Update Ty scans analysis

This commit is contained in:
2019-05-15 16:36:05 +02:00
parent df4d100ddf
commit 1117428eaa
9 changed files with 256 additions and 120 deletions

View File

@@ -23,6 +23,10 @@ e_ty(:, 2) = voltageToVelocityL22(e_ty(:, 2), e_ty(:, 3), 40);
e_of(:, 2) = voltageToVelocityL22(e_of(:, 2), e_of(:, 3), 40);
% Time domain plots
% We plot the measured velocity of the marble and sample in the vertical direction (figure [[fig:ty_z_time]]) and in the X direction (figure [[fig:ty_e_time]]).
% We also integrate the relative velocity to obtain the relative displacement (figure [[fig:x_relative_disp]] in the X direction and figure [[fig:z_relative_disp]] in the Z direction).
figure;
hold on;
@@ -30,7 +34,7 @@ plot(z_ty(:, 3), z_ty(:, 1), 'DisplayName', 'Marble - Z');
plot(z_ty(:, 3), z_ty(:, 2), 'DisplayName', 'Sample - Z');
hold off;
xlabel('Time [s]'); ylabel('Velocity [m/s]');
xlim([0, 100]);
xlim([0, 2]);
legend('Location', 'northeast');
@@ -41,24 +45,13 @@ legend('Location', 'northeast');
% [[file:figs/ty_z_time.png]]
xlim([0, 1]);
% #+NAME: fig:ty_z_time_zoom
% #+CAPTION: Z velocity of the sample and marble when scanning with the translation stage - Zoom
% #+RESULTS: fig:ty_z_time_zoom
% [[file:figs/ty_z_time_zoom.png]]
figure;
hold on;
plot(e_ty(:, 3), e_ty(:, 1), 'DisplayName', 'Marble - X');
plot(e_ty(:, 3), e_ty(:, 2), 'DisplayName', 'Sample - X');
hold off;
xlabel('Time [s]'); ylabel('Velocity [m/s]');
xlim([0, 100]);
xlim([0, 2]);
legend('Location', 'northeast');
@@ -69,7 +62,23 @@ legend('Location', 'northeast');
% [[file:figs/ty_e_time.png]]
xlim([0, 1])
figure;
plot(e_ty(:, 3), 1e6*lsim(1/s, e_ty(:, 2)-e_ty(:, 1), e_ty(:, 3)));
xlabel('Time [s]'); ylabel('X Relative Displacement [$\mu m$]');
xlim([0, 2]);
% #+NAME: fig:x_relative_disp
% #+CAPTION: X relative displacement of the sample with respect to the marble
% #+RESULTS: fig:x_relative_disp
% [[file:figs/x_relative_disp.png]]
figure;
plot(z_ty(:, 3), 1e6*lsim(1/s, z_ty(:, 2)-z_ty(:, 1), z_ty(:, 3)));
xlabel('Time [s]'); ylabel('Z Relative Displacement [$\mu m$]');
xlim([0, 2]);
% Frequency Domain analysis
% We get the typical ground velocity to compare with the velocities measured.
@@ -100,16 +109,25 @@ win = hanning(ceil(10*Fs));
% And for the geophone located at the sample position.
[pxz_ty_s, f] = pwelch(z_ty(:, 2), win, [], [], Fs);
[pxz_ty_s, ~] = pwelch(z_ty(:, 2), win, [], [], Fs);
[pxe_ty_s, ~] = pwelch(e_ty(:, 2), win, [], [], Fs);
[pxe_of_s, ~] = pwelch(e_of(:, 2), win, [], [], Fs);
% And finally for the relative velocity between the sample and the marble.
[pxz_ty_r, ~] = pwelch(z_ty(:, 2)-z_ty(:, 1), win, [], [], Fs);
[pxe_ty_r, ~] = pwelch(e_ty(:, 2)-e_ty(:, 1), win, [], [], Fs);
[pxe_of_r, ~] = pwelch(e_of(:, 2)-e_of(:, 1), win, [], [], Fs);
% And we plot the ASD of the measured velocities:
% - figure [[fig:asd_east_marble]] compares the marble velocity in the east direction when scanning and when Ty is OFF
% - figure [[fig:asd_east_sample]] compares the sample velocity in the east direction when scanning and when Ty is OFF
% - figure [[fig:asd_z_direction]] shows the marble and sample velocities in the Z direction when scanning with the translation stage
% - figure [[fig:asd_e_relative]] shows the relative velocity of the sample with respect to the granite in the X direction when the translation stage is OFF and when it is scanning at 1Hz
figure;
@@ -162,7 +180,27 @@ plot(f_gm, sqrt(pxx_gm), 'k--', 'DisplayName', 'Ground Motion');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$')
xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
legend('Location', 'northwest');
xlim([0.1, 500]);
% #+NAME: fig:asd_z_direction
% #+CAPTION: Amplitude spectral density of the measure velocity corresponding to the geophone in the vertical direction located on the granite and at the sample location when the translation stage is scanning at 1Hz
% #+RESULTS: fig:asd_z_direction
% [[file:figs/asd_z_direction.png]]
figure;
hold on;
plot(f, sqrt(pxe_of_r), 'DisplayName', 'Ty OFF - Relative - E');
plot(f, sqrt(pxe_ty_r), 'DisplayName', 'Ty 1Hz - Relative - E');
hold off;
set(gca, 'xscale', 'log');
set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
legend('Location', 'northwest');
xlim([0.1, 500]);