[WIP] Breaking Change - Use Update
Folder name is changed, rework the html templates Change the organisation.
4
.gitignore
vendored
@ -1,8 +1,10 @@
|
|||||||
auto/
|
auto/
|
||||||
*.tex
|
*.tex
|
||||||
|
|
||||||
**/figs/*.pdf
|
**/figs/*.pdf
|
||||||
**/figs/*.svg
|
**/figs/*.svg
|
||||||
=======
|
**/figs/*.tex
|
||||||
|
|
||||||
# Emacs
|
# Emacs
|
||||||
auto/
|
auto/
|
||||||
|
|
||||||
|
@ -1,27 +1,5 @@
|
|||||||
#+TITLE: Measurements
|
#+TITLE: Measurements
|
||||||
:drawer:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
|
||||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
|
||||||
|
|
||||||
#+LATEX_CLASS: cleanreport
|
|
||||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
|
||||||
|
|
||||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
||||||
#+PROPERTY: header-args:matlab+ :comments org
|
|
||||||
#+PROPERTY: header-args:matlab+ :exports both
|
|
||||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
||||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
||||||
:end:
|
|
||||||
|
|
||||||
[[../index.org][Back to main page]].
|
|
||||||
|
|
||||||
* Experimental conditions
|
* Experimental conditions
|
||||||
- Measurement made in a metrology lab
|
- Measurement made in a metrology lab
|
||||||
@ -33,12 +11,12 @@
|
|||||||
|
|
||||||
#+name: fig:accelerometers
|
#+name: fig:accelerometers
|
||||||
#+caption: Accelerometers position
|
#+caption: Accelerometers position
|
||||||
#+attr_latex: :width 0.5\linewidth
|
#+attr_html: :width 500px
|
||||||
[[file:./figs/accelerometers.png]]
|
[[file:./figs/accelerometers.png]]
|
||||||
|
|
||||||
#+name: fig:instrumented_hammer
|
#+name: fig:instrumented_hammer
|
||||||
#+caption: Instrumented Hammer used
|
#+caption: Instrumented Hammer used
|
||||||
#+attr_latex: :width 0.5\linewidth
|
#+attr_html: :width 500px
|
||||||
[[file:./figs/instrumented_hammer.png]]
|
[[file:./figs/instrumented_hammer.png]]
|
||||||
|
|
||||||
* Measurements procedure
|
* Measurements procedure
|
||||||
@ -101,7 +79,11 @@ For each of the measurement, the measured channels are shown on table [[tab:meas
|
|||||||
|
|
||||||
* Data Analysis
|
* Data Analysis
|
||||||
** Loading of the data
|
** Loading of the data
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
@ -1,27 +1,5 @@
|
|||||||
#+TITLE: Measurements
|
#+TITLE: Measurements
|
||||||
:drawer:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
|
||||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
|
||||||
|
|
||||||
#+LATEX_CLASS: cleanreport
|
|
||||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
|
||||||
|
|
||||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
||||||
#+PROPERTY: header-args:matlab+ :comments org
|
|
||||||
#+PROPERTY: header-args:matlab+ :exports both
|
|
||||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
||||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
||||||
:end:
|
|
||||||
|
|
||||||
[[../index.org][Back to main page]].
|
|
||||||
|
|
||||||
* Experimental conditions
|
* Experimental conditions
|
||||||
- The granite is not glued to the floor
|
- The granite is not glued to the floor
|
||||||
@ -72,7 +50,11 @@ The structure is excited using an *instrumented hammer* with impacts on
|
|||||||
|
|
||||||
* Data Analysis
|
* Data Analysis
|
||||||
** Loading and pre-processing of the data
|
** Loading and pre-processing of the data
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
@ -378,4 +378,3 @@ legend(leg1,leg6,'Location','SouthEast');
|
|||||||
grid
|
grid
|
||||||
% saveas(gcf,'comp_frf_z_hammer_hexa','fig')
|
% saveas(gcf,'comp_frf_z_hammer_hexa','fig')
|
||||||
% print -dpng comp_frf_z_hammer_hexa
|
% print -dpng comp_frf_z_hammer_hexa
|
||||||
|
|
||||||
|
@ -1,27 +1,5 @@
|
|||||||
#+TITLE: Measurements
|
#+TITLE: Measurements
|
||||||
:drawer:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
|
||||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
|
||||||
|
|
||||||
#+LATEX_CLASS: cleanreport
|
|
||||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
|
||||||
|
|
||||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
||||||
#+PROPERTY: header-args:matlab+ :comments org
|
|
||||||
#+PROPERTY: header-args:matlab+ :exports both
|
|
||||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
||||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
||||||
:end:
|
|
||||||
|
|
||||||
[[../index.org][Back to main page]].
|
|
||||||
|
|
||||||
* Experimental conditions
|
* Experimental conditions
|
||||||
- Measurement made in the experiment hutch
|
- Measurement made in the experiment hutch
|
||||||
@ -87,7 +65,11 @@ Les fichiers xxx_raw sont sans traitement dans le domaine temporel (environ 10 i
|
|||||||
|
|
||||||
* Data Analysis
|
* Data Analysis
|
||||||
** Loading of the data
|
** Loading of the data
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
@ -1,34 +1,18 @@
|
|||||||
#+TITLE: Measurement Analysis
|
#+TITLE: Measurement Analysis
|
||||||
:drawer:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
* Matlab Init :noexport:ignore:
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
<<matlab-dir>>
|
||||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
#+end_src
|
||||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
|
||||||
|
|
||||||
#+LATEX_CLASS: cleanreport
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
|
||||||
|
|
||||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
||||||
#+PROPERTY: header-args:matlab+ :comments org
|
|
||||||
#+PROPERTY: header-args:matlab+ :exports both
|
|
||||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
||||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
||||||
:end:
|
|
||||||
|
|
||||||
[[../index.org][Back to main page]].
|
|
||||||
|
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
* Measurement Description
|
* Measurement Description
|
||||||
#+name: fig:setup_picture
|
#+name: fig:setup_picture
|
||||||
|
#+attr_html: :width 500px
|
||||||
#+caption: Picture of the setup for the measurement
|
#+caption: Picture of the setup for the measurement
|
||||||
[[file:./figs/setup_picture.png]]
|
[[file:./figs/setup_picture.png]]
|
||||||
|
|
||||||
|
@ -1,29 +1,12 @@
|
|||||||
#+TITLE: Ground Motion Measurements
|
#+TITLE: Ground Motion Measurements
|
||||||
:drawer:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
* Matlab Init :noexport:ignore:
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
<<matlab-dir>>
|
||||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
#+end_src
|
||||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
|
||||||
|
|
||||||
#+LATEX_CLASS: cleanreport
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
|
||||||
|
|
||||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
||||||
#+PROPERTY: header-args:matlab+ :comments org
|
|
||||||
#+PROPERTY: header-args:matlab+ :exports both
|
|
||||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
||||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
||||||
:end:
|
|
||||||
|
|
||||||
[[../index.org][Back to main page]].
|
|
||||||
|
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
Before Width: | Height: | Size: 45 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 27 KiB |
Before Width: | Height: | Size: 26 KiB |
@ -1,110 +0,0 @@
|
|||||||
Error X et Y
|
|
||||||
|
|
||||||
LSCxtot =
|
|
||||||
|
|
||||||
0.3872
|
|
||||||
|
|
||||||
|
|
||||||
LSCytot =
|
|
||||||
|
|
||||||
0.2419
|
|
||||||
|
|
||||||
|
|
||||||
LSCxsync =
|
|
||||||
|
|
||||||
0.1577
|
|
||||||
|
|
||||||
|
|
||||||
LSCysync =
|
|
||||||
|
|
||||||
0.1602
|
|
||||||
|
|
||||||
|
|
||||||
LSCxasync =
|
|
||||||
|
|
||||||
0.2946
|
|
||||||
|
|
||||||
|
|
||||||
LSCyasync =
|
|
||||||
|
|
||||||
0.1103
|
|
||||||
|
|
||||||
|
|
||||||
LSCxytot =
|
|
||||||
|
|
||||||
0.3519
|
|
||||||
|
|
||||||
|
|
||||||
Error X2 et Y2
|
|
||||||
|
|
||||||
|
|
||||||
LSCxtot =
|
|
||||||
|
|
||||||
0.3354
|
|
||||||
|
|
||||||
|
|
||||||
LSCytot =
|
|
||||||
|
|
||||||
0.3202
|
|
||||||
|
|
||||||
|
|
||||||
LSCxsync =
|
|
||||||
|
|
||||||
0.1101
|
|
||||||
|
|
||||||
|
|
||||||
LSCysync =
|
|
||||||
|
|
||||||
0.0808
|
|
||||||
|
|
||||||
|
|
||||||
LSCxasync =
|
|
||||||
|
|
||||||
0.2588
|
|
||||||
|
|
||||||
|
|
||||||
LSCyasync =
|
|
||||||
|
|
||||||
0.2791
|
|
||||||
|
|
||||||
|
|
||||||
LSCxytot =
|
|
||||||
|
|
||||||
0.3642
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
ErrorZ
|
|
||||||
LSCxtot =
|
|
||||||
|
|
||||||
0.0775
|
|
||||||
|
|
||||||
|
|
||||||
LSCytot =
|
|
||||||
|
|
||||||
0.0775
|
|
||||||
|
|
||||||
|
|
||||||
LSCxsync =
|
|
||||||
|
|
||||||
0.0390
|
|
||||||
|
|
||||||
|
|
||||||
LSCysync =
|
|
||||||
|
|
||||||
0.0390
|
|
||||||
|
|
||||||
|
|
||||||
LSCxasync =
|
|
||||||
|
|
||||||
0.0617
|
|
||||||
|
|
||||||
|
|
||||||
LSCyasync =
|
|
||||||
|
|
||||||
0.0617
|
|
||||||
|
|
||||||
|
|
||||||
LSCxytot =
|
|
||||||
|
|
||||||
0.1000
|
|
Before Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 38 KiB |
Before Width: | Height: | Size: 47 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 85 KiB |
2407
Static/data/data.txt
@ -1,27 +1,5 @@
|
|||||||
#+TITLE: Equipment
|
#+TITLE: Equipment
|
||||||
:drawer:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
|
||||||
#+HTML_HEAD: <script src="../js/jquery.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/bootstrap.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script src="../js/readtheorg.js"></script>
|
|
||||||
|
|
||||||
#+LATEX_CLASS: cleanreport
|
|
||||||
#+LaTeX_CLASS_OPTIONS: [tocnp, secbreak, minted]
|
|
||||||
|
|
||||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
||||||
#+PROPERTY: header-args:matlab+ :comments org
|
|
||||||
#+PROPERTY: header-args:matlab+ :exports both
|
|
||||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
||||||
#+PROPERTY: header-args:matlab+ :noweb yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :mkdirp yes
|
|
||||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
||||||
:end:
|
|
||||||
|
|
||||||
[[../index.org][Back to main page]].
|
|
||||||
|
|
||||||
* Sensors
|
* Sensors
|
||||||
** Accelerometers
|
** Accelerometers
|
||||||
@ -160,7 +138,11 @@ We define the parameters of the geophone and we plot its bode plot (figure [[fig
|
|||||||
| Weight [g] | 2150 |
|
| Weight [g] | 2150 |
|
||||||
| Sensitivity [V/(m/s)] | 276.8 |
|
| Sensitivity [V/(m/s)] | 276.8 |
|
||||||
|
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
27
config.org
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
#+STARTUP: overview
|
||||||
|
|
||||||
|
#+LANGUAGE: en
|
||||||
|
#+EMAIL: dehaeze.thomas@gmail.com
|
||||||
|
#+AUTHOR: Dehaeze Thomas
|
||||||
|
|
||||||
|
#+HTML_LINK_HOME: ../index.html
|
||||||
|
#+HTML_LINK_UP: ../index.html
|
||||||
|
|
||||||
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
||||||
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
||||||
|
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
||||||
|
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
||||||
|
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
||||||
|
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
||||||
|
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
||||||
|
|
||||||
|
#+HTML_MATHJAX: align: center tagside: right font: TeX
|
||||||
|
|
||||||
|
#+PROPERTY: header-args:matlab :session *MATLAB*
|
||||||
|
#+PROPERTY: header-args:matlab+ :comments org
|
||||||
|
#+PROPERTY: header-args:matlab+ :results none
|
||||||
|
#+PROPERTY: header-args:matlab+ :exports both
|
||||||
|
#+PROPERTY: header-args:matlab+ :eval no-export
|
||||||
|
#+PROPERTY: header-args:matlab+ :output-dir figs
|
||||||
|
|
||||||
|
#+PROPERTY: header-args:shell :eval no-export
|
@ -1,28 +1,15 @@
|
|||||||
#+TITLE:Measurement of the sample vibrations when rotating the Spindle
|
#+TITLE:Measurement of the sample vibrations when rotating the Spindle
|
||||||
:DRAWER:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
|
||||||
|
|
||||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
||||||
#+PROPERTY: header-args:matlab+ :comments org
|
|
||||||
#+PROPERTY: header-args:matlab+ :results output
|
|
||||||
#+PROPERTY: header-args:matlab+ :exports both
|
|
||||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
||||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
||||||
:END:
|
|
||||||
|
|
||||||
* Experimental Setup
|
* Experimental Setup
|
||||||
|
|
||||||
* Signal Processing
|
* Signal Processing
|
||||||
** Matlab Init :noexport:ignore:
|
** Matlab Init :noexport:ignore:
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
@ -1,15 +1,5 @@
|
|||||||
#+TITLE: Equipment used to make the measurements
|
#+TITLE: Equipment used to make the measurements
|
||||||
:DRAWER:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
|
||||||
:END:
|
|
||||||
|
|
||||||
* Geophone
|
* Geophone
|
||||||
L22
|
L22
|
||||||
|
3
huddle-test-geophones/figs/.gitignore
vendored
@ -1,3 +0,0 @@
|
|||||||
*.svg
|
|
||||||
*.pdf
|
|
||||||
*.tex
|
|
Before Width: | Height: | Size: 3.7 MiB After Width: | Height: | Size: 3.7 MiB |
Before Width: | Height: | Size: 3.8 MiB After Width: | Height: | Size: 3.8 MiB |
@ -1,22 +1,5 @@
|
|||||||
#+TITLE:Huddle Test of the L22 Geophones
|
#+TITLE:Huddle Test of the L22 Geophones
|
||||||
:DRAWER:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
|
||||||
|
|
||||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
||||||
#+PROPERTY: header-args:matlab+ :comments org
|
|
||||||
#+PROPERTY: header-args:matlab+ :results output
|
|
||||||
#+PROPERTY: header-args:matlab+ :exports both
|
|
||||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
||||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
||||||
:END:
|
|
||||||
|
|
||||||
* Experimental Setup
|
* Experimental Setup
|
||||||
Two L22 geophones are used.
|
Two L22 geophones are used.
|
||||||
@ -31,23 +14,40 @@ The voltage amplifiers includes:
|
|||||||
#+name: fig:figure_name
|
#+name: fig:figure_name
|
||||||
#+caption: Setup
|
#+caption: Setup
|
||||||
#+attr_html: :width 500px
|
#+attr_html: :width 500px
|
||||||
[[file:./figs/setup.jpg]]
|
[[file:./img/setup.jpg]]
|
||||||
|
|
||||||
#+name: fig:figure_name
|
#+name: fig:figure_name
|
||||||
#+caption: Geophones
|
#+caption: Geophones
|
||||||
#+attr_html: :width 500px
|
#+attr_html: :width 500px
|
||||||
[[file:./figs/geophones.jpg]]
|
[[file:./img/geophones.jpg]]
|
||||||
|
|
||||||
* Signal Processing
|
* Signal Processing
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:matlab+: :tangle signal_processing.m
|
:header-args:matlab+: :tangle matlab/huddle_test_signal_processing.m
|
||||||
:header-args:matlab+: :comments org :mkdirp yes
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
:END:
|
:END:
|
||||||
The Matlab computing file for this part is accessible [[file:signal_processing.m][here]].
|
<<sec:huddle_test_signal_processing>>
|
||||||
The =mat= file containing the measurement data is accessible [[file:mat/data_001.mat][here]].
|
|
||||||
|
#+begin_src bash :exports none :results none
|
||||||
|
if [ matlab/huddle_test_signal_processing.m -nt data/huddle_test_signal_processing.zip ]; then
|
||||||
|
cp matlab/huddle_test_signal_processing.m huddle_test_signal_processing.m;
|
||||||
|
zip data/huddle_test_signal_processing \
|
||||||
|
mat/data_001.mat \
|
||||||
|
huddle_test_signal_processing.m;
|
||||||
|
rm huddle_test_signal_processing.m;
|
||||||
|
fi
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_note
|
||||||
|
All the files (data and Matlab scripts) are accessible [[file:data/huddle_test_signal_processing.zip][here]].
|
||||||
|
#+end_note
|
||||||
|
|
||||||
** Matlab Init :noexport:ignore:
|
** Matlab Init :noexport:ignore:
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
@ -407,17 +407,33 @@ This is then further converted into velocity and compared with the ground veloci
|
|||||||
|
|
||||||
* Compare axis
|
* Compare axis
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:matlab+: :tangle compare_axis.m
|
:header-args:matlab+: :tangle matlab/huddle_test_compare_axis.m
|
||||||
:header-args:matlab+: :comments org :mkdirp yes
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
:END:
|
:END:
|
||||||
The Matlab computing file for this part is accessible [[file:compare_axis.m][here]].
|
<<sec:huddle_test_compare_axis>>
|
||||||
The =mat= files containing the measurement data are accessible with the following links:
|
|
||||||
- z axis: [[file:mat/data_001.mat][here]].
|
#+begin_src bash :exports none :results none
|
||||||
- east axis: [[file:mat/data_002.mat][here]].
|
if [ matlab/huddle_test_compare_axis.m -nt data/huddle_test_compare_axis.zip ]; then
|
||||||
- north axis: [[file:mat/data_003.mat][here]].
|
cp matlab/huddle_test_compare_axis.m huddle_test_compare_axis.m;
|
||||||
|
zip data/huddle_test_compare_axis \
|
||||||
|
mat/data_001.mat \
|
||||||
|
mat/data_002.mat \
|
||||||
|
mat/data_003.mat \
|
||||||
|
huddle_test_compare_axis.m;
|
||||||
|
rm huddle_test_compare_axis.m;
|
||||||
|
fi
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_note
|
||||||
|
All the files (data and Matlab scripts) are accessible [[file:data/huddle_test_compare_axis.zip][here]].
|
||||||
|
#+end_note
|
||||||
|
|
||||||
** Matlab Init :noexport:ignore:
|
** Matlab Init :noexport:ignore:
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
|
@ -1,5 +1,10 @@
|
|||||||
% Matlab Init :noexport:ignore:
|
% Matlab Init :noexport:ignore:
|
||||||
|
|
||||||
|
current_dir='/home/thomas/MEGA/These/meas/huddle-test-geophones/';
|
||||||
|
%% Go to current Directory
|
||||||
|
cd(current_dir);
|
||||||
|
|
||||||
|
%% Clear Workspace and Close figures
|
||||||
clear; close all; clc;
|
clear; close all; clc;
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
%% Intialize Laplace variable
|
@ -1,5 +1,10 @@
|
|||||||
% Matlab Init :noexport:ignore:
|
% Matlab Init :noexport:ignore:
|
||||||
|
|
||||||
|
current_dir='/home/thomas/MEGA/These/meas/huddle-test-geophones/';
|
||||||
|
%% Go to current Directory
|
||||||
|
cd(current_dir);
|
||||||
|
|
||||||
|
%% Clear Workspace and Close figures
|
||||||
clear; close all; clc;
|
clear; close all; clc;
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
%% Intialize Laplace variable
|
||||||
@ -47,24 +52,44 @@ xlim([0 1]);
|
|||||||
% Computation of the ASD of the measured voltage
|
% Computation of the ASD of the measured voltage
|
||||||
% We first define the parameters for the frequency domain analysis.
|
% We first define the parameters for the frequency domain analysis.
|
||||||
|
|
||||||
win = hanning(ceil(length(x1)/100));
|
Fs = 1/dt; % [Hz]
|
||||||
Fs = 1/dt;
|
|
||||||
|
win = hanning(ceil(10*Fs));
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% Then we compute the Power Spectral Density using =pwelch= function.
|
||||||
|
|
||||||
[pxx1, f] = pwelch(x1, win, [], [], Fs);
|
[pxx1, f] = pwelch(x1, win, [], [], Fs);
|
||||||
[pxx2, ~] = pwelch(x2, win, [], [], Fs);
|
[pxx2, ~] = pwelch(x2, win, [], [], Fs);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
% And we plot the result on figure [[fig:asd_voltage]].
|
||||||
|
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(f, sqrt(pxx1));
|
||||||
|
plot(f, sqrt(pxx2));
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log');
|
||||||
|
set(gca, 'yscale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||||
|
xlim([0.1, 500]);
|
||||||
|
|
||||||
% Scaling to take into account the sensibility of the geophone and the voltage amplifier
|
% Scaling to take into account the sensibility of the geophone and the voltage amplifier
|
||||||
% The Geophone used are L22.
|
% The Geophone used are L22. Their sensibility is shown on figure [[fig:geophone_sensibility]].
|
||||||
% Their sensibility are shown on figure [[fig:geophone_sensibility]].
|
|
||||||
|
|
||||||
|
|
||||||
S0 = 88; % Sensitivity [V/(m/s)]
|
S0 = 88; % Sensitivity [V/(m/s)]
|
||||||
f0 = 2; % Cut-off frequnecy [Hz]
|
f0 = 2; % Cut-off frequnecy [Hz]
|
||||||
S = (s/2/pi/f0)/(1+s/2/pi/f0);
|
|
||||||
|
S = S0*(s/2/pi/f0)/(1+s/2/pi/f0);
|
||||||
|
|
||||||
figure;
|
figure;
|
||||||
bodeFig({S});
|
bodeFig({S}, logspace(-1, 2, 1000));
|
||||||
ylabel('Amplitude [V/(m/s)]')
|
ylabel('Amplitude $\left[\frac{V}{m/s}\right]$')
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -75,20 +100,19 @@ ylabel('Amplitude [V/(m/s)]')
|
|||||||
|
|
||||||
|
|
||||||
% We also take into account the gain of the electronics which is here set to be $60dB$.
|
% We also take into account the gain of the electronics which is here set to be $60dB$.
|
||||||
% The amplifiers also include a low pass filter with a cut-off frequency set at 1kHz.
|
|
||||||
|
|
||||||
|
|
||||||
G0 = 60; % [dB]
|
G0_db = 60; % [dB]
|
||||||
|
|
||||||
G = 10^(G0/20)/(1+s/2/pi/1000);
|
G0 = 10^(60/G0_db); % [abs]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% We divide the ASD measured (in $\text{V}/\sqrt{\text{Hz}}$) by the transfer function of the voltage amplifier to obtain the ASD of the voltage across the geophone.
|
% We divide the ASD measured (in $\text{V}/\sqrt{\text{Hz}}$) by the gain of the voltage amplifier to obtain the ASD of the voltage across the geophone.
|
||||||
% We further divide the result by the sensibility of the Geophone to obtain the ASD of the velocity in $m/s/\sqrt{Hz}$.
|
% We further divide the result by the sensibility of the Geophone to obtain the ASD of the velocity in $m/s/\sqrt{Hz}$.
|
||||||
|
|
||||||
|
|
||||||
scaling = 1./squeeze(abs(freqresp(G*S, f, 'Hz')));
|
scaling = 1./squeeze(abs(freqresp(G0*S, f, 'Hz')));
|
||||||
|
|
||||||
% Computation of the ASD of the velocity
|
% Computation of the ASD of the velocity
|
||||||
% The ASD of the measured velocity is shown on figure [[fig:psd_velocity]].
|
% The ASD of the measured velocity is shown on figure [[fig:psd_velocity]].
|
||||||
@ -101,13 +125,13 @@ plot(f, sqrt(pxx2).*scaling);
|
|||||||
hold off;
|
hold off;
|
||||||
set(gca, 'xscale', 'log');
|
set(gca, 'xscale', 'log');
|
||||||
set(gca, 'yscale', 'log');
|
set(gca, 'yscale', 'log');
|
||||||
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]')
|
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
|
||||||
xlim([2, 500]);
|
xlim([0.1, 500]);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% #+NAME: fig:psd_velocity
|
% #+NAME: fig:psd_velocity
|
||||||
% #+CAPTION: Spectral density of the velocity
|
% #+CAPTION: Amplitude Spectral Density of the Velocity
|
||||||
% #+RESULTS: fig:psd_velocity
|
% #+RESULTS: fig:psd_velocity
|
||||||
% [[file:figs/psd_velocity.png]]
|
% [[file:figs/psd_velocity.png]]
|
||||||
|
|
||||||
@ -116,12 +140,12 @@ xlim([2, 500]);
|
|||||||
|
|
||||||
figure;
|
figure;
|
||||||
hold on;
|
hold on;
|
||||||
plot(f, (pxx1.*scaling./f).^2);
|
plot(f, (sqrt(pxx1).*scaling)./(2*pi*f));
|
||||||
plot(f, (pxx2.*scaling./f).^2);
|
plot(f, (sqrt(pxx2).*scaling)./(2*pi*f));
|
||||||
hold off;
|
hold off;
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||||
xlabel('Frequency [Hz]'); ylabel('PSD [m/s/sqrt(Hz)]')
|
xlabel('Frequency [Hz]'); ylabel('ASD of the displacement $\left[\frac{m}{\sqrt{Hz}}\right]$')
|
||||||
xlim([2, 500]);
|
xlim([0.1, 500]);
|
||||||
|
|
||||||
% Transfer function between the two geophones
|
% Transfer function between the two geophones
|
||||||
% We here compute the transfer function from one geophone to the other.
|
% We here compute the transfer function from one geophone to the other.
|
||||||
@ -144,10 +168,10 @@ plot(f, mod(180+180/pi*phase(T12), 360)-180);
|
|||||||
set(gca, 'xscale', 'log');
|
set(gca, 'xscale', 'log');
|
||||||
ylim([-180, 180]);
|
ylim([-180, 180]);
|
||||||
yticks([-180, -90, 0, 90, 180]);
|
yticks([-180, -90, 0, 90, 180]);
|
||||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||||
|
|
||||||
linkaxes([ax1,ax2],'x');
|
linkaxes([ax1,ax2],'x');
|
||||||
xlim([1, 500]);
|
xlim([0.1, 500]);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -163,7 +187,7 @@ figure;
|
|||||||
plot(f, coh12);
|
plot(f, coh12);
|
||||||
set(gca, 'xscale', 'log');
|
set(gca, 'xscale', 'log');
|
||||||
xlabel('Frequency [Hz]'); ylabel('Coherence');
|
xlabel('Frequency [Hz]'); ylabel('Coherence');
|
||||||
ylim([0,1]); xlim([1, 500]);
|
ylim([0,1]); xlim([0.1, 500]);
|
||||||
|
|
||||||
% Estimation of the sensor noise
|
% Estimation of the sensor noise
|
||||||
% The technique to estimate the sensor noise is taken from cite:barzilai98_techn_measur_noise_sensor_presen.
|
% The technique to estimate the sensor noise is taken from cite:barzilai98_techn_measur_noise_sensor_presen.
|
||||||
@ -196,7 +220,7 @@ ylim([0,1]); xlim([1, 500]);
|
|||||||
% [[file:figs/huddle-test.png]]
|
% [[file:figs/huddle-test.png]]
|
||||||
|
|
||||||
% We here assume that each sensor has the same magnitude of instrumental noise ($N = M$).
|
% We here assume that each sensor has the same magnitude of instrumental noise ($N = M$).
|
||||||
% We also assume that $H_1 = H_2 = 1$.
|
% We also assume that $S_1 = S_2 = 1$.
|
||||||
|
|
||||||
% We then obtain:
|
% We then obtain:
|
||||||
% #+NAME: eq:coh_bis
|
% #+NAME: eq:coh_bis
|
||||||
@ -229,8 +253,8 @@ plot(f, pxx2, '-');
|
|||||||
plot(f, pxxN, 'k--');
|
plot(f, pxxN, 'k--');
|
||||||
hold off;
|
hold off;
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||||
xlabel('Frequency [Hz]'); ylabel('PSD [$V^2/Hz$]');
|
xlabel('Frequency [Hz]'); ylabel('PSD of the measured Voltage $\left[\frac{V^2}{Hz}\right]$');
|
||||||
xlim([1, 500]);
|
xlim([0.1, 500]);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -248,5 +272,5 @@ plot(f, sqrt(pxx2).*scaling, '-');
|
|||||||
plot(f, sqrt(pxxN).*scaling, 'k--');
|
plot(f, sqrt(pxxN).*scaling, 'k--');
|
||||||
hold off;
|
hold off;
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||||
xlabel('Frequency [Hz]'); ylabel('PSD [$m/s/\sqrt{Hz}$]');
|
xlabel('Frequency [Hz]'); ylabel('ASD of the Velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$');
|
||||||
xlim([1, 500]);
|
xlim([0.1, 500]);
|
@ -1,47 +0,0 @@
|
|||||||
tg = slrt;
|
|
||||||
|
|
||||||
%% TODO - Build this application if updated
|
|
||||||
|
|
||||||
%%
|
|
||||||
if tg.Connected == "Yes"
|
|
||||||
if tg.Status == "stopped"
|
|
||||||
%% Load the application
|
|
||||||
tg.load('test');
|
|
||||||
|
|
||||||
%% Run the application
|
|
||||||
tg.start;
|
|
||||||
pause(10);
|
|
||||||
tg.stop;
|
|
||||||
|
|
||||||
%% Load the data
|
|
||||||
f = SimulinkRealTime.openFTP(tg);
|
|
||||||
mget(f, 'data/data_001.dat');
|
|
||||||
close(f);
|
|
||||||
end
|
|
||||||
end
|
|
||||||
|
|
||||||
%% Convert the Data
|
|
||||||
data = SimulinkRealTime.utils.getFileScopeData('data/data_001.dat').data;
|
|
||||||
|
|
||||||
t = data(:, end);
|
|
||||||
x1 = data(:, 1);
|
|
||||||
x2 = data(:, 2);
|
|
||||||
|
|
||||||
save('mat/data_003.mat', 't', 'x1', 'x2');
|
|
||||||
|
|
||||||
%% Plot the data
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(t, x1);
|
|
||||||
plot(t, x2);
|
|
||||||
hold off
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
|
|
||||||
%% Compute the PSD
|
|
||||||
dt = t(2)-t(1);
|
|
||||||
|
|
||||||
window_L = ceil(length(x1)/10);
|
|
||||||
window_han = .5*(1 - cos(2*pi*(1:window_L)'/(window_L+1)));
|
|
||||||
|
|
||||||
[pxx, f] = pwelch(x1, window_han, 0, [], 1/dt);
|
|
@ -1 +0,0 @@
|
|||||||
Ts = 1e-3; % [s]
|
|
23
index.org
@ -29,9 +29,11 @@ Dynamics of the station is evaluated using instrumented hammer and accelerometer
|
|||||||
- Obtain a first estimation of resonance frequencies
|
- Obtain a first estimation of resonance frequencies
|
||||||
|
|
||||||
*** Results
|
*** Results
|
||||||
Resonances have been identified at 45Hz and 75Hz.
|
#+begin_important
|
||||||
However, the quality of the measurements are bad at low frequency.
|
- Resonances have been identified at 45Hz and 75Hz
|
||||||
New measurements should be done with Geophones.
|
- However, the quality of the measurements are bad at low frequency
|
||||||
|
- New measurements should be done with Geophones
|
||||||
|
#+end_important
|
||||||
|
|
||||||
** Measurement 2
|
** Measurement 2
|
||||||
[[file:2018-01-12%20-%20Marc/index.org][Link to the analysis]]
|
[[file:2018-01-12%20-%20Marc/index.org][Link to the analysis]]
|
||||||
@ -47,10 +49,12 @@ New measurements should be done with Geophones.
|
|||||||
Obtain better coherence at low frequency.
|
Obtain better coherence at low frequency.
|
||||||
|
|
||||||
*** Results
|
*** Results
|
||||||
Resonances at 42Hz, 70Hz and 125Hz have been identified.
|
#+begin_important
|
||||||
The coherence is much better than when using accelerometers.
|
- Resonances at 42Hz, 70Hz and 125Hz have been identified
|
||||||
|
- The coherence is much better than when using accelerometers
|
||||||
|
#+end_important
|
||||||
|
|
||||||
** Measurement 3
|
** TODO Measurement 3
|
||||||
[[file:2018-10-12%20-%20Marc/index.org][Link to the analysis]]
|
[[file:2018-10-12%20-%20Marc/index.org][Link to the analysis]]
|
||||||
|
|
||||||
*** Notes
|
*** Notes
|
||||||
@ -64,6 +68,9 @@ The station is now installed on the experimental hutch with a glued granite (fin
|
|||||||
The station is identified again.
|
The station is identified again.
|
||||||
|
|
||||||
*** Results
|
*** Results
|
||||||
|
#+begin_important
|
||||||
|
|
||||||
|
#+end_important
|
||||||
|
|
||||||
* Measurements of perturbations
|
* Measurements of perturbations
|
||||||
** Noise coming from the control loop of each stage
|
** Noise coming from the control loop of each stage
|
||||||
@ -129,11 +136,11 @@ The goal is to estimate all the error motions induced by the Spindle
|
|||||||
*** Results
|
*** Results
|
||||||
|
|
||||||
* Ressources
|
* Ressources
|
||||||
[[file:actuators-sensors/index.org][Actuators and Sensors]]
|
- [[file:actuators-sensors/index.org][Actuators and Sensors]]
|
||||||
|
- [[file:equipment/equipment.org][Equipment used for the measurements]]
|
||||||
|
|
||||||
* Other measurements
|
* Other measurements
|
||||||
- [[file:huddle-test-geophones/index.org][Huddle Test - Geophones]]
|
- [[file:huddle-test-geophones/index.org][Huddle Test - Geophones]]
|
||||||
- [[file:disturbance-measurement/index.org][Disturbance Measurement]]
|
- [[file:disturbance-measurement/index.org][Disturbance Measurement]]
|
||||||
- [[file:slip-ring-test/index.org][Slip Ring - Noise measurement]]
|
- [[file:slip-ring-test/index.org][Slip Ring - Noise measurement]]
|
||||||
- [[file:static-measurements/index.org][Control System Measurement]]
|
- [[file:static-measurements/index.org][Control System Measurement]]
|
||||||
- [[file:equipment/equipment.org][Equipment used for the measurements]]
|
|
||||||
|
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 64 KiB |
Before Width: | Height: | Size: 75 KiB After Width: | Height: | Size: 75 KiB |
Before Width: | Height: | Size: 158 KiB After Width: | Height: | Size: 158 KiB |
Before Width: | Height: | Size: 172 KiB After Width: | Height: | Size: 172 KiB |
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 55 KiB |
Before Width: | Height: | Size: 144 KiB After Width: | Height: | Size: 144 KiB |
Before Width: | Height: | Size: 37 KiB After Width: | Height: | Size: 37 KiB |
Before Width: | Height: | Size: 2.5 KiB After Width: | Height: | Size: 2.5 KiB |
Before Width: | Height: | Size: 4.5 MiB After Width: | Height: | Size: 4.5 MiB |
Before Width: | Height: | Size: 3.1 MiB After Width: | Height: | Size: 3.1 MiB |
BIN
instrumentation/index.html
Normal file
510
instrumentation/index.org
Normal file
@ -0,0 +1,510 @@
|
|||||||
|
#+TITLE: Measurements on the instrumentation
|
||||||
|
#+SETUPFILE: ../config.org
|
||||||
|
|
||||||
|
* Measure of the noise of the Voltage Amplifier
|
||||||
|
:PROPERTIES:
|
||||||
|
:header-args:matlab+: :tangle matlab/meas_volt_amp.m
|
||||||
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
|
:END:
|
||||||
|
<<sec:meas_volt_amp>>
|
||||||
|
|
||||||
|
#+begin_src bash :exports none :results none
|
||||||
|
if [ meas_volt_amp.m -nt data/meas_volt_amp.zip ]; then
|
||||||
|
zip data/meas_volt_amp \
|
||||||
|
mat/data_003.mat \
|
||||||
|
mat/data_004.mat \
|
||||||
|
mat/data_005.mat \
|
||||||
|
mat/data_006.mat \
|
||||||
|
meas_volt_amp.m
|
||||||
|
fi
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_note
|
||||||
|
All the files (data and Matlab scripts) are accessible [[file:data/meas_volt_amp.zip][here]].
|
||||||
|
#+end_note
|
||||||
|
|
||||||
|
** Measurement Description
|
||||||
|
*Goal*:
|
||||||
|
- Determine the Voltage Amplifier noise
|
||||||
|
|
||||||
|
*Setup*:
|
||||||
|
- The two inputs (differential) of the voltage amplifier are shunted with 50Ohms
|
||||||
|
- The AC/DC option of the Voltage amplifier is on AC
|
||||||
|
- The low pass filter is set to 1hHz
|
||||||
|
- We measure the output of the voltage amplifier with a 16bits ADC of the Speedgoat
|
||||||
|
|
||||||
|
*Measurements*:
|
||||||
|
- =data_003=: Ampli OFF
|
||||||
|
- =data_004=: Ampli ON set to 20dB
|
||||||
|
- =data_005=: Ampli ON set to 40dB
|
||||||
|
- =data_006=: Ampli ON set to 60dB
|
||||||
|
|
||||||
|
** Matlab Init :noexport:ignore:
|
||||||
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
|
<<matlab-init>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
** Load data
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
amp_off = load('mat/data_003.mat', 'data'); amp_off = amp_off.data(:, [1,3]);
|
||||||
|
amp_20d = load('mat/data_004.mat', 'data'); amp_20d = amp_20d.data(:, [1,3]);
|
||||||
|
amp_40d = load('mat/data_005.mat', 'data'); amp_40d = amp_40d.data(:, [1,3]);
|
||||||
|
amp_60d = load('mat/data_006.mat', 'data'); amp_60d = amp_60d.data(:, [1,3]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
** Time Domain
|
||||||
|
The time domain signals are shown on figure [[fig:ampli_noise_time]].
|
||||||
|
|
||||||
|
#+begin_src matlab :results none :exports none
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(amp_off(:, 2), amp_off(:, 1), 'DisplayName', 'OFF');
|
||||||
|
plot(amp_20d(:, 2), amp_20d(:, 1), 'DisplayName', '20dB');
|
||||||
|
plot(amp_40d(:, 2), amp_40d(:, 1), 'DisplayName', '40dB');
|
||||||
|
plot(amp_60d(:, 2), amp_60d(:, 1), 'DisplayName', '60dB');
|
||||||
|
hold off;
|
||||||
|
legend('Location', 'northeast');
|
||||||
|
xlabel('Time [s]');
|
||||||
|
ylabel('Voltage [V]');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:ampli_noise_time
|
||||||
|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||||
|
#+begin_src matlab :var filepath="figs/ampli_noise_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
||||||
|
<<plt-matlab>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:ampli_noise_time
|
||||||
|
#+CAPTION: Output of the amplifier
|
||||||
|
#+RESULTS: fig:ampli_noise_time
|
||||||
|
[[file:figs/ampli_noise_time.png]]
|
||||||
|
|
||||||
|
** Frequency Domain
|
||||||
|
We first compute some parameters that will be used for the PSD computation.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
dt = amp_off(2, 2)-amp_off(1, 2);
|
||||||
|
|
||||||
|
Fs = 1/dt; % [Hz]
|
||||||
|
|
||||||
|
win = hanning(ceil(10*Fs));
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
Then we compute the Power Spectral Density using =pwelch= function.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
[pxoff, f] = pwelch(amp_off(:,1), win, [], [], Fs);
|
||||||
|
[px20d, ~] = pwelch(amp_20d(:,1), win, [], [], Fs);
|
||||||
|
[px40d, ~] = pwelch(amp_40d(:,1), win, [], [], Fs);
|
||||||
|
[px60d, ~] = pwelch(amp_60d(:,1), win, [], [], Fs);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
We compute the theoretical ADC noise.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
q = 20/2^16; % quantization
|
||||||
|
Sq = q^2/12/1000; % PSD of the ADC noise
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
Finally, the ASD is shown on figure [[fig:ampli_noise_psd]].
|
||||||
|
#+begin_src matlab :results none :exports none
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
|
||||||
|
plot(f, sqrt(px20d), 'DisplayName', '20dB');
|
||||||
|
plot(f, sqrt(px40d), 'DisplayName', '40dB');
|
||||||
|
plot(f, sqrt(px60d), 'DisplayName', '60dB');
|
||||||
|
plot([0.1, 500], [sqrt(Sq), sqrt(Sq)], 'k--');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log');
|
||||||
|
set(gca, 'yscale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||||
|
legend('Location', 'northeast');
|
||||||
|
xlim([0.1, 500]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:ampli_noise_psd
|
||||||
|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||||
|
#+begin_src matlab :var filepath="figs/ampli_noise_psd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||||
|
<<plt-matlab>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:ampli_noise_psd
|
||||||
|
#+CAPTION: Amplitude Spectral Density of the measured voltage at the output of the voltage amplifier
|
||||||
|
#+RESULTS: fig:ampli_noise_psd
|
||||||
|
[[file:figs/ampli_noise_psd.png]]
|
||||||
|
|
||||||
|
** Conclusion
|
||||||
|
#+begin_important
|
||||||
|
*Questions*:
|
||||||
|
- Where does those sharp peaks comes from? Can this be due to aliasing?
|
||||||
|
|
||||||
|
Noise induced by the voltage amplifiers seems not to be a limiting factor as we have the same noise when they are OFF and ON.
|
||||||
|
#+end_important
|
||||||
|
|
||||||
|
* Measure of the influence of the AC/DC option on the voltage amplifiers
|
||||||
|
:PROPERTIES:
|
||||||
|
:header-args:matlab+: :tangle matlab/meas_noise_ac_dc.m
|
||||||
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
|
:END:
|
||||||
|
<<sec:meas_noise_ac_dc>>
|
||||||
|
|
||||||
|
#+begin_src bash :exports none :results none
|
||||||
|
if [ meas_noise_ac_dc.m -nt data/meas_noise_ac_dc.zip ]; then
|
||||||
|
zip data/meas_noise_ac_dc \
|
||||||
|
mat/data_012.mat \
|
||||||
|
mat/data_013.mat \
|
||||||
|
meas_noise_ac_dc.m
|
||||||
|
fi
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_note
|
||||||
|
All the files (data and Matlab scripts) are accessible [[file:data/meas_noise_ac_dc.zip][here]].
|
||||||
|
#+end_note
|
||||||
|
|
||||||
|
** Measurement Description
|
||||||
|
*Goal*:
|
||||||
|
- Measure the influence of the high-pass filter option of the voltage amplifiers
|
||||||
|
|
||||||
|
*Setup*:
|
||||||
|
- One geophone is located on the marble.
|
||||||
|
- It's signal goes to two voltage amplifiers with a gain of 60dB.
|
||||||
|
- One voltage amplifier is on the AC option, the other is on the DC option.
|
||||||
|
|
||||||
|
*Measurements*:
|
||||||
|
First measurement (=mat/data_014.mat= file):
|
||||||
|
| Column | Signal |
|
||||||
|
|--------+----------------------------|
|
||||||
|
| 1 | Amplifier 1 with AC option |
|
||||||
|
| 2 | Amplifier 2 with DC option |
|
||||||
|
| 3 | Time |
|
||||||
|
|
||||||
|
Second measurement (=mat/data_015.mat= file):
|
||||||
|
| Column | Signal |
|
||||||
|
|--------+----------------------------|
|
||||||
|
| 1 | Amplifier 1 with DC option |
|
||||||
|
| 2 | Amplifier 2 with AC option |
|
||||||
|
| 3 | Time |
|
||||||
|
|
||||||
|
#+name: fig:volt_amp_setup
|
||||||
|
#+caption: Picture of the two voltages amplifiers
|
||||||
|
#+attr_html: :width 500px
|
||||||
|
[[file:./img/IMG_20190503_170936.jpg]]
|
||||||
|
|
||||||
|
** Matlab Init :noexport:ignore:
|
||||||
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
|
<<matlab-init>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
** Load data
|
||||||
|
We load the data of the z axis of two geophones.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
meas14 = load('mat/data_014.mat', 'data'); meas14 = meas14.data;
|
||||||
|
meas15 = load('mat/data_015.mat', 'data'); meas15 = meas15.data;
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
** Time Domain
|
||||||
|
The signals are shown on figure [[fig:ac_dc_option_time]].
|
||||||
|
#+begin_src matlab :results none :exports none
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(meas14(:, 3), meas14(:, 1), 'DisplayName', 'Amp1 - AC');
|
||||||
|
plot(meas14(:, 3), meas14(:, 2), 'DisplayName', 'Amp2 - DC');
|
||||||
|
plot(meas15(:, 3), meas15(:, 1), 'DisplayName', 'Amp1 - DC');
|
||||||
|
plot(meas15(:, 3), meas15(:, 2), 'DisplayName', 'Amp2 - AC');
|
||||||
|
hold off;
|
||||||
|
legend('Location', 'bestoutside');
|
||||||
|
xlabel('Time [s]');
|
||||||
|
ylabel('Voltage [V]');
|
||||||
|
xlim([0, 100]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:ac_dc_option_time
|
||||||
|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||||
|
#+begin_src matlab :var filepath="figs/ac_dc_option_time.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
|
||||||
|
<<plt-matlab>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:ac_dc_option_time
|
||||||
|
#+CAPTION: Comparison of the signals going through the Voltage amplifiers
|
||||||
|
#+RESULTS: fig:ac_dc_option_time
|
||||||
|
[[file:figs/ac_dc_option_time.png]]
|
||||||
|
|
||||||
|
** Frequency Domain
|
||||||
|
We first compute some parameters that will be used for the PSD computation.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
dt = meas14(2, 3)-meas14(1, 3);
|
||||||
|
|
||||||
|
Fs = 1/dt; % [Hz]
|
||||||
|
|
||||||
|
win = hanning(ceil(10*Fs));
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
Then we compute the Power Spectral Density using =pwelch= function.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
[pxamp1ac, f] = pwelch(meas14(:, 1), win, [], [], Fs);
|
||||||
|
[pxamp2dc, ~] = pwelch(meas14(:, 2), win, [], [], Fs);
|
||||||
|
|
||||||
|
[pxamp1dc, ~] = pwelch(meas15(:, 1), win, [], [], Fs);
|
||||||
|
[pxamp2ac, ~] = pwelch(meas15(:, 2), win, [], [], Fs);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
The ASD of the signals are compare on figure [[fig:ac_dc_option_asd]].
|
||||||
|
#+begin_src matlab :results none :exports none
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(f, sqrt(pxamp1ac), 'DisplayName', 'Amp1 - AC');
|
||||||
|
plot(f, sqrt(pxamp2dc), 'DisplayName', 'Amp2 - DC');
|
||||||
|
plot(f, sqrt(pxamp1dc), 'DisplayName', 'Amp1 - DC');
|
||||||
|
plot(f, sqrt(pxamp2ac), 'DisplayName', 'Amp2 - AC');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log');
|
||||||
|
set(gca, 'yscale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||||
|
legend('Location', 'northeast');
|
||||||
|
xlim([0.1, 500]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:ac_dc_option_asd
|
||||||
|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||||
|
#+begin_src matlab :var filepath="figs/ac_dc_option_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||||
|
<<plt-matlab>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:ac_dc_option_asd
|
||||||
|
#+CAPTION: Amplitude Spectral Density of the measured signals
|
||||||
|
#+RESULTS: fig:ac_dc_option_asd
|
||||||
|
[[file:figs/ac_dc_option_asd.png]]
|
||||||
|
|
||||||
|
** Conclusion
|
||||||
|
#+begin_important
|
||||||
|
- The voltage amplifiers include some very sharp high pass filters at 1.5Hz (maybe 4th order)
|
||||||
|
- There is a DC offset on the time domain signal because the DC-offset knob was not set to zero
|
||||||
|
#+end_important
|
||||||
|
|
||||||
|
* Transfer function of the Low Pass Filter
|
||||||
|
:PROPERTIES:
|
||||||
|
:header-args:matlab+: :tangle matlab/low_pass_filter_measurements.m
|
||||||
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
|
:END:
|
||||||
|
<<sec:low_pass_filter_measurements>>
|
||||||
|
|
||||||
|
#+begin_src bash :exports none :results none
|
||||||
|
if [ low_pass_filter_measurements.m -nt data/low_pass_filter_measurements.zip ]; then
|
||||||
|
zip data/low_pass_filter_measurements \
|
||||||
|
mat/data_018.mat \
|
||||||
|
mat/data_019.mat \
|
||||||
|
low_pass_filter_measurements.m
|
||||||
|
fi
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
The computation files for this section are accessible [[file:data/low_pass_filter_measurements.zip][here]].
|
||||||
|
|
||||||
|
** First LPF with a Cut-off frequency of 160Hz
|
||||||
|
*** Measurement Description
|
||||||
|
*Goal*:
|
||||||
|
- Measure the Low Pass Filter Transfer Function
|
||||||
|
|
||||||
|
The values of the components are:
|
||||||
|
\begin{aligned}
|
||||||
|
R &= 1k\Omega \\
|
||||||
|
C &= 1\mu F
|
||||||
|
\end{aligned}
|
||||||
|
Which makes a cut-off frequency of $f_c = \frac{1}{RC} = 1000 rad/s = 160Hz$.
|
||||||
|
|
||||||
|
#+NAME: fig:lpf
|
||||||
|
#+HEADER: :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/MEGA/These/LaTeX/}{config.tex}")
|
||||||
|
#+HEADER: :imagemagick t :fit yes :iminoptions -scale 100% -density 150 :imoutoptions -quality 100
|
||||||
|
#+HEADER: :results raw replace :buffer no :eval no-export :exports both :mkdirp yes
|
||||||
|
#+HEADER: :output-dir figs
|
||||||
|
#+begin_src latex :file lpf.pdf :post pdf2svg(file=*this*, ext="png") :exports both
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\draw (0,2)
|
||||||
|
to [R=\(R\)] ++(2,0) node[circ]
|
||||||
|
to ++(2,0)
|
||||||
|
++(-2,0)
|
||||||
|
to [C=\(C\)] ++(0,-2) node[circ]
|
||||||
|
++(-2,0)
|
||||||
|
to ++(2,0)
|
||||||
|
to ++(2,0)
|
||||||
|
\end{tikzpicture}
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:lpf
|
||||||
|
#+CAPTION: Schematic of the Low Pass Filter used
|
||||||
|
#+RESULTS: fig:lpf
|
||||||
|
[[file:figs/lpf.png]]
|
||||||
|
|
||||||
|
|
||||||
|
*Setup*:
|
||||||
|
- We are measuring the signal from from Geophone with a BNC T
|
||||||
|
- On part goes to column 1 through the LPF
|
||||||
|
- The other part goes to column 2 without the LPF
|
||||||
|
|
||||||
|
*Measurements*:
|
||||||
|
=mat/data_018.mat=:
|
||||||
|
| Column | Signal |
|
||||||
|
|--------+----------------------|
|
||||||
|
| 1 | Amplifier 1 with LPF |
|
||||||
|
| 2 | Amplifier 2 |
|
||||||
|
| 3 | Time |
|
||||||
|
|
||||||
|
#+name: fig:lpf_picture
|
||||||
|
#+caption: Picture of the low pass filter used
|
||||||
|
#+attr_html: :width 500px
|
||||||
|
[[file:./img/IMG_20190507_102756.jpg]]
|
||||||
|
|
||||||
|
*** Matlab Init :noexport:ignore:
|
||||||
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
|
<<matlab-init>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Load data
|
||||||
|
We load the data of the z axis of two geophones.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
data = load('mat/data_018.mat', 'data'); data = data.data;
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Transfer function of the LPF
|
||||||
|
We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
dt = data(2, 3)-data(1, 3);
|
||||||
|
|
||||||
|
Fs = 1/dt; % [Hz]
|
||||||
|
|
||||||
|
win = hanning(ceil(10*Fs));
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1000rad/s$.
|
||||||
|
We obtain the result on figure [[fig:Glpf_bode]].
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
Gth = 1/(1+s/1000)
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
figure;
|
||||||
|
ax1 = subplot(2, 1, 1);
|
||||||
|
hold on;
|
||||||
|
plot(f, abs(Glpf));
|
||||||
|
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||||
|
set(gca, 'XTickLabel',[]);
|
||||||
|
ylabel('Magnitude');
|
||||||
|
|
||||||
|
ax2 = subplot(2, 1, 2);
|
||||||
|
hold on;
|
||||||
|
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
||||||
|
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log');
|
||||||
|
ylim([-180, 180]);
|
||||||
|
yticks([-180, -90, 0, 90, 180]);
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||||
|
|
||||||
|
linkaxes([ax1,ax2],'x');
|
||||||
|
xlim([1, 500]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:Glpf_bode
|
||||||
|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||||
|
#+begin_src matlab :var filepath="figs/Glpf_bode.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||||
|
<<plt-matlab>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:Glpf_bode
|
||||||
|
#+CAPTION: Bode Diagram of the measured Low Pass filter and the theoritical one
|
||||||
|
#+RESULTS: fig:Glpf_bode
|
||||||
|
[[file:figs/Glpf_bode.png]]
|
||||||
|
*** Conclusion
|
||||||
|
#+begin_important
|
||||||
|
As we want to measure things up to $500Hz$, we chose to change the value of the capacitor to obtain a cut-off frequency of $1kHz$.
|
||||||
|
#+end_important
|
||||||
|
|
||||||
|
** Second LPF with a Cut-off frequency of 1000Hz
|
||||||
|
*** Measurement description
|
||||||
|
This time, the value are
|
||||||
|
\begin{aligned}
|
||||||
|
R &= 1k\Omega \\
|
||||||
|
C &= 150nF
|
||||||
|
\end{aligned}
|
||||||
|
Which makes a low pass filter with a cut-off frequency of $f_c = 1060Hz$.
|
||||||
|
|
||||||
|
*** Load data
|
||||||
|
We load the data of the z axis of two geophones.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
data = load('mat/data_019.mat', 'data'); data = data.data;
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
*** Transfer function of the LPF
|
||||||
|
We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
dt = data(2, 3)-data(1, 3);
|
||||||
|
|
||||||
|
Fs = 1/dt; % [Hz]
|
||||||
|
|
||||||
|
win = hanning(ceil(10*Fs));
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1060Hz$.
|
||||||
|
We obtain the result on figure [[fig:Glpf_bode_bis]].
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
Gth = 1/(1+s/1060/2/pi);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
figure;
|
||||||
|
ax1 = subplot(2, 1, 1);
|
||||||
|
hold on;
|
||||||
|
plot(f, abs(Glpf));
|
||||||
|
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
||||||
|
set(gca, 'XTickLabel',[]);
|
||||||
|
ylabel('Magnitude');
|
||||||
|
|
||||||
|
ax2 = subplot(2, 1, 2);
|
||||||
|
hold on;
|
||||||
|
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
||||||
|
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log');
|
||||||
|
ylim([-180, 180]);
|
||||||
|
yticks([-180, -90, 0, 90, 180]);
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Phase');
|
||||||
|
|
||||||
|
linkaxes([ax1,ax2],'x');
|
||||||
|
xlim([1, 500]);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:Glpf_bode_bis
|
||||||
|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||||
|
#+begin_src matlab :var filepath="figs/Glpf_bode_bis.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
||||||
|
<<plt-matlab>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:Glpf_bode_bis
|
||||||
|
#+CAPTION: Bode Diagram of the measured Low Pass filter and the theoritical one
|
||||||
|
#+RESULTS: fig:Glpf_bode_bis
|
||||||
|
[[file:figs/Glpf_bode_bis.png]]
|
||||||
|
*** Conclusion
|
||||||
|
#+begin_important
|
||||||
|
The added LPF has the expected behavior.
|
||||||
|
#+end_important
|
BIN
instrumentation/mat/data_018.mat
Normal file
BIN
instrumentation/mat/data_019.mat
Normal file
@ -1,11 +0,0 @@
|
|||||||
data1 = load('mat/data_001.mat', 't', 'x1', 'x2');
|
|
||||||
data2 = load('mat/data_002.mat', 't', 'x1', 'x2');
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(data1.t, data1.x1-data1.x2);
|
|
||||||
plot(data2.t, data2.x1-data2.x2);
|
|
||||||
hold off
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
legend({'Slip-ring OFF', 'Slip-ring ON'});
|
|
3
slip-ring-test/figs/.gitignore
vendored
@ -1,3 +0,0 @@
|
|||||||
*.tex
|
|
||||||
*.pdf
|
|
||||||
*.svg
|
|
Before Width: | Height: | Size: 324 KiB |
Before Width: | Height: | Size: 110 KiB After Width: | Height: | Size: 110 KiB |
Before Width: | Height: | Size: 572 KiB |
Before Width: | Height: | Size: 62 KiB After Width: | Height: | Size: 62 KiB |
Before Width: | Height: | Size: 4.4 MiB After Width: | Height: | Size: 4.4 MiB |
Before Width: | Height: | Size: 3.5 MiB After Width: | Height: | Size: 3.5 MiB |
@ -1,39 +1,165 @@
|
|||||||
#+TITLE: Measurements
|
#+TITLE: Measurements On the Slip-Ring
|
||||||
:DRAWER:
|
#+SETUPFILE: ../config.org
|
||||||
#+STARTUP: overview
|
|
||||||
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
|
* Effect of the Slip-Ring on the signal
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
|
|
||||||
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
|
|
||||||
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
|
|
||||||
|
|
||||||
#+PROPERTY: header-args:matlab :session *MATLAB*
|
|
||||||
#+PROPERTY: header-args:matlab+ :comments org
|
|
||||||
#+PROPERTY: header-args:matlab+ :results output
|
|
||||||
#+PROPERTY: header-args:matlab+ :exports both
|
|
||||||
#+PROPERTY: header-args:matlab+ :eval no-export
|
|
||||||
#+PROPERTY: header-args:matlab+ :output-dir figs
|
|
||||||
:END:
|
|
||||||
|
|
||||||
* Effect of the rotation of the Slip-Ring
|
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:matlab+: :tangle meas_effect_sr.m
|
:header-args:matlab+: :tangle matlab/meas_slip_ring_geophone.m
|
||||||
:header-args:matlab+: :comments org :mkdirp yes
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
:END:
|
:END:
|
||||||
|
<<sec:meas_slip_ring_geophone>>
|
||||||
|
|
||||||
#+begin_src bash :exports none :results none
|
#+begin_src bash :exports none :results none
|
||||||
if [ meas_effect_sr.m -nt data/meas_effect_sr.zip ]; then
|
if [ matlab/meas_slip_ring_geophone.m -nt data/meas_slip_ring_geophone.zip ]; then
|
||||||
zip data/meas_effect_sr \
|
cp matlab/meas_slip_ring_geophone.m meas_slip_ring_geophone.m;
|
||||||
mat/data_001.mat \
|
zip data/meas_slip_ring_geophone \
|
||||||
mat/data_002.mat \
|
mat/data_018.mat \
|
||||||
meas_effect_sr.m
|
mat/data_019.mat \
|
||||||
|
meas_slip_ring_geophone.m;
|
||||||
|
rm meas_slip_ring_geophone.m;
|
||||||
fi
|
fi
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
The data and matlab files are accessible [[file:data/meas_effect_sr.zip][here]].
|
#+begin_note
|
||||||
|
All the files (data and Matlab scripts) are accessible [[file:data/meas_slip_ring_geophone.zip][here]].
|
||||||
|
#+end_note
|
||||||
|
|
||||||
|
** Experimental Setup
|
||||||
|
Two measurements are made with the control systems of all the stages turned OFF.
|
||||||
|
|
||||||
|
One geophone is located on the marble while the other is located at the sample location (figure [[fig:setup_slipring]]).
|
||||||
|
|
||||||
|
#+name: fig:setup_slipring
|
||||||
|
#+caption: Experimental Setup
|
||||||
|
#+attr_html: :width 500px
|
||||||
|
[[file:./img/IMG_20190430_112615.jpg]]
|
||||||
|
|
||||||
|
The two measurements are:
|
||||||
|
| Measurement File | Description |
|
||||||
|
|------------------+------------------------------------------------------------------|
|
||||||
|
| =meas_018.mat= | Signal from the top geophone does not goes through the Slip-ring |
|
||||||
|
| =meas_019.mat= | Signal goes through the Slip-ring (as shown on the figure above) |
|
||||||
|
|
||||||
|
Each of the measurement =mat= file contains one =data= array with 3 columns:
|
||||||
|
| Column number | Description |
|
||||||
|
|---------------+-------------------|
|
||||||
|
| 1 | Geophone - Marble |
|
||||||
|
| 2 | Geophone - Sample |
|
||||||
|
| 3 | Time |
|
||||||
|
|
||||||
|
** Matlab Init :noexport:ignore:
|
||||||
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
|
<<matlab-init>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
** Load data
|
||||||
|
We load the data of the z axis of two geophones.
|
||||||
|
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
d8 = load('mat/data_018.mat', 'data'); d8 = d8.data;
|
||||||
|
d9 = load('mat/data_019.mat', 'data'); d9 = d9.data;
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
** Analysis - Time Domain
|
||||||
|
First, we compare the time domain signals for the two experiments (figure [[fig:slipring_time]]).
|
||||||
|
|
||||||
|
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(d9(:, 3), d9(:, 2), 'DisplayName', 'Slip-Ring');
|
||||||
|
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Wire');
|
||||||
|
hold off;
|
||||||
|
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||||
|
xlim([0, 50]);
|
||||||
|
legend('location', 'northeast');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:slipring_time
|
||||||
|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||||
|
#+begin_src matlab :var filepath="figs/slipring_time.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
||||||
|
<<plt-matlab>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:slipring_time
|
||||||
|
#+CAPTION: Effect of the Slip-Ring on the measured signal - Time domain
|
||||||
|
#+RESULTS: fig:slipring_time
|
||||||
|
[[file:figs/slipring_time.png]]
|
||||||
|
|
||||||
|
** Analysis - Frequency Domain
|
||||||
|
We then compute the Power Spectral Density of the two signals and we compare them (figure [[fig:slipring_asd]]).
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
dt = d8(2, 3) - d8(1, 3);
|
||||||
|
Fs = 1/dt;
|
||||||
|
|
||||||
|
win = hanning(ceil(1*Fs));
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
[pxx8, f] = pwelch(d8(:, 2), win, [], [], Fs);
|
||||||
|
[pxx9, ~] = pwelch(d9(:, 2), win, [], [], Fs);
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :results none
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(f, sqrt(pxx9), 'DisplayName', 'Slip-Ring');
|
||||||
|
plot(f, sqrt(pxx8), 'DisplayName', 'Wire');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log');
|
||||||
|
set(gca, 'yscale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||||
|
xlim([1, 500]);
|
||||||
|
legend('Location', 'southwest');
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:slipring_asd
|
||||||
|
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
||||||
|
#+begin_src matlab :var filepath="figs/slipring_asd.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
|
||||||
|
<<plt-matlab>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: fig:slipring_asd
|
||||||
|
#+CAPTION: Effect of the Slip-Ring on the measured signal - Frequency domain
|
||||||
|
#+RESULTS: fig:slipring_asd
|
||||||
|
[[file:figs/slipring_asd.png]]
|
||||||
|
|
||||||
|
** Conclusion
|
||||||
|
#+begin_important
|
||||||
|
- Connecting the geophone through the Slip-Ring seems to induce a lot of noise.
|
||||||
|
#+end_important
|
||||||
|
|
||||||
|
#+begin_note
|
||||||
|
*Remaining questions to answer*:
|
||||||
|
- Why is there a sharp peak at 300Hz?
|
||||||
|
- Why the use of the Slip-Ring does induce a noise?
|
||||||
|
- Can the capacitive/inductive properties of the wires in the Slip-ring does not play well with the geophone? (resonant RLC circuit)
|
||||||
|
#+end_note
|
||||||
|
|
||||||
|
* Effect of the rotation of the Slip-Ring
|
||||||
|
:PROPERTIES:
|
||||||
|
:header-args:matlab+: :tangle matlab/meas_effect_sr.m
|
||||||
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
|
:END:
|
||||||
|
<<sec:meas_effect_sr>>
|
||||||
|
|
||||||
|
#+begin_src bash :exports none :results none
|
||||||
|
if [ matlab/meas_effect_sr.m -nt data/meas_effect_sr.zip ]; then
|
||||||
|
cp matlab/meas_effect_sr.m meas_effect_sr.m;
|
||||||
|
zip data/meas_effect_sr \
|
||||||
|
mat/data_001.mat \
|
||||||
|
mat/data_002.mat \
|
||||||
|
meas_effect_sr.m;
|
||||||
|
rm meas_effect_sr.m;
|
||||||
|
fi
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_note
|
||||||
|
All the files (data and Matlab scripts) are accessible [[file:data/meas_effect_sr.zip][here]].
|
||||||
|
#+end_note
|
||||||
|
|
||||||
** Measurement Description
|
** Measurement Description
|
||||||
Random Signal is generated by one DAC of the SpeedGoat.
|
Random Signal is generated by one DAC of the SpeedGoat.
|
||||||
@ -60,7 +186,11 @@ The goal is to determine is the signal is altered when the spindle is rotating.
|
|||||||
Here, the rotation speed of the Slip-Ring is set to 1rpm.
|
Here, the rotation speed of the Slip-Ring is set to 1rpm.
|
||||||
|
|
||||||
** Matlab Init :noexport:ignore:
|
** Matlab Init :noexport:ignore:
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
@ -159,159 +289,29 @@ We now look at the difference between the signal directly measured by the ADC an
|
|||||||
- Should the measurement be redone using voltage amplifiers?
|
- Should the measurement be redone using voltage amplifiers?
|
||||||
- Use higher rotation speed and measure for longer periods (to have multiple revolutions) ?
|
- Use higher rotation speed and measure for longer periods (to have multiple revolutions) ?
|
||||||
#+end_note
|
#+end_note
|
||||||
* Measure of the noise of the Voltage Amplifier
|
|
||||||
:PROPERTIES:
|
|
||||||
:header-args:matlab+: :tangle meas_volt_amp.m
|
|
||||||
:header-args:matlab+: :comments org :mkdirp yes
|
|
||||||
:END:
|
|
||||||
|
|
||||||
#+begin_src bash :exports none :results none
|
|
||||||
if [ meas_volt_amp.m -nt data/meas_volt_amp.zip ]; then
|
|
||||||
zip data/meas_volt_amp \
|
|
||||||
mat/data_003.mat \
|
|
||||||
mat/data_004.mat \
|
|
||||||
mat/data_005.mat \
|
|
||||||
mat/data_006.mat \
|
|
||||||
meas_volt_amp.m
|
|
||||||
fi
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
The data and matlab files are accessible [[file:data/meas_volt_amp.zip][here]].
|
|
||||||
|
|
||||||
** Measurement Description
|
|
||||||
*Goal*:
|
|
||||||
- Determine the Voltage Amplifier noise
|
|
||||||
|
|
||||||
*Setup*:
|
|
||||||
- The two inputs (differential) of the voltage amplifier are shunted with 50Ohms
|
|
||||||
- The AC/DC option of the Voltage amplifier is on AC
|
|
||||||
- The low pass filter is set to 1hHz
|
|
||||||
- We measure the output of the voltage amplifier with a 16bits ADC of the Speedgoat
|
|
||||||
|
|
||||||
*Measurements*:
|
|
||||||
- =data_003=: Ampli OFF
|
|
||||||
- =data_004=: Ampli ON set to 20dB
|
|
||||||
- =data_005=: Ampli ON set to 40dB
|
|
||||||
- =data_006=: Ampli ON set to 60dB
|
|
||||||
|
|
||||||
** Matlab Init :noexport:ignore:
|
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
||||||
<<matlab-init>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
** Load data
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
amp_off = load('mat/data_003.mat', 'data'); amp_off = amp_off.data(:, [1,3]);
|
|
||||||
amp_20d = load('mat/data_004.mat', 'data'); amp_20d = amp_20d.data(:, [1,3]);
|
|
||||||
amp_40d = load('mat/data_005.mat', 'data'); amp_40d = amp_40d.data(:, [1,3]);
|
|
||||||
amp_60d = load('mat/data_006.mat', 'data'); amp_60d = amp_60d.data(:, [1,3]);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
** Time Domain
|
|
||||||
The time domain signals are shown on figure [[fig:ampli_noise_time]].
|
|
||||||
|
|
||||||
#+begin_src matlab :results none :exports none
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(amp_off(:, 2), amp_off(:, 1), 'DisplayName', 'OFF');
|
|
||||||
plot(amp_20d(:, 2), amp_20d(:, 1), 'DisplayName', '20dB');
|
|
||||||
plot(amp_40d(:, 2), amp_40d(:, 1), 'DisplayName', '40dB');
|
|
||||||
plot(amp_60d(:, 2), amp_60d(:, 1), 'DisplayName', '60dB');
|
|
||||||
hold off;
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:ampli_noise_time
|
|
||||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
|
||||||
#+begin_src matlab :var filepath="figs/ampli_noise_time.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
|
|
||||||
<<plt-matlab>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:ampli_noise_time
|
|
||||||
#+CAPTION: Output of the amplifier
|
|
||||||
#+RESULTS: fig:ampli_noise_time
|
|
||||||
[[file:figs/ampli_noise_time.png]]
|
|
||||||
|
|
||||||
** Frequency Domain
|
|
||||||
We first compute some parameters that will be used for the PSD computation.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
dt = amp_off(2, 2)-amp_off(1, 2);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
Then we compute the Power Spectral Density using =pwelch= function.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
[pxoff, f] = pwelch(amp_off(:,1), win, [], [], Fs);
|
|
||||||
[px20d, ~] = pwelch(amp_20d(:,1), win, [], [], Fs);
|
|
||||||
[px40d, ~] = pwelch(amp_40d(:,1), win, [], [], Fs);
|
|
||||||
[px60d, ~] = pwelch(amp_60d(:,1), win, [], [], Fs);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
We compute the theoretical ADC noise.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
q = 20/2^16; % quantization
|
|
||||||
Sq = q^2/12/1000; % PSD of the ADC noise
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
Finally, the ASD is shown on figure [[fig:ampli_noise_psd]].
|
|
||||||
#+begin_src matlab :results none :exports none
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
|
|
||||||
plot(f, sqrt(px20d), 'DisplayName', '20dB');
|
|
||||||
plot(f, sqrt(px40d), 'DisplayName', '40dB');
|
|
||||||
plot(f, sqrt(px60d), 'DisplayName', '60dB');
|
|
||||||
plot([0.1, 500], [sqrt(Sq), sqrt(Sq)], 'k--');
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlim([0.1, 500]);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:ampli_noise_psd
|
|
||||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
|
||||||
#+begin_src matlab :var filepath="figs/ampli_noise_psd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
||||||
<<plt-matlab>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:ampli_noise_psd
|
|
||||||
#+CAPTION: Amplitude Spectral Density of the measured voltage at the output of the voltage amplifier
|
|
||||||
#+RESULTS: fig:ampli_noise_psd
|
|
||||||
[[file:figs/ampli_noise_psd.png]]
|
|
||||||
|
|
||||||
** Conclusion
|
|
||||||
#+begin_important
|
|
||||||
*Questions*:
|
|
||||||
- Where does those sharp peaks comes from? Can this be due to aliasing?
|
|
||||||
|
|
||||||
Noise induced by the voltage amplifiers seems not to be a limiting factor as we have the same noise when they are OFF and ON.
|
|
||||||
#+end_important
|
|
||||||
|
|
||||||
* Measure of the noise induced by the Slip-Ring
|
* Measure of the noise induced by the Slip-Ring
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:matlab+: :tangle meas_slip_ring.m
|
:header-args:matlab+: :tangle matlab/meas_slip_ring.m
|
||||||
:header-args:matlab+: :comments org :mkdirp yes
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
:END:
|
:END:
|
||||||
|
<<sec:meas_slip_ring>>
|
||||||
|
|
||||||
#+begin_src bash :exports none :results none
|
#+begin_src bash :exports none :results none
|
||||||
if [ meas_slip_ring.m -nt data/meas_slip_ring.zip ]; then
|
if [ matlab/meas_slip_ring.m -nt data/meas_slip_ring.zip ]; then
|
||||||
|
cp matlab/meas_slip_ring.m meas_slip_ring.m;
|
||||||
zip data/meas_slip_ring \
|
zip data/meas_slip_ring \
|
||||||
mat/data_008.mat \
|
mat/data_008.mat \
|
||||||
mat/data_009.mat \
|
mat/data_009.mat \
|
||||||
mat/data_010.mat \
|
mat/data_010.mat \
|
||||||
mat/data_011.mat \
|
mat/data_011.mat \
|
||||||
meas_slip_ring.m
|
meas_slip_ring.m;
|
||||||
|
rm meas_slip_ring.m;
|
||||||
fi
|
fi
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
The data and matlab files are accessible [[file:data/meas_slip_ring.zip][here]].
|
#+begin_note
|
||||||
|
All the files (data and Matlab scripts) are accessible [[file:data/meas_slip_ring.zip][here]].
|
||||||
|
#+end_note
|
||||||
|
|
||||||
** Measurement Description
|
** Measurement Description
|
||||||
*Goal*:
|
*Goal*:
|
||||||
@ -343,7 +343,11 @@ Second column: Slip-ring measure
|
|||||||
[[file:./img/VID_20190503_161401.gif]]
|
[[file:./img/VID_20190503_161401.gif]]
|
||||||
|
|
||||||
** Matlab Init :noexport:ignore:
|
** Matlab Init :noexport:ignore:
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
<<matlab-init>>
|
<<matlab-init>>
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
@ -463,22 +467,36 @@ And we plot the ASD of the measured signals (figure [[fig:sr_psd_compare]]);
|
|||||||
|
|
||||||
* Measure of the noise induced by the slip ring when using a geophone
|
* Measure of the noise induced by the slip ring when using a geophone
|
||||||
:PROPERTIES:
|
:PROPERTIES:
|
||||||
:header-args:matlab+: :tangle meas_sr_geophone.m
|
:header-args:matlab+: :tangle matlab/meas_sr_geophone.m
|
||||||
:header-args:matlab+: :comments org :mkdirp yes
|
:header-args:matlab+: :comments org :mkdirp yes
|
||||||
:END:
|
:END:
|
||||||
|
<<sec:meas_sr_geophone>>
|
||||||
|
|
||||||
#+begin_src bash :exports none :results none
|
#+begin_src bash :exports none :results none
|
||||||
if [ meas_sr_geophone.m -nt data/meas_sr_geophone.zip ]; then
|
if [ matlab/meas_sr_geophone.m -nt data/meas_sr_geophone.zip ]; then
|
||||||
|
cp matlab/meas_sr_geophone.m meas_sr_geophone.m;
|
||||||
zip data/meas_sr_geophone \
|
zip data/meas_sr_geophone \
|
||||||
mat/data_012.mat \
|
mat/data_012.mat \
|
||||||
mat/data_013.mat \
|
mat/data_013.mat \
|
||||||
mat/data_016.mat \
|
mat/data_016.mat \
|
||||||
mat/data_017.mat \
|
mat/data_017.mat \
|
||||||
meas_sr_geophone.m
|
meas_sr_geophone.m;
|
||||||
|
rm meas_sr_geophone.m;
|
||||||
fi
|
fi
|
||||||
#+end_src
|
#+end_src
|
||||||
|
|
||||||
The data and matlab files are accessible [[file:data/meas_sr_geophone.zip][here]].
|
#+begin_note
|
||||||
|
All the files (data and Matlab scripts) are accessible [[file:data/meas_sr_geophone.zip][here]].
|
||||||
|
#+end_note
|
||||||
|
|
||||||
|
** Matlab Init :noexport:ignore:
|
||||||
|
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||||
|
<<matlab-dir>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+begin_src matlab :exports none :results silent :noweb yes
|
||||||
|
<<matlab-init>>
|
||||||
|
#+end_src
|
||||||
|
|
||||||
** First Measurement without LPF
|
** First Measurement without LPF
|
||||||
*** Measurement Description
|
*** Measurement Description
|
||||||
@ -502,11 +520,6 @@ Second column: Slip-ring measure
|
|||||||
- =data_012=: Slip-Ring OFF
|
- =data_012=: Slip-Ring OFF
|
||||||
- =data_013=: Slip-Ring ON
|
- =data_013=: Slip-Ring ON
|
||||||
|
|
||||||
*** Matlab Init :noexport:ignore:
|
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
||||||
<<matlab-init>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
*** Load data
|
*** Load data
|
||||||
We load the data of the z axis of two geophones.
|
We load the data of the z axis of two geophones.
|
||||||
#+begin_src matlab :results none
|
#+begin_src matlab :results none
|
||||||
@ -825,357 +838,3 @@ Finally, we compare the Amplitude Spectral Density of the signals (figure [[fig:
|
|||||||
- Using the LPF, we don't have any perturbation coming from the slip-ring when it is on.
|
- Using the LPF, we don't have any perturbation coming from the slip-ring when it is on.
|
||||||
- However, we should use a smaller value of the capacitor to have a cut-off frequency at $1kHz$.
|
- However, we should use a smaller value of the capacitor to have a cut-off frequency at $1kHz$.
|
||||||
#+end_important
|
#+end_important
|
||||||
|
|
||||||
* Measure of the influence of the AC/DC option on the voltage amplifiers
|
|
||||||
:PROPERTIES:
|
|
||||||
:header-args:matlab+: :tangle meas_noise_ac_dc.m
|
|
||||||
:header-args:matlab+: :comments org :mkdirp yes
|
|
||||||
:END:
|
|
||||||
|
|
||||||
#+begin_src bash :exports none :results none
|
|
||||||
if [ meas_noise_ac_dc.m -nt data/meas_noise_ac_dc.zip ]; then
|
|
||||||
zip data/meas_noise_ac_dc \
|
|
||||||
mat/data_012.mat \
|
|
||||||
mat/data_013.mat \
|
|
||||||
meas_noise_ac_dc.m
|
|
||||||
fi
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
The data and matlab files are accessible [[file:data/meas_noise_ac_dc.zip][here]].
|
|
||||||
|
|
||||||
** Measurement Description
|
|
||||||
*Goal*:
|
|
||||||
- Measure the influence of the high-pass filter option of the voltage amplifiers
|
|
||||||
|
|
||||||
*Setup*:
|
|
||||||
- One geophone is located on the marble.
|
|
||||||
- It's signal goes to two voltage amplifiers with a gain of 60dB.
|
|
||||||
- One voltage amplifier is on the AC option, the other is on the DC option.
|
|
||||||
|
|
||||||
*Measurements*:
|
|
||||||
First measurement (=mat/data_014.mat= file):
|
|
||||||
| Column | Signal |
|
|
||||||
|--------+----------------------------|
|
|
||||||
| 1 | Amplifier 1 with AC option |
|
|
||||||
| 2 | Amplifier 2 with DC option |
|
|
||||||
| 3 | Time |
|
|
||||||
|
|
||||||
Second measurement (=mat/data_015.mat= file):
|
|
||||||
| Column | Signal |
|
|
||||||
|--------+----------------------------|
|
|
||||||
| 1 | Amplifier 1 with DC option |
|
|
||||||
| 2 | Amplifier 2 with AC option |
|
|
||||||
| 3 | Time |
|
|
||||||
|
|
||||||
#+name: fig:volt_amp_setup
|
|
||||||
#+caption: Picture of the two voltages amplifiers
|
|
||||||
#+attr_html: :width 500px
|
|
||||||
[[file:./img/IMG_20190503_170936.jpg]]
|
|
||||||
|
|
||||||
** Matlab Init :noexport:ignore:
|
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
||||||
<<matlab-init>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
** Load data
|
|
||||||
We load the data of the z axis of two geophones.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
meas14 = load('mat/data_014.mat', 'data'); meas14 = meas14.data;
|
|
||||||
meas15 = load('mat/data_015.mat', 'data'); meas15 = meas15.data;
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
** Time Domain
|
|
||||||
The signals are shown on figure [[fig:ac_dc_option_time]].
|
|
||||||
#+begin_src matlab :results none :exports none
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(meas14(:, 3), meas14(:, 1), 'DisplayName', 'Amp1 - AC');
|
|
||||||
plot(meas14(:, 3), meas14(:, 2), 'DisplayName', 'Amp2 - DC');
|
|
||||||
plot(meas15(:, 3), meas15(:, 1), 'DisplayName', 'Amp1 - DC');
|
|
||||||
plot(meas15(:, 3), meas15(:, 2), 'DisplayName', 'Amp2 - AC');
|
|
||||||
hold off;
|
|
||||||
legend('Location', 'bestoutside');
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
xlim([0, 100]);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:ac_dc_option_time
|
|
||||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
|
||||||
#+begin_src matlab :var filepath="figs/ac_dc_option_time.pdf" :var figsize="full-normal" :post pdf2svg(file=*this*, ext="png")
|
|
||||||
<<plt-matlab>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:ac_dc_option_time
|
|
||||||
#+CAPTION: Comparison of the signals going through the Voltage amplifiers
|
|
||||||
#+RESULTS: fig:ac_dc_option_time
|
|
||||||
[[file:figs/ac_dc_option_time.png]]
|
|
||||||
|
|
||||||
** Frequency Domain
|
|
||||||
We first compute some parameters that will be used for the PSD computation.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
dt = meas14(2, 3)-meas14(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
Then we compute the Power Spectral Density using =pwelch= function.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
[pxamp1ac, f] = pwelch(meas14(:, 1), win, [], [], Fs);
|
|
||||||
[pxamp2dc, ~] = pwelch(meas14(:, 2), win, [], [], Fs);
|
|
||||||
|
|
||||||
[pxamp1dc, ~] = pwelch(meas15(:, 1), win, [], [], Fs);
|
|
||||||
[pxamp2ac, ~] = pwelch(meas15(:, 2), win, [], [], Fs);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
The ASD of the signals are compare on figure [[fig:ac_dc_option_asd]].
|
|
||||||
#+begin_src matlab :results none :exports none
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(pxamp1ac), 'DisplayName', 'Amp1 - AC');
|
|
||||||
plot(f, sqrt(pxamp2dc), 'DisplayName', 'Amp2 - DC');
|
|
||||||
plot(f, sqrt(pxamp1dc), 'DisplayName', 'Amp1 - DC');
|
|
||||||
plot(f, sqrt(pxamp2ac), 'DisplayName', 'Amp2 - AC');
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlim([0.1, 500]);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:ac_dc_option_asd
|
|
||||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
|
||||||
#+begin_src matlab :var filepath="figs/ac_dc_option_asd.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
||||||
<<plt-matlab>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:ac_dc_option_asd
|
|
||||||
#+CAPTION: Amplitude Spectral Density of the measured signals
|
|
||||||
#+RESULTS: fig:ac_dc_option_asd
|
|
||||||
[[file:figs/ac_dc_option_asd.png]]
|
|
||||||
|
|
||||||
** Conclusion
|
|
||||||
#+begin_important
|
|
||||||
- The voltage amplifiers include some very sharp high pass filters at 1.5Hz (maybe 4th order)
|
|
||||||
- There is a DC offset on the time domain signal because the DC-offset knob was not set to zero
|
|
||||||
#+end_important
|
|
||||||
|
|
||||||
* Transfer function of the Low Pass Filter
|
|
||||||
:PROPERTIES:
|
|
||||||
:header-args:matlab+: :tangle low_pass_filter_measurements.m
|
|
||||||
:header-args:matlab+: :comments org :mkdirp yes
|
|
||||||
:END:
|
|
||||||
|
|
||||||
#+begin_src bash :exports none :results none
|
|
||||||
if [ low_pass_filter_measurements.m -nt data/low_pass_filter_measurements.zip ]; then
|
|
||||||
zip data/low_pass_filter_measurements \
|
|
||||||
mat/data_018.mat \
|
|
||||||
mat/data_019.mat \
|
|
||||||
low_pass_filter_measurements.m
|
|
||||||
fi
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
The computation files for this section are accessible [[file:data/low_pass_filter_measurements.zip][here]].
|
|
||||||
|
|
||||||
** First LPF with a Cut-off frequency of 160Hz
|
|
||||||
*** Measurement Description
|
|
||||||
*Goal*:
|
|
||||||
- Measure the Low Pass Filter Transfer Function
|
|
||||||
|
|
||||||
The values of the components are:
|
|
||||||
\begin{aligned}
|
|
||||||
R &= 1k\Omega \\
|
|
||||||
C &= 1\mu F
|
|
||||||
\end{aligned}
|
|
||||||
Which makes a cut-off frequency of $f_c = \frac{1}{RC} = 1000 rad/s = 160Hz$.
|
|
||||||
|
|
||||||
#+NAME: fig:lpf
|
|
||||||
#+HEADER: :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/MEGA/These/LaTeX/}{config.tex}")
|
|
||||||
#+HEADER: :imagemagick t :fit yes :iminoptions -scale 100% -density 150 :imoutoptions -quality 100
|
|
||||||
#+HEADER: :results raw replace :buffer no :eval no-export :exports both :mkdirp yes
|
|
||||||
#+HEADER: :output-dir figs
|
|
||||||
#+begin_src latex :file lpf.pdf :post pdf2svg(file=*this*, ext="png") :exports both
|
|
||||||
\begin{tikzpicture}
|
|
||||||
\draw (0,2)
|
|
||||||
to [R=\(R\)] ++(2,0) node[circ]
|
|
||||||
to ++(2,0)
|
|
||||||
++(-2,0)
|
|
||||||
to [C=\(C\)] ++(0,-2) node[circ]
|
|
||||||
++(-2,0)
|
|
||||||
to ++(2,0)
|
|
||||||
to ++(2,0)
|
|
||||||
\end{tikzpicture}
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:lpf
|
|
||||||
#+CAPTION: Schematic of the Low Pass Filter used
|
|
||||||
#+RESULTS: fig:lpf
|
|
||||||
[[file:figs/lpf.png]]
|
|
||||||
|
|
||||||
|
|
||||||
*Setup*:
|
|
||||||
- We are measuring the signal from from Geophone with a BNC T
|
|
||||||
- On part goes to column 1 through the LPF
|
|
||||||
- The other part goes to column 2 without the LPF
|
|
||||||
|
|
||||||
*Measurements*:
|
|
||||||
=mat/data_018.mat=:
|
|
||||||
| Column | Signal |
|
|
||||||
|--------+----------------------|
|
|
||||||
| 1 | Amplifier 1 with LPF |
|
|
||||||
| 2 | Amplifier 2 |
|
|
||||||
| 3 | Time |
|
|
||||||
|
|
||||||
#+name: fig:lpf_picture
|
|
||||||
#+caption: Picture of the low pass filter used
|
|
||||||
#+attr_html: :width 500px
|
|
||||||
[[file:./img/IMG_20190507_102756.jpg]]
|
|
||||||
|
|
||||||
*** Matlab Init :noexport:ignore:
|
|
||||||
#+begin_src matlab :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
|
||||||
<<matlab-init>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
*** Load data
|
|
||||||
We load the data of the z axis of two geophones.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
data = load('mat/data_018.mat', 'data'); data = data.data;
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
*** Transfer function of the LPF
|
|
||||||
We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
dt = data(2, 3)-data(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1000rad/s$.
|
|
||||||
We obtain the result on figure [[fig:Glpf_bode]].
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
Gth = 1/(1+s/1000)
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
figure;
|
|
||||||
ax1 = subplot(2, 1, 1);
|
|
||||||
hold on;
|
|
||||||
plot(f, abs(Glpf));
|
|
||||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
||||||
set(gca, 'XTickLabel',[]);
|
|
||||||
ylabel('Magnitude');
|
|
||||||
|
|
||||||
ax2 = subplot(2, 1, 2);
|
|
||||||
hold on;
|
|
||||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
|
||||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
ylim([-180, 180]);
|
|
||||||
yticks([-180, -90, 0, 90, 180]);
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
|
||||||
|
|
||||||
linkaxes([ax1,ax2],'x');
|
|
||||||
xlim([1, 500]);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:Glpf_bode
|
|
||||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
|
||||||
#+begin_src matlab :var filepath="figs/Glpf_bode.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
||||||
<<plt-matlab>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:Glpf_bode
|
|
||||||
#+CAPTION: Bode Diagram of the measured Low Pass filter and the theoritical one
|
|
||||||
#+RESULTS: fig:Glpf_bode
|
|
||||||
[[file:figs/Glpf_bode.png]]
|
|
||||||
*** Conclusion
|
|
||||||
#+begin_important
|
|
||||||
As we want to measure things up to $500Hz$, we chose to change the value of the capacitor to obtain a cut-off frequency of $1kHz$.
|
|
||||||
#+end_important
|
|
||||||
|
|
||||||
** Second LPF with a Cut-off frequency of 1000Hz
|
|
||||||
*** Measurement description
|
|
||||||
This time, the value are
|
|
||||||
\begin{aligned}
|
|
||||||
R &= 1k\Omega \\
|
|
||||||
C &= 150nF
|
|
||||||
\end{aligned}
|
|
||||||
Which makes a low pass filter with a cut-off frequency of $f_c = 1060Hz$.
|
|
||||||
|
|
||||||
*** Load data
|
|
||||||
We load the data of the z axis of two geophones.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
data = load('mat/data_019.mat', 'data'); data = data.data;
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
*** Transfer function of the LPF
|
|
||||||
We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
dt = data(2, 3)-data(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1060Hz$.
|
|
||||||
We obtain the result on figure [[fig:Glpf_bode_bis]].
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
Gth = 1/(1+s/1060/2/pi);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+begin_src matlab :results none
|
|
||||||
figure;
|
|
||||||
ax1 = subplot(2, 1, 1);
|
|
||||||
hold on;
|
|
||||||
plot(f, abs(Glpf));
|
|
||||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
||||||
set(gca, 'XTickLabel',[]);
|
|
||||||
ylabel('Magnitude');
|
|
||||||
|
|
||||||
ax2 = subplot(2, 1, 2);
|
|
||||||
hold on;
|
|
||||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
|
||||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
ylim([-180, 180]);
|
|
||||||
yticks([-180, -90, 0, 90, 180]);
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
|
||||||
|
|
||||||
linkaxes([ax1,ax2],'x');
|
|
||||||
xlim([1, 500]);
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:Glpf_bode_bis
|
|
||||||
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
|
|
||||||
#+begin_src matlab :var filepath="figs/Glpf_bode_bis.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png")
|
|
||||||
<<plt-matlab>>
|
|
||||||
#+end_src
|
|
||||||
|
|
||||||
#+NAME: fig:Glpf_bode_bis
|
|
||||||
#+CAPTION: Bode Diagram of the measured Low Pass filter and the theoritical one
|
|
||||||
#+RESULTS: fig:Glpf_bode_bis
|
|
||||||
[[file:figs/Glpf_bode_bis.png]]
|
|
||||||
*** Conclusion
|
|
||||||
#+begin_important
|
|
||||||
The added LPF has the expected behavior.
|
|
||||||
#+end_important
|
|
||||||
|
@ -1,101 +0,0 @@
|
|||||||
% Matlab Init :noexport:ignore:
|
|
||||||
|
|
||||||
clear; close all; clc;
|
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
|
||||||
s = zpk('s');
|
|
||||||
|
|
||||||
%% Initialize ans with org-babel
|
|
||||||
ans = 0;
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
% We load the data of the z axis of two geophones.
|
|
||||||
|
|
||||||
data = load('mat/data_018.mat', 'data'); data = data.data;
|
|
||||||
|
|
||||||
% Transfer function of the LPF
|
|
||||||
% We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
|
||||||
|
|
||||||
dt = data(2, 3)-data(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
|
|
||||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1000rad/s$.
|
|
||||||
% We obtain the result on figure [[fig:Glpf_bode]].
|
|
||||||
|
|
||||||
Gth = 1/(1+s/1000)
|
|
||||||
|
|
||||||
figure;
|
|
||||||
ax1 = subplot(2, 1, 1);
|
|
||||||
hold on;
|
|
||||||
plot(f, abs(Glpf));
|
|
||||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
||||||
set(gca, 'XTickLabel',[]);
|
|
||||||
ylabel('Magnitude');
|
|
||||||
|
|
||||||
ax2 = subplot(2, 1, 2);
|
|
||||||
hold on;
|
|
||||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
|
||||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
ylim([-180, 180]);
|
|
||||||
yticks([-180, -90, 0, 90, 180]);
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
|
||||||
|
|
||||||
linkaxes([ax1,ax2],'x');
|
|
||||||
xlim([1, 500]);
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
% We load the data of the z axis of two geophones.
|
|
||||||
|
|
||||||
data = load('mat/data_019.mat', 'data'); data = data.data;
|
|
||||||
|
|
||||||
% Transfer function of the LPF
|
|
||||||
% We compute the transfer function from the signal without the LPF to the signal measured with the LPF.
|
|
||||||
|
|
||||||
dt = data(2, 3)-data(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
|
|
||||||
[Glpf, f] = tfestimate(data(:, 2), data(:, 1), win, [], [], Fs);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% We compare this transfer function with a transfer function corresponding to an ideal first order LPF with a cut-off frequency of $1060Hz$.
|
|
||||||
% We obtain the result on figure [[fig:Glpf_bode_bis]].
|
|
||||||
|
|
||||||
Gth = 1/(1+s/1060/2/pi);
|
|
||||||
|
|
||||||
figure;
|
|
||||||
ax1 = subplot(2, 1, 1);
|
|
||||||
hold on;
|
|
||||||
plot(f, abs(Glpf));
|
|
||||||
plot(f, abs(squeeze(freqresp(Gth, f, 'Hz'))));
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
|
|
||||||
set(gca, 'XTickLabel',[]);
|
|
||||||
ylabel('Magnitude');
|
|
||||||
|
|
||||||
ax2 = subplot(2, 1, 2);
|
|
||||||
hold on;
|
|
||||||
plot(f, mod(180+180/pi*phase(Glpf), 360)-180);
|
|
||||||
plot(f, 180/pi*unwrap(angle(squeeze(freqresp(Gth, f, 'Hz')))));
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
ylim([-180, 180]);
|
|
||||||
yticks([-180, -90, 0, 90, 180]);
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('Phase');
|
|
||||||
|
|
||||||
linkaxes([ax1,ax2],'x');
|
|
||||||
xlim([1, 500]);
|
|
@ -1,13 +1,12 @@
|
|||||||
% Matlab Init :noexport:ignore:
|
% Matlab Init :noexport:ignore:
|
||||||
|
|
||||||
|
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
|
||||||
|
%% Clear Workspace and Close figures
|
||||||
clear; close all; clc;
|
clear; close all; clc;
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
%% Intialize Laplace variable
|
||||||
s = zpk('s');
|
s = zpk('s');
|
||||||
|
|
||||||
%% Initialize ans with org-babel
|
|
||||||
ans = 0;
|
|
||||||
|
|
||||||
% Load data
|
% Load data
|
||||||
% We load the data of the z axis of two geophones.
|
% We load the data of the z axis of two geophones.
|
||||||
|
|
@ -1,13 +1,12 @@
|
|||||||
% Matlab Init :noexport:ignore:
|
% Matlab Init :noexport:ignore:
|
||||||
|
|
||||||
|
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
|
||||||
|
%% Clear Workspace and Close figures
|
||||||
clear; close all; clc;
|
clear; close all; clc;
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
%% Intialize Laplace variable
|
||||||
s = zpk('s');
|
s = zpk('s');
|
||||||
|
|
||||||
%% Initialize ans with org-babel
|
|
||||||
ans = 0;
|
|
||||||
|
|
||||||
% Load data
|
% Load data
|
||||||
% We load the data of the z axis of two geophones.
|
% We load the data of the z axis of two geophones.
|
||||||
|
|
57
slip-ring-test/matlab/meas_slip_ring_geophone.m
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
% Matlab Init :noexport:ignore:
|
||||||
|
|
||||||
|
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
|
||||||
|
%% Go to current Directory
|
||||||
|
cd(current_dir);
|
||||||
|
|
||||||
|
%% Initialize ans with org-babel
|
||||||
|
ans = 0;
|
||||||
|
|
||||||
|
%% Clear Workspace and Close figures
|
||||||
|
clear; close all; clc;
|
||||||
|
|
||||||
|
%% Intialize Laplace variable
|
||||||
|
s = zpk('s');
|
||||||
|
|
||||||
|
% Load data
|
||||||
|
% We load the data of the z axis of two geophones.
|
||||||
|
|
||||||
|
|
||||||
|
d8 = load('mat/data_018.mat', 'data'); d8 = d8.data;
|
||||||
|
d9 = load('mat/data_019.mat', 'data'); d9 = d9.data;
|
||||||
|
|
||||||
|
% Analysis - Time Domain
|
||||||
|
% First, we compare the time domain signals for the two experiments (figure [[fig:slipring_time]]).
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(d9(:, 3), d9(:, 2), 'DisplayName', 'Slip-Ring');
|
||||||
|
plot(d8(:, 3), d8(:, 2), 'DisplayName', 'Wire');
|
||||||
|
hold off;
|
||||||
|
xlabel('Time [s]'); ylabel('Voltage [V]');
|
||||||
|
xlim([0, 50]);
|
||||||
|
legend('location', 'northeast');
|
||||||
|
|
||||||
|
% Analysis - Frequency Domain
|
||||||
|
% We then compute the Power Spectral Density of the two signals and we compare them (figure [[fig:slipring_asd]]).
|
||||||
|
|
||||||
|
dt = d8(2, 3) - d8(1, 3);
|
||||||
|
Fs = 1/dt;
|
||||||
|
|
||||||
|
win = hanning(ceil(1*Fs));
|
||||||
|
|
||||||
|
[pxx8, f] = pwelch(d8(:, 2), win, [], [], Fs);
|
||||||
|
[pxx9, ~] = pwelch(d9(:, 2), win, [], [], Fs);
|
||||||
|
|
||||||
|
figure;
|
||||||
|
hold on;
|
||||||
|
plot(f, sqrt(pxx9), 'DisplayName', 'Slip-Ring');
|
||||||
|
plot(f, sqrt(pxx8), 'DisplayName', 'Wire');
|
||||||
|
hold off;
|
||||||
|
set(gca, 'xscale', 'log');
|
||||||
|
set(gca, 'yscale', 'log');
|
||||||
|
xlabel('Frequency [Hz]'); ylabel('Amplitude Spectral Density $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
||||||
|
xlim([1, 500]);
|
||||||
|
legend('Location', 'southwest');
|
@ -1,13 +1,12 @@
|
|||||||
% Matlab Init :noexport:ignore:
|
% Matlab Init :noexport:ignore:
|
||||||
|
|
||||||
|
current_dir='/home/thomas/MEGA/These/meas/slip-ring-test/';
|
||||||
|
%% Clear Workspace and Close figures
|
||||||
clear; close all; clc;
|
clear; close all; clc;
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
%% Intialize Laplace variable
|
||||||
s = zpk('s');
|
s = zpk('s');
|
||||||
|
|
||||||
%% Initialize ans with org-babel
|
|
||||||
ans = 0;
|
|
||||||
|
|
||||||
% Load data
|
% Load data
|
||||||
% We load the data of the z axis of two geophones.
|
% We load the data of the z axis of two geophones.
|
||||||
|
|
@ -1,66 +0,0 @@
|
|||||||
% Matlab Init :noexport:ignore:
|
|
||||||
|
|
||||||
clear; close all; clc;
|
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
|
||||||
s = zpk('s');
|
|
||||||
|
|
||||||
%% Initialize ans with org-babel
|
|
||||||
ans = 0;
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
% We load the data of the z axis of two geophones.
|
|
||||||
|
|
||||||
meas14 = load('mat/data_014.mat', 'data'); meas14 = meas14.data;
|
|
||||||
meas15 = load('mat/data_015.mat', 'data'); meas15 = meas15.data;
|
|
||||||
|
|
||||||
% Time Domain
|
|
||||||
% The signals are shown on figure [[fig:ac_dc_option_time]].
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(meas14(:, 3), meas14(:, 1), 'DisplayName', 'Amp1 - AC');
|
|
||||||
plot(meas14(:, 3), meas14(:, 2), 'DisplayName', 'Amp2 - DC');
|
|
||||||
plot(meas15(:, 3), meas15(:, 1), 'DisplayName', 'Amp1 - DC');
|
|
||||||
plot(meas15(:, 3), meas15(:, 2), 'DisplayName', 'Amp2 - AC');
|
|
||||||
hold off;
|
|
||||||
legend('Location', 'bestoutside');
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
xlim([0, 100]);
|
|
||||||
|
|
||||||
% Frequency Domain
|
|
||||||
% We first compute some parameters that will be used for the PSD computation.
|
|
||||||
|
|
||||||
dt = meas14(2, 3)-meas14(1, 3);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Then we compute the Power Spectral Density using =pwelch= function.
|
|
||||||
|
|
||||||
[pxamp1ac, f] = pwelch(meas14(:, 1), win, [], [], Fs);
|
|
||||||
[pxamp2dc, ~] = pwelch(meas14(:, 2), win, [], [], Fs);
|
|
||||||
|
|
||||||
[pxamp1dc, ~] = pwelch(meas15(:, 1), win, [], [], Fs);
|
|
||||||
[pxamp2ac, ~] = pwelch(meas15(:, 2), win, [], [], Fs);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% The ASD of the signals are compare on figure [[fig:ac_dc_option_asd]].
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(pxamp1ac), 'DisplayName', 'Amp1 - AC');
|
|
||||||
plot(f, sqrt(pxamp2dc), 'DisplayName', 'Amp2 - DC');
|
|
||||||
plot(f, sqrt(pxamp1dc), 'DisplayName', 'Amp1 - DC');
|
|
||||||
plot(f, sqrt(pxamp2ac), 'DisplayName', 'Amp2 - AC');
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlim([0.1, 500]);
|
|
@ -1,74 +0,0 @@
|
|||||||
% Matlab Init :noexport:ignore:
|
|
||||||
|
|
||||||
clear; close all; clc;
|
|
||||||
|
|
||||||
%% Intialize Laplace variable
|
|
||||||
s = zpk('s');
|
|
||||||
|
|
||||||
%% Initialize ans with org-babel
|
|
||||||
ans = 0;
|
|
||||||
|
|
||||||
% Load data
|
|
||||||
|
|
||||||
amp_off = load('mat/data_003.mat', 'data'); amp_off = amp_off.data(:, [1,3]);
|
|
||||||
amp_20d = load('mat/data_004.mat', 'data'); amp_20d = amp_20d.data(:, [1,3]);
|
|
||||||
amp_40d = load('mat/data_005.mat', 'data'); amp_40d = amp_40d.data(:, [1,3]);
|
|
||||||
amp_60d = load('mat/data_006.mat', 'data'); amp_60d = amp_60d.data(:, [1,3]);
|
|
||||||
|
|
||||||
% Time Domain
|
|
||||||
% The time domain signals are shown on figure [[fig:ampli_noise_time]].
|
|
||||||
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(amp_off(:, 2), amp_off(:, 1), 'DisplayName', 'OFF');
|
|
||||||
plot(amp_20d(:, 2), amp_20d(:, 1), 'DisplayName', '20dB');
|
|
||||||
plot(amp_40d(:, 2), amp_40d(:, 1), 'DisplayName', '40dB');
|
|
||||||
plot(amp_60d(:, 2), amp_60d(:, 1), 'DisplayName', '60dB');
|
|
||||||
hold off;
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlabel('Time [s]');
|
|
||||||
ylabel('Voltage [V]');
|
|
||||||
|
|
||||||
% Frequency Domain
|
|
||||||
% We first compute some parameters that will be used for the PSD computation.
|
|
||||||
|
|
||||||
dt = amp_off(2, 2)-amp_off(1, 2);
|
|
||||||
|
|
||||||
Fs = 1/dt; % [Hz]
|
|
||||||
|
|
||||||
win = hanning(ceil(10*Fs));
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Then we compute the Power Spectral Density using =pwelch= function.
|
|
||||||
|
|
||||||
[pxoff, f] = pwelch(amp_off(:,1), win, [], [], Fs);
|
|
||||||
[px20d, ~] = pwelch(amp_20d(:,1), win, [], [], Fs);
|
|
||||||
[px40d, ~] = pwelch(amp_40d(:,1), win, [], [], Fs);
|
|
||||||
[px60d, ~] = pwelch(amp_60d(:,1), win, [], [], Fs);
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% We compute the theoretical ADC noise.
|
|
||||||
|
|
||||||
q = 20/2^16; % quantization
|
|
||||||
Sq = q^2/12/1000; % PSD of the ADC noise
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
% Finally, the ASD is shown on figure [[fig:ampli_noise_psd]].
|
|
||||||
|
|
||||||
figure;
|
|
||||||
hold on;
|
|
||||||
plot(f, sqrt(pxoff), 'DisplayName', 'OFF');
|
|
||||||
plot(f, sqrt(px20d), 'DisplayName', '20dB');
|
|
||||||
plot(f, sqrt(px40d), 'DisplayName', '40dB');
|
|
||||||
plot(f, sqrt(px60d), 'DisplayName', '60dB');
|
|
||||||
plot([0.1, 500], [sqrt(Sq), sqrt(Sq)], 'k--');
|
|
||||||
hold off;
|
|
||||||
set(gca, 'xscale', 'log');
|
|
||||||
set(gca, 'yscale', 'log');
|
|
||||||
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
|
|
||||||
legend('Location', 'northeast');
|
|
||||||
xlim([0.1, 500]);
|
|
@ -1,54 +0,0 @@
|
|||||||
%%
|
|
||||||
Tsim = 100; % [s]
|
|
||||||
|
|
||||||
%%
|
|
||||||
tg = slrt;
|
|
||||||
|
|
||||||
%% TODO - Build this application if updated
|
|
||||||
|
|
||||||
%%
|
|
||||||
if tg.Connected == "Yes"
|
|
||||||
if tg.Status == "running"
|
|
||||||
disp('Target is Running, Stopping...');
|
|
||||||
tg.stop;
|
|
||||||
while tg.Status == "running"
|
|
||||||
pause(1);
|
|
||||||
end
|
|
||||||
disp('Target is Stopped');
|
|
||||||
end
|
|
||||||
if tg.Status == "stopped"
|
|
||||||
disp('Load the Application');
|
|
||||||
tg.load('slip_ring_test');
|
|
||||||
|
|
||||||
%% Run the application
|
|
||||||
disp('Starting the Application');
|
|
||||||
tg.start;
|
|
||||||
pause(Tsim);
|
|
||||||
tg.stop;
|
|
||||||
end
|
|
||||||
else
|
|
||||||
error("The target computer is not connected");
|
|
||||||
end
|
|
||||||
|
|
||||||
%%
|
|
||||||
f = SimulinkRealTime.openFTP(tg);
|
|
||||||
cd(f, 'data/slip_ring_test/');
|
|
||||||
mget(f, 'data_001.dat', 'data');
|
|
||||||
close(f);
|
|
||||||
|
|
||||||
%%
|
|
||||||
data = SimulinkRealTime.utils.getFileScopeData('data/data_001.dat').data;
|
|
||||||
|
|
||||||
%%
|
|
||||||
n = 19;
|
|
||||||
|
|
||||||
while isfile(['mat/data_', num2str(n, '%03d'), '.mat'])
|
|
||||||
disp('File exists.');
|
|
||||||
if input(['Are you sure you want to override the file ', 'mat/data_', ...
|
|
||||||
num2str(n, '%03d'), '.mat', ' ? [Y/n]']) == 'Y'
|
|
||||||
break;
|
|
||||||
end
|
|
||||||
n = input('What should be the measurement number?');
|
|
||||||
end
|
|
||||||
|
|
||||||
save(['mat/data_', num2str(n, '%03d'), '.mat'], 'data');
|
|
@ -1,7 +0,0 @@
|
|||||||
|
|
||||||
%%
|
|
||||||
% tg = slrt;
|
|
||||||
% f = SimulinkRealTime.openFTP(tg);
|
|
||||||
% cd(f, 'data/');
|
|
||||||
% mkdir(f, 'disturbance-measurement');
|
|
||||||
% close(f);
|
|
@ -78,9 +78,3 @@ Then, the =f= object can be used to access the filesystem on the target computer
|
|||||||
|
|
||||||
* ELMO
|
* ELMO
|
||||||
tutorials: https://www.elmomc.com/products/application-studio/easii/easii-tutorials/
|
tutorials: https://www.elmomc.com/products/application-studio/easii/easii-tutorials/
|
||||||
* Low Pass Filter
|
|
||||||
|
|
||||||
R = 1KOhm
|
|
||||||
C = 1muF
|
|
||||||
|
|
||||||
Fc = 1kHz
|
|
Before Width: | Height: | Size: 74 KiB After Width: | Height: | Size: 74 KiB |
Before Width: | Height: | Size: 72 KiB After Width: | Height: | Size: 72 KiB |
Before Width: | Height: | Size: 77 KiB After Width: | Height: | Size: 77 KiB |
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 66 KiB |
Before Width: | Height: | Size: 65 KiB After Width: | Height: | Size: 65 KiB |
Before Width: | Height: | Size: 66 KiB After Width: | Height: | Size: 66 KiB |