[WIP] Breaking Change - Use Update

Folder name is changed, rework the html templates
Change the organisation.
This commit is contained in:
2019-05-10 16:06:43 +02:00
parent 8d8c03773c
commit 6e3677eb29
162 changed files with 3800 additions and 582492 deletions

View File

@@ -0,0 +1,86 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Add the getAsynchronousError to path
addpath('./src/');
% Load Measurement Data
spindle_1rpm_table = readtable('./mat/10turns_1rpm_icepap.txt');
spindle_60rpm_table = readtable('./mat/10turns_60rpm_IcepapFIR.txt');
spindle_1rpm_table(1, :)
spindle_1rpm = table2array(spindle_1rpm_table);
spindle_60rpm = table2array(spindle_60rpm_table);
% Convert Signals from [deg] to [sec]
speed_1rpm = 360/60; % [deg/sec]
spindle_1rpm(:, 1) = spindle_1rpm(:, 2)/speed_1rpm; % From position [deg] to time [s]
speed_60rpm = 360/1; % [deg/sec]
spindle_60rpm(:, 1) = spindle_60rpm(:, 2)/speed_60rpm; % From position [deg] to time [s]
% Convert Signals
% scaling = 1/80000; % 80 mV/um
scaling = 1e-6; % [um] to [m]
spindle_1rpm(:, 3:end) = scaling*spindle_1rpm(:, 3:end); % [V] to [m]
spindle_1rpm(:, 3:end) = spindle_1rpm(:, 3:end)-mean(spindle_1rpm(:, 3:end)); % Remove mean
spindle_60rpm(:, 3:end) = scaling*spindle_60rpm(:, 3:end); % [V] to [m]
spindle_60rpm(:, 3:end) = spindle_60rpm(:, 3:end)-mean(spindle_60rpm(:, 3:end)); % Remove mean
% Ts and Fs for both measurements
Ts_1rpm = spindle_1rpm(end, 1)/(length(spindle_1rpm(:, 1))-1);
Fs_1rpm = 1/Ts_1rpm;
Ts_60rpm = spindle_60rpm(end, 1)/(length(spindle_60rpm(:, 1))-1);
Fs_60rpm = 1/Ts_60rpm;
% Find Noise of the ADC [$\frac{m}{\sqrt{Hz}}$]
data = spindle_1rpm(:, 5);
dV_1rpm = min(abs(data(1) - data(data ~= data(1))));
noise_1rpm = dV_1rpm/sqrt(12*Fs_1rpm/2);
data = spindle_60rpm(:, 5);
dV_60rpm = min(abs(data(50) - data(data ~= data(50))));
noise_60rpm = dV_60rpm/sqrt(12*Fs_60rpm/2);
% Save all the data under spindle struct
spindle.rpm1.time = spindle_1rpm(:, 1);
spindle.rpm1.deg = spindle_1rpm(:, 2);
spindle.rpm1.Ts = Ts_1rpm;
spindle.rpm1.Fs = 1/Ts_1rpm;
spindle.rpm1.x = spindle_1rpm(:, 3);
spindle.rpm1.y = spindle_1rpm(:, 4);
spindle.rpm1.z = spindle_1rpm(:, 5);
spindle.rpm1.adcn = noise_1rpm;
spindle.rpm60.time = spindle_60rpm(:, 1);
spindle.rpm60.deg = spindle_60rpm(:, 2);
spindle.rpm60.Ts = Ts_60rpm;
spindle.rpm60.Fs = 1/Ts_60rpm;
spindle.rpm60.x = spindle_60rpm(:, 3);
spindle.rpm60.y = spindle_60rpm(:, 4);
spindle.rpm60.z = spindle_60rpm(:, 5);
spindle.rpm60.adcn = noise_60rpm;
% Compute Asynchronous data
for direction = {'x', 'y', 'z'}
spindle.rpm1.([direction{1}, 'async']) = getAsynchronousError(spindle.rpm1.(direction{1}), 10);
spindle.rpm60.([direction{1}, 'async']) = getAsynchronousError(spindle.rpm60.(direction{1}), 10);
end
% Save data
save('./mat/spindle_data.mat', 'spindle');

View File

@@ -0,0 +1,103 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
%% Add the getAsynchronousError to path
addpath('./src/');
% Parameters
mg = 3000; % Mass of granite [kg]
ms = 50; % Mass of Spindle [kg]
kg = 1e8; % Stiffness of granite [N/m]
ks = 5e7; % Stiffness of spindle [N/m]
% Compute Mass and Stiffness Matrices
Mm = diag([ms, mg]);
Km = diag([ks, ks+kg]) - diag(ks, -1) - diag(ks, 1);
% Compute resonance frequencies
A = [zeros(size(Mm)) eye(size(Mm)) ; -Mm\Km zeros(size(Mm))];
eigA = imag(eigs(A))/2/pi;
eigA = eigA(eigA>0);
eigA = eigA(1:2);
% From model_damping compute the Damping Matrix
modal_damping = 1e-5;
ab = [0.5*eigA(1) 0.5/eigA(1) ; 0.5*eigA(2) 0.5/eigA(2)]\[modal_damping ; modal_damping];
Cm = ab(1)*Mm +ab(2)*Km;
% Define inputs, outputs and state names
StateName = {...
'xs', ... % Displacement of Spindle [m]
'xg', ... % Displacement of Granite [m]
'vs', ... % Velocity of Spindle [m]
'vg', ... % Velocity of Granite [m]
};
StateUnit = {'m', 'm', 'm/s', 'm/s'};
InputName = {...
'f' ... % Spindle Force [N]
};
InputUnit = {'N'};
OutputName = {...
'd' ... % Displacement [m]
};
OutputUnit = {'m'};
% Define A, B and C matrices
% A Matrix
A = [zeros(size(Mm)) eye(size(Mm)) ; ...
-Mm\Km -Mm\Cm];
% B Matrix
B_low = zeros(length(StateName), length(InputName));
B_low(strcmp(StateName,'vs'), strcmp(InputName,'f')) = 1;
B_low(strcmp(StateName,'vg'), strcmp(InputName,'f')) = -1;
B = blkdiag(zeros(length(StateName)/2), pinv(Mm))*B_low;
% C Matrix
C = zeros(length(OutputName), length(StateName));
C(strcmp(OutputName,'d'), strcmp(StateName,'xs')) = 1;
C(strcmp(OutputName,'d'), strcmp(StateName,'xg')) = -1;
% D Matrix
D = zeros(length(OutputName), length(InputName));
% Generate the State Space Model
sys = ss(A, B, C, D);
sys.StateName = StateName;
sys.StateUnit = StateUnit;
sys.InputName = InputName;
sys.InputUnit = InputUnit;
sys.OutputName = OutputName;
sys.OutputUnit = OutputUnit;
% Bode Plot
% The transfer function from a disturbance force $f$ to the measured displacement $d$ is shown figure [[fig:spindle_f_to_d]].
freqs = logspace(-1, 3, 1000);
figure;
plot(freqs, abs(squeeze(freqresp(sys('d', 'f'), freqs, 'Hz'))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
% Save the model
save('./mat/spindle_model.mat', 'sys');

View File

@@ -0,0 +1,144 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load the processed data and the model
load('./mat/spindle_data.mat', 'spindle');
load('./mat/spindle_model.mat', 'sys');
% Compute the PSD
n_av = 4; % Number of average
[pxx_1rpm, f_1rpm] = pwelch(spindle.rpm1.xasync, hanning(ceil(length(spindle.rpm1.xasync)/n_av)), [], [], spindle.rpm1.Fs);
[pyy_1rpm, ~] = pwelch(spindle.rpm1.yasync, hanning(ceil(length(spindle.rpm1.yasync)/n_av)), [], [], spindle.rpm1.Fs);
[pzz_1rpm, ~] = pwelch(spindle.rpm1.zasync, hanning(ceil(length(spindle.rpm1.zasync)/n_av)), [], [], spindle.rpm1.Fs);
[pxx_60rpm, f_60rpm] = pwelch(spindle.rpm60.xasync, hanning(ceil(length(spindle.rpm60.xasync)/n_av)), [], [], spindle.rpm60.Fs);
[pyy_60rpm, ~] = pwelch(spindle.rpm60.yasync, hanning(ceil(length(spindle.rpm60.yasync)/n_av)), [], [], spindle.rpm60.Fs);
[pzz_60rpm, ~] = pwelch(spindle.rpm60.zasync, hanning(ceil(length(spindle.rpm60.zasync)/n_av)), [], [], spindle.rpm60.Fs);
% Plot the computed PSD
% The Amplitude Spectral Densities of the displacement of the spindle for the $x$, $y$ and $z$ directions are shown figure [[fig:spindle_psd_xyz_60rpm]]. They correspond to the Asynchronous part shown figure [[fig:spindle_60rpm_sync_async]].
figure;
hold on;
plot(f_1rpm, (pxx_1rpm).^.5, 'DisplayName', '$P_{xx}$ - 1rpm');
plot(f_1rpm, (pyy_1rpm).^.5, 'DisplayName', '$P_{yy}$ - 1rpm');
plot(f_1rpm, (pzz_1rpm).^.5, 'DisplayName', '$P_{zz}$ - 1rpm');
% plot(f_1rpm, spindle.rpm1.adcn*ones(size(f_1rpm)), '--k', 'DisplayName', 'ADC - 1rpm');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
legend('Location', 'northeast');
xlim([f_1rpm(2), f_1rpm(end)]);
% #+NAME: fig:spindle_psd_xyz_1rpm
% #+CAPTION: Power spectral density of the Asynchronous displacement - 1rpm
% #+RESULTS: fig:spindle_psd_xyz_1rpm
% [[file:figs/spindle_psd_xyz_1rpm.png]]
figure;
hold on;
plot(f_60rpm, (pxx_60rpm).^.5, 'DisplayName', '$P_{xx}$ - 60rpm');
plot(f_60rpm, (pyy_60rpm).^.5, 'DisplayName', '$P_{yy}$ - 60rpm');
plot(f_60rpm, (pzz_60rpm).^.5, 'DisplayName', '$P_{zz}$ - 60rpm');
% plot(f_60rpm, spindle.rpm60.adcn*ones(size(f_60rpm)), '--k', 'DisplayName', 'ADC - 60rpm');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
legend('Location', 'northeast');
xlim([f_60rpm(2), f_60rpm(end)]);
% Compute the response of the model
Tfd = abs(squeeze(freqresp(sys('d', 'f'), f_60rpm, 'Hz')));
% Plot the PSD of the Force using the model
figure;
plot(f_60rpm, (pxx_60rpm.^.5)./Tfd, 'DisplayName', '$P_{xx}$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$N/\sqrt{Hz}$]');
xlim([f_60rpm(2), f_60rpm(end)]);
% Estimated Shape of the PSD of the force
s = tf('s');
Wd_simple = 1e-8/(1+s/2/pi/0.5)/(1+s/2/pi/100);
Wf_simple = Wd_simple/tf(sys('d', 'f'));
TWf_simple = abs(squeeze(freqresp(Wf_simple, f_60rpm, 'Hz')));
% Wf = 0.48902*(s+327.9)*(s^2 + 109.6*s + 1.687e04)/((s^2 + 30.59*s + 8541)*(s^2 + 29.11*s + 3.268e04));
% Wf = 0.15788*(s+418.6)*(s+1697)^2*(s^2 + 124.3*s + 2.529e04)*(s^2 + 681.3*s + 9.018e05)/((s^2 + 23.03*s + 8916)*(s^2 + 33.85*s + 6.559e04)*(s^2 + 71.43*s + 4.283e05)*(s^2 + 40.64*s + 1.789e06));
Wf = (s+1697)^2*(s^2 + 114.5*s + 2.278e04)*(s^2 + 205.1*s + 1.627e05)*(s^2 + 285.8*s + 8.624e05)*(s+100)/((s+0.5)*3012*(s^2 + 23.03*s + 8916)*(s^2 + 17.07*s + 4.798e04)*(s^2 + 41.17*s + 4.347e05)*(s^2 + 78.99*s + 1.789e06));
TWf = abs(squeeze(freqresp(Wf, f_60rpm, 'Hz')));
% PSD in [N]
% Above $200Hz$, the Amplitude Spectral Density seems dominated by noise coming from the electronics (charge amplifier, ADC, ...). So we don't know what is the frequency content of the force above that frequency. However, we assume that $P_{xx}$ is decreasing with $1/f$ as it seems so be the case below $100Hz$ (figure [[fig:spindle_psd_xyz_60rpm]]).
% We then fit the PSD of the displacement with a transfer function (figure [[fig:spindle_psd_d_comp_60rpm]]).
figure;
hold on;
plot(f_60rpm, (pxx_60rpm.^.5)./Tfd, 'DisplayName', '$\sqrt{P_{xx}}/|T_{d/f}|$');
plot(f_60rpm, TWf, 'DisplayName', 'Wf');
plot(f_60rpm, TWf_simple, '-k', 'DisplayName', 'Wfs');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$N/\sqrt{Hz}$]');
xlim([f_60rpm(2), f_60rpm(end)]);
legend('Location', 'northeast');
% PSD in [m]
% To obtain the PSD of the force $f$ that induce such displacement, we use the following formula:
% \[ \sqrt{PSD(d)} = |T_{d/f}| \sqrt{PSD(f)} \]
% And so we have:
% \[ \sqrt{PSD(f)} = |T_{d/f}|^{-1} \sqrt{PSD(d)} \]
% The obtain Power Spectral Density of the force is displayed figure [[fig:spindle_psd_f_comp_60rpm]].
figure;
hold on;
plot(f_60rpm, pxx_60rpm.^.5, 'DisplayName', '$\sqrt{P_{xx}}$');
plot(f_60rpm, TWf.*Tfd, 'DisplayName', '$|W_f|*|T_{d/f}|$');
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD [$m/\sqrt{Hz}$]');
xlim([f_60rpm(2), f_60rpm(end)]);
legend('Location', 'northeast');
% Compute the resulting RMS value [m]
figure;
hold on;
plot(f_60rpm, 1e9*cumtrapz(f_60rpm, (pxx_60rpm)).^.5, '--', 'DisplayName', 'Exp. Data');
plot(f_60rpm, 1e9*cumtrapz(f_60rpm, ((TWf.*Tfd).^2)).^.5, '--', 'DisplayName', 'Estimated');
hold off;
set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('CPS [$nm$ rms]');
xlim([f_60rpm(2), f_60rpm(end)]);
legend('Location', 'southeast');
% Compute the resulting RMS value [m]
figure;
hold on;
plot(f_1rpm, 1e9*cumtrapz(f_1rpm, (pxx_1rpm)), '--', 'DisplayName', 'Exp. Data');
plot(f_1rpm, 1e9*(f_1rpm(end)-f_1rpm(1))/(length(f_1rpm)-1)*cumsum(pxx_1rpm), '--', 'DisplayName', 'Exp. Data');
hold off;
set(gca, 'XScale', 'log');
xlabel('Frequency [Hz]'); ylabel('CPS [$nm$ rms]');
xlim([f_1rpm(2), f_1rpm(end)]);
legend('Location', 'southeast');

View File

@@ -0,0 +1,75 @@
%% Clear Workspace and Close figures
clear; close all; clc;
%% Intialize Laplace variable
s = zpk('s');
% Load the processed data
load('./mat/spindle_data.mat', 'spindle');
% Plot X-Y-Z position with respect to Time - 1rpm
figure;
hold on;
plot(spindle.rpm1.time, spindle.rpm1.x);
plot(spindle.rpm1.time, spindle.rpm1.y);
plot(spindle.rpm1.time, spindle.rpm1.z);
hold off;
xlabel('Time [s]'); ylabel('Amplitude [m]');
legend({'tx - 1rpm', 'ty - 1rpm', 'tz - 1rpm'});
% Plot X-Y-Z position with respect to Time - 60rpm
% The measurements for the spindle turning at 60rpm are shown figure [[fig:spindle_xyz_60rpm]].
figure;
hold on;
plot(spindle.rpm60.time, spindle.rpm60.x);
plot(spindle.rpm60.time, spindle.rpm60.y);
plot(spindle.rpm60.time, spindle.rpm60.z);
hold off;
xlabel('Time [s]'); ylabel('Amplitude [m]');
legend({'tx - 60rpm', 'ty - 60rpm', 'tz - 60rpm'});
% Plot Synchronous and Asynchronous - 1rpm
figure;
hold on;
plot(spindle.rpm1.time, spindle.rpm1.x);
plot(spindle.rpm1.time, spindle.rpm1.xasync);
hold off;
xlabel('Time [s]'); ylabel('Amplitude [m]');
legend({'tx - 1rpm - Sync', 'tx - 1rpm - Async'});
% Plot Synchronous and Asynchronous - 60rpm
% The data is split into its Synchronous and Asynchronous part (figure [[fig:spindle_60rpm_sync_async]]). We then use the Asynchronous part for the analysis in the following sections as we suppose that we can deal with the synchronous part with feedforward control.
figure;
hold on;
plot(spindle.rpm60.time, spindle.rpm60.x);
plot(spindle.rpm60.time, spindle.rpm60.xasync);
hold off;
xlabel('Time [s]'); ylabel('Amplitude [m]');
legend({'tx - 60rpm - Sync', 'tx - 60rpm - Async'});
% Plot X against Y
figure;
hold on;
plot(spindle.rpm1.x, spindle.rpm1.y);
plot(spindle.rpm60.x, spindle.rpm60.y);
hold off;
xlabel('X Amplitude [m]'); ylabel('Y Amplitude [m]');
legend({'1rpm', '60rpm'});
% Plot X against Y - Asynchronous
figure;
hold on;
plot(spindle.rpm1.xasync, spindle.rpm1.yasync);
plot(spindle.rpm60.xasync, spindle.rpm60.yasync);
hold off;
xlabel('X Amplitude [m]'); ylabel('Y Amplitude [m]');
legend({'1rpm', '60rpm'});