** Conclusion
|
||||
#+begin_important
|
||||
The added LPF has the expected behavior.
|
||||
#+end_important
|
||||
|
@ -1,101 +0,0 @@
|
||||
% Matlab Init :noexport:ignore:
|
||||
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Initialize ans with org-babel
|
||||
ans = 0;
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
||||
data = load('mat/data_018.mat', 'data'); data = data.data;
|
||||
|
||||
% Transfer function of the LPF
|
||||
% We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
||||
|
||||
dt = data(2, 3)-data(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
|
||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
||||
|
||||
|
||||
|
||||
% We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1000rad/s$.
|
||||
% We obtain the result on figure [[fig:Glpf_bode]].
|
||||
|
||||
Gth = 1/(1+s/1000)
|
||||
|
||||
figure;
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(f, abs(Glpf));
|
||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([1, 500]);
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
||||
data = load('mat/data_019.mat', 'data'); data = data.data;
|
||||
|
||||
% Transfer function of the LPF
|
||||
% We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
||||
|
||||
dt = data(2, 3)-data(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
|
||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
||||
|
||||
|
||||
|
||||
% We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1060Hz$.
|
||||
% We obtain the result on figure [[fig:Glpf_bode_bis]].
|
||||
|
||||
Gth = 1/(1+s/1060/2/pi);
|
||||
|
||||
figure;
|
||||
ax1 = subplot(2, 1, 1);
|
||||
hold on;
|
||||
plot(f, abs(Glpf));
|
||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||
set(gca, 'XTickLabel',[]);
|
||||
ylabel('Magnitude');
|
||||
|
||||
ax2 = subplot(2, 1, 2);
|
||||
hold on;
|
||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
ylim([-180, 180]);
|
||||
yticks([-180, -90, 0, 90, 180]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([1, 500]);
|
@ -1,13 +1,12 @@
|
||||
% Matlab Init :noexport:ignore:
|
||||
|
||||
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Initialize ans with org-babel
|
||||
ans = 0;
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
@ -1,13 +1,12 @@
|
||||
% Matlab Init :noexport:ignore:
|
||||
|
||||
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Initialize ans with org-babel
|
||||
ans = 0;
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
57
slip-ring-test/matlab/meas_slip_ring_geophone.m
Normal file
@ -0,0 +1,57 @@
|
||||
% Matlab Init :noexport:ignore:
|
||||
|
||||
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
|
||||
%% Go to current Directory
|
||||
cd(current_dir);
|
||||
|
||||
%% Initialize ans with org-babel
|
||||
ans = 0;
|
||||
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
||||
|
||||
d8 = load('mat/data_018.mat', 'data'); d8 = d8.data;
|
||||
d9 = load('mat/data_019.mat', 'data'); d9 = d9.data;
|
||||
|
||||
% Analysis - Time Domain
|
||||
% First, we compare the time domain signals for the two experiments (figure [[fig:slipring_time]]).
|
||||
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(d9(:, 3), d9(:, 2), 'DisplayName', 'Slip-Ring');
|
||||
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Wire');
|
||||
hold off;
|
||||
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||
xlim([0, 50]);
|
||||
legend('location', 'northeast');
|
||||
|
||||
% Analysis - Frequency Domain
|
||||
% We then compute the Power Spectral Density of the two signals and we compare them (figure [[fig:slipring_asd]]).
|
||||
|
||||
dt = d8(2, 3) - d8(1, 3);
|
||||
Fs = 1/dt;
|
||||
|
||||
win = hanning(ceil(1*Fs));
|
||||
|
||||
[pxx8, f] = pwelch(d8(:, 2), win, [], [], Fs);
|
||||
[pxx9, ~] = pwelch(d9(:, 2), win, [], [], Fs);
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxx9), 'DisplayName', 'Slip-Ring');
|
||||
plot(f, sqrt(pxx8), 'DisplayName', 'Wire');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
xlim([1, 500]);
|
||||
legend('Location', 'southwest');
|
@ -1,13 +1,12 @@
|
||||
% Matlab Init :noexport:ignore:
|
||||
|
||||
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
|
||||
%% Clear Workspace and Close figures
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Initialize ans with org-babel
|
||||
ans = 0;
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
@ -1,66 +0,0 @@
|
||||
% Matlab Init :noexport:ignore:
|
||||
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Initialize ans with org-babel
|
||||
ans = 0;
|
||||
|
||||
% Load data
|
||||
% We load the data of the z axis of two geophones.
|
||||
|
||||
meas14 = load('mat/data_014.mat', 'data'); meas14 = meas14.data;
|
||||
meas15 = load('mat/data_015.mat', 'data'); meas15 = meas15.data;
|
||||
|
||||
% Time Domain
|
||||
% The signals are shown on figure [[fig:ac_dc_option_time]].
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(meas14(:, 3), meas14(:, 1), 'DisplayName', 'Amp1 - AC');
|
||||
plot(meas14(:, 3), meas14(:, 2), 'DisplayName', 'Amp2 - DC');
|
||||
plot(meas15(:, 3), meas15(:, 1), 'DisplayName', 'Amp1 - DC');
|
||||
plot(meas15(:, 3), meas15(:, 2), 'DisplayName', 'Amp2 - AC');
|
||||
hold off;
|
||||
legend('Location', 'bestoutside');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
xlim([0, 100]);
|
||||
|
||||
% Frequency Domain
|
||||
% We first compute some parameters that will be used for the PSD computation.
|
||||
|
||||
dt = meas14(2, 3)-meas14(1, 3);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
|
||||
|
||||
|
||||
% Then we compute the Power Spectral Density using =pwelch= function.
|
||||
|
||||
[pxamp1ac, f] = pwelch(meas14(:, 1), win, [], [], Fs);
|
||||
[pxamp2dc, ~] = pwelch(meas14(:, 2), win, [], [], Fs);
|
||||
|
||||
[pxamp1dc, ~] = pwelch(meas15(:, 1), win, [], [], Fs);
|
||||
[pxamp2ac, ~] = pwelch(meas15(:, 2), win, [], [], Fs);
|
||||
|
||||
|
||||
|
||||
% The ASD of the signals are compare on figure [[fig:ac_dc_option_asd]].
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxamp1ac), 'DisplayName', 'Amp1 - AC');
|
||||
plot(f, sqrt(pxamp2dc), 'DisplayName', 'Amp2 - DC');
|
||||
plot(f, sqrt(pxamp1dc), 'DisplayName', 'Amp1 - DC');
|
||||
plot(f, sqrt(pxamp2ac), 'DisplayName', 'Amp2 - AC');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
@ -1,74 +0,0 @@
|
||||
% Matlab Init :noexport:ignore:
|
||||
|
||||
clear; close all; clc;
|
||||
|
||||
%% Intialize Laplace variable
|
||||
s = zpk('s');
|
||||
|
||||
%% Initialize ans with org-babel
|
||||
ans = 0;
|
||||
|
||||
% Load data
|
||||
|
||||
amp_off = load('mat/data_003.mat', 'data'); amp_off = amp_off.data(:, [1,3]);
|
||||
amp_20d = load('mat/data_004.mat', 'data'); amp_20d = amp_20d.data(:, [1,3]);
|
||||
amp_40d = load('mat/data_005.mat', 'data'); amp_40d = amp_40d.data(:, [1,3]);
|
||||
amp_60d = load('mat/data_006.mat', 'data'); amp_60d = amp_60d.data(:, [1,3]);
|
||||
|
||||
% Time Domain
|
||||
% The time domain signals are shown on figure [[fig:ampli_noise_time]].
|
||||
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(amp_off(:, 2), amp_off(:, 1), 'DisplayName', 'OFF');
|
||||
plot(amp_20d(:, 2), amp_20d(:, 1), 'DisplayName', '20dB');
|
||||
plot(amp_40d(:, 2), amp_40d(:, 1), 'DisplayName', '40dB');
|
||||
plot(amp_60d(:, 2), amp_60d(:, 1), 'DisplayName', '60dB');
|
||||
hold off;
|
||||
legend('Location', 'northeast');
|
||||
xlabel('Time [s]');
|
||||
ylabel('Voltage [V]');
|
||||
|
||||
% Frequency Domain
|
||||
% We first compute some parameters that will be used for the PSD computation.
|
||||
|
||||
dt = amp_off(2, 2)-amp_off(1, 2);
|
||||
|
||||
Fs = 1/dt; % [Hz]
|
||||
|
||||
win = hanning(ceil(10*Fs));
|
||||
|
||||
|
||||
|
||||
% Then we compute the Power Spectral Density using =pwelch= function.
|
||||
|
||||
[pxoff, f] = pwelch(amp_off(:,1), win, [], [], Fs);
|
||||
[px20d, ~] = pwelch(amp_20d(:,1), win, [], [], Fs);
|
||||
[px40d, ~] = pwelch(amp_40d(:,1), win, [], [], Fs);
|
||||
[px60d, ~] = pwelch(amp_60d(:,1), win, [], [], Fs);
|
||||
|
||||
|
||||
|
||||
% We compute the theoretical ADC noise.
|
||||
|
||||
q = 20/2^16; % quantization
|
||||
Sq = q^2/12/1000; % PSD of the ADC noise
|
||||
|
||||
|
||||
|
||||
% Finally, the ASD is shown on figure [[fig:ampli_noise_psd]].
|
||||
|
||||
figure;
|
||||
hold on;
|
||||
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
|
||||
plot(f, sqrt(px20d), 'DisplayName', '20dB');
|
||||
plot(f, sqrt(px40d), 'DisplayName', '40dB');
|
||||
plot(f, sqrt(px60d), 'DisplayName', '60dB');
|
||||
plot([0.1, 500], [sqrt(Sq), sqrt(Sq)], 'k--');
|
||||
hold off;
|
||||
set(gca, 'xscale', 'log');
|
||||
set(gca, 'yscale', 'log');
|
||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||
legend('Location', 'northeast');
|
||||
xlim([0.1, 500]);
|
@ -1,54 +0,0 @@
|
||||
%%
|
||||
Tsim = 100; % [s]
|
||||
|
||||
%%
|
||||
tg = slrt;
|
||||
|
||||
%% TODO - Build this application if updated
|
||||
|
||||
%%
|
||||
if tg.Connected == "Yes"
|
||||
if tg.Status == "running"
|
||||
disp('Target is Running, Stopping...');
|
||||
tg.stop;
|
||||
while tg.Status == "running"
|
||||
pause(1);
|
||||
end
|
||||
disp('Target is Stopped');
|
||||
end
|
||||
if tg.Status == "stopped"
|
||||
disp('Load the Application');
|
||||
tg.load('slip_ring_test');
|
||||
|
||||
%% Run the application
|
||||
disp('Starting the Application');
|
||||
tg.start;
|
||||
pause(Tsim);
|
||||
tg.stop;
|
||||
end
|
||||
else
|
||||
error("The target computer is not connected");
|
||||
end
|
||||
|
||||
%%
|
||||
f = SimulinkRealTime.openFTP(tg);
|
||||
cd(f, 'data/slip_ring_test/');
|
||||
mget(f, 'data_001.dat', 'data');
|
||||
close(f);
|
||||
|
||||
%%
|
||||
data = SimulinkRealTime.utils.getFileScopeData('data/data_001.dat').data;
|
||||
|
||||
%%
|
||||
n = 19;
|
||||
|
||||
while isfile(['mat/data_', num2str(n, '%03d'), '.mat'])
|
||||
disp('File exists.');
|
||||
if input(['Are you sure you want to override the file ', 'mat/data_', ...
|
||||
num2str(n, '%03d'), '.mat', ' ? [Y/n]']) == 'Y'
|
||||
break;
|
||||
end
|
||||
n = input('What should be the measurement number?');
|
||||
end
|
||||
|
||||
save(['mat/data_', num2str(n, '%03d'), '.mat'], 'data');
|
@ -1,7 +0,0 @@
|
||||
|
||||
%%
|
||||
% tg = slrt;
|
||||
% f = SimulinkRealTime.openFTP(tg);
|
||||
% cd(f, 'data/');
|
||||
% mkdir(f, 'disturbance-measurement');
|
||||
% close(f);
|
@ -78,9 +78,3 @@ Then, the =f= object can be used to access the filesystem on the target computer
|
||||
|
||||
* ELMO
|
||||
tutorials: https://www.elmomc.com/products/application-studio/easii/easii-tutorials/
|
||||
* Low Pass Filter
|
||||
|
||||
R = 1KOhm
|
||||
C = 1muF
|
||||
|
||||
Fc = 1kHz
|
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 72 KiB After Width: | Height: | Size: 72 KiB |
Before Width: | Height: | Size: 77 KiB After Width: | Height: | Size: 77 KiB |
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 66 KiB |
Before Width: | Height: | Size: 65 KiB After Width: | Height: | Size: 65 KiB |
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 66 KiB |