diff --git a/disturbance-ty/figs/asd_e_relative.png b/disturbance-ty/figs/asd_e_relative.png new file mode 100644 index 0000000..7ce42c5 Binary files /dev/null and b/disturbance-ty/figs/asd_e_relative.png differ diff --git a/disturbance-ty/figs/ty_e_time.png b/disturbance-ty/figs/ty_e_time.png index 41e236e..06983da 100644 Binary files a/disturbance-ty/figs/ty_e_time.png and b/disturbance-ty/figs/ty_e_time.png differ diff --git a/disturbance-ty/figs/ty_z_time.png b/disturbance-ty/figs/ty_z_time.png index efb630c..7ef7701 100644 Binary files a/disturbance-ty/figs/ty_z_time.png and b/disturbance-ty/figs/ty_z_time.png differ diff --git a/disturbance-ty/figs/x_relative_disp.png b/disturbance-ty/figs/x_relative_disp.png new file mode 100644 index 0000000..0d1b20f Binary files /dev/null and b/disturbance-ty/figs/x_relative_disp.png differ diff --git a/disturbance-ty/figs/z_relative_disp.png b/disturbance-ty/figs/z_relative_disp.png new file mode 100644 index 0000000..273b93e Binary files /dev/null and b/disturbance-ty/figs/z_relative_disp.png differ diff --git a/disturbance-ty/figs/z_relative_displacement.png b/disturbance-ty/figs/z_relative_displacement.png new file mode 100644 index 0000000..273b93e Binary files /dev/null and b/disturbance-ty/figs/z_relative_displacement.png differ diff --git a/disturbance-ty/index.html b/disturbance-ty/index.html index 40b3410..56237b0 100644 --- a/disturbance-ty/index.html +++ b/disturbance-ty/index.html @@ -3,7 +3,7 @@ "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> - + Vibrations induced by the translation stage motion @@ -258,29 +258,29 @@ for the JavaScript code in this tag.

Table of Contents

-
-

1 Measurement description

+
+

1 Measurement description

Setup: @@ -310,7 +310,7 @@ The scans are done with the ELMO software.

-The North of the Geophones corresponds to the +Y direction and the East of the Geophones to the +X direction (see figure 1). +The North of the Geophones corresponds to the +Y direction and the East of the Geophones to the +X direction (see figure 1).

@@ -394,7 +394,7 @@ Each of the measurement mat file contains one data arr -

+

IMG_20190513_163032.jpg

Figure 1: Picture of the experimental setup

@@ -402,11 +402,11 @@ Each of the measurement mat file contains one data arr
-
-

2 Measurement Analysis

+
+

2 Measurement Analysis

- +

@@ -416,8 +416,8 @@ All the files (data and Matlab scripts) are accessible -

2.1 Load data

+
+

2.1 Load data

z_ty = load('mat/data_040.mat', 'data'); z_ty = z_ty.data;
@@ -428,8 +428,8 @@ e_of = load(
-

2.2 Voltage to Velocity

+
-
-

2.3 Time domain plots

+
+

2.3 Time domain plots

+

+We plot the measured velocity of the marble and sample in the vertical direction (figure 2) and in the X direction (figure 3). +

+ +

+We also integrate the relative velocity to obtain the relative displacement (figure 4 in the X direction and figure 5 in the Z direction). +

+
figure;
 hold on;
@@ -458,26 +466,18 @@ plot(z_ty(z_ty(:, 3), z_ty(:, 2), 'DisplayName', 'Sample - Z');
 hold off;
 xlabel('Time [s]'); ylabel('Velocity [m/s]');
-xlim([0, 100]);
+xlim([0, 2]);
 legend('Location', 'northeast');
 
-
+

ty_z_time.png

Figure 2: Z velocity of the sample and marble when scanning with the translation stage

- -
-

ty_z_time_zoom.png -

-

Figure 3: Z velocity of the sample and marble when scanning with the translation stage - Zoom

-
- -
figure;
 hold on;
@@ -485,29 +485,52 @@ plot(e_ty(e_ty(:, 3), e_ty(:, 2), 'DisplayName', 'Sample - X');
 hold off;
 xlabel('Time [s]'); ylabel('Velocity [m/s]');
-xlim([0, 100]);
+xlim([0, 2]);
 legend('Location', 'northeast');
 
-
+

ty_e_time.png

-

Figure 4: Velocity of the sample and marble in the east direction when scanning with the translation stage

+

Figure 3: Velocity of the sample and marble in the east direction when scanning with the translation stage

+
+ +
+
figure;
+plot(e_ty(:, 3), 1e6*lsim(1/s, e_ty(:, 2)-e_ty(:, 1), e_ty(:, 3)));
+xlabel('Time [s]'); ylabel('X Relative Displacement [$\mu m$]');
+xlim([0, 2]);
+
-
-

ty_e_time_zoom.png +

+

x_relative_disp.png

-

Figure 5: Velocity of the sample and marble in the east direction when scanning with the translation stage - Zoom

+

Figure 4: X relative displacement of the sample with respect to the marble

+
+ +
+
figure;
+plot(z_ty(:, 3), 1e6*lsim(1/s, z_ty(:, 2)-z_ty(:, 1), z_ty(:, 3)));
+xlabel('Time [s]'); ylabel('Z Relative Displacement [$\mu m$]');
+xlim([0, 2]);
+
+
+ + +
+

z_relative_disp.png +

+

Figure 5: Z relative disp of the sample with respect to the marble

-
-

2.4 Frequency Domain analysis

+
+

2.4 Frequency Domain analysis

We get the typical ground velocity to compare with the velocities measured. @@ -547,19 +570,30 @@ First for the geophone located on the marble And for the geophone located at the sample position.

-
[pxz_ty_s, f] = pwelch(z_ty(:, 2), win, [], [], Fs);
+
[pxz_ty_s, ~] = pwelch(z_ty(:, 2), win, [], [], Fs);
 [pxe_ty_s, ~] = pwelch(e_ty(:, 2), win, [], [], Fs);
 [pxe_of_s, ~] = pwelch(e_of(:, 2), win, [], [], Fs);
 
+

+And finally for the relative velocity between the sample and the marble. +

+
+
[pxz_ty_r, ~] = pwelch(z_ty(:, 2)-z_ty(:, 1), win, [], [], Fs);
+[pxe_ty_r, ~] = pwelch(e_ty(:, 2)-e_ty(:, 1), win, [], [], Fs);
+[pxe_of_r, ~] = pwelch(e_of(:, 2)-e_of(:, 1), win, [], [], Fs);
+
+
+

And we plot the ASD of the measured velocities:

    -
  • figure 6 compares the marble velocity in the east direction when scanning and when Ty is OFF
  • -
  • figure 7 compares the sample velocity in the east direction when scanning and when Ty is OFF
  • -
  • figure 8 shows the marble and sample velocities in the Z direction when scanning with the translation stage
  • +
  • figure 6 compares the marble velocity in the east direction when scanning and when Ty is OFF
  • +
  • figure 7 compares the sample velocity in the east direction when scanning and when Ty is OFF
  • +
  • figure 8 shows the marble and sample velocities in the Z direction when scanning with the translation stage
  • +
  • figure 9 shows the relative velocity of the sample with respect to the granite in the X direction when the translation stage is OFF and when it is scanning at 1Hz
@@ -578,7 +612,7 @@ xlim( +

asd_east_marble.png

Figure 6: Amplitude spectral density of the measured velocities corresponding to the geophone in the east direction located on the marble when the translation stage is OFF and when it is scanning at 1Hz

@@ -601,7 +635,7 @@ xlim( +

asd_east_sample.png

Figure 7: Amplitude spectral density of the measured velocities corresponding to the geophone in the east direction located at the sample location when the translation stage is OFF and when it is scanning at 1Hz

@@ -624,23 +658,45 @@ xlim( +

asd_z_direction.png

Figure 8: Amplitude spectral density of the measure velocity corresponding to the geophone in the vertical direction located on the granite and at the sample location when the translation stage is scanning at 1Hz

+ + +
+
figure;
+hold on;
+plot(f, sqrt(pxe_of_r), 'DisplayName', 'Ty OFF - Relative - E');
+plot(f, sqrt(pxe_ty_r), 'DisplayName', 'Ty 1Hz - Relative - E');
+hold off;
+set(gca, 'xscale', 'log');
+set(gca, 'yscale', 'log');
+xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$')
+legend('Location', 'northwest');
+xlim([0.1, 500]);
+
+
+ + +
+

asd_e_relative.png +

+

Figure 9: Amplitude spectral density of the measured relative velocity in the X direction

+
-
-

2.5 Transfer function from marble motion in the East direction to sample motion in the East direction

+
+

2.5 Transfer function from marble motion in the East direction to sample motion in the East direction

Let's compute the transfer function for the marble velocity in the east direction to the sample velocity in the east direction.

-We first plot the time domain motions when every stage is off (figure 9). +We first plot the time domain motions when every stage is off (figure 10).

@@ -656,10 +712,10 @@ legend( +

east_marble_sample.png

-

Figure 9: Velocity in the east direction of the marble and sample when all the stages are OFF

+

Figure 10: Velocity in the east direction of the marble and sample when all the stages are OFF

@@ -677,27 +733,27 @@ win = hanning(ceil -The result is shown on figure 10. +The result is shown on figure 11.

-
+

tf_east_marble_sample.png

-

Figure 10: Estimation of the transfer function from marble velocity in the east direction to sample velocity in the east direction

+

Figure 11: Estimation of the transfer function from marble velocity in the east direction to sample velocity in the east direction

-
-

2.6 Position of the translation stage and Current

+
+

2.6 Position of the translation stage and Current

The position of the translation and current flowing in its actuator are measured using the elmo software and saved as an csv file.

-
-

2.6.1 Data pre-processing

+
+

2.6.1 Data pre-processing

Let's look at at the start of the csv file. @@ -720,13 +776,13 @@ We then load this cvs file starting at line 29.

-
-

2.6.2 Time domain data

+
+

2.6.2 Time domain data

We plot the position of the translation stage measured by the encoders. There is 200000 encoder count for each mm, we then divide by 200000 to obtain mm. -The result is shown on figure 11. +The result is shown on figure 12.

@@ -740,21 +796,21 @@ xlabel( +

ty_position_time.png

-

Figure 11: Y position of the translation stage measured by the encoders

+

Figure 12: Y position of the translation stage measured by the encoders

-
+

ty_position_time_zoom.png

-

Figure 12: Y position of the translation stage measured by the encoders - Zoom

+

Figure 13: Y position of the translation stage measured by the encoders - Zoom

-We also plot the current as function of the time on figure 13. +We also plot the current as function of the time on figure 14.

@@ -768,24 +824,24 @@ xlabel( +

current_time.png

-

Figure 13: Current going through the actuator of the translation stage

+

Figure 14: Current going through the actuator of the translation stage

-
+

current_time_zoom.png

-

Figure 14: Current going through the actuator of the translation stage - Zoom

+

Figure 15: Current going through the actuator of the translation stage - Zoom

-
-

2.7 Conclusion

+
+

2.7 Conclusion

    @@ -800,7 +856,7 @@ xlabel(

    Author: Dehaeze Thomas

    -

    Created: 2019-05-15 mer. 14:37

    +

    Created: 2019-05-15 mer. 16:35

    Validate

diff --git a/disturbance-ty/index.org b/disturbance-ty/index.org index 04e88a5..ab04c46 100644 --- a/disturbance-ty/index.org +++ b/disturbance-ty/index.org @@ -131,6 +131,10 @@ We convert the measured voltage to velocity using the function =voltageToVelocit #+end_src ** Time domain plots +We plot the measured velocity of the marble and sample in the vertical direction (figure [[fig:ty_z_time]]) and in the X direction (figure [[fig:ty_e_time]]). + +We also integrate the relative velocity to obtain the relative displacement (figure [[fig:x_relative_disp]] in the X direction and figure [[fig:z_relative_disp]] in the Z direction). + #+begin_src matlab figure; hold on; @@ -138,7 +142,7 @@ We convert the measured voltage to velocity using the function =voltageToVelocit plot(z_ty(:, 3), z_ty(:, 2), 'DisplayName', 'Sample - Z'); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); - xlim([0, 100]); + xlim([0, 2]); legend('Location', 'northeast'); #+end_src @@ -153,22 +157,6 @@ We convert the measured voltage to velocity using the function =voltageToVelocit #+RESULTS: fig:ty_z_time [[file:figs/ty_z_time.png]] -#+begin_src matlab :exports none - xlim([0, 1]); -#+end_src - -#+NAME: fig:ty_z_time_zoom -#+HEADER: :tangle no :exports results :results value raw replace :noweb yes -#+begin_src matlab :var filepath="figs/ty_z_time_zoom.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") - <> -#+end_src - -#+NAME: fig:ty_z_time_zoom -#+CAPTION: Z velocity of the sample and marble when scanning with the translation stage - Zoom -#+RESULTS: fig:ty_z_time_zoom -[[file:figs/ty_z_time_zoom.png]] - - #+begin_src matlab figure; hold on; @@ -176,7 +164,7 @@ We convert the measured voltage to velocity using the function =voltageToVelocit plot(e_ty(:, 3), e_ty(:, 2), 'DisplayName', 'Sample - X'); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); - xlim([0, 100]); + xlim([0, 2]); legend('Location', 'northeast'); #+end_src @@ -191,20 +179,41 @@ We convert the measured voltage to velocity using the function =voltageToVelocit #+RESULTS: fig:ty_e_time [[file:figs/ty_e_time.png]] -#+begin_src matlab :exports none - xlim([0, 1]); +#+begin_src matlab + figure; + plot(e_ty(:, 3), 1e6*lsim(1/s, e_ty(:, 2)-e_ty(:, 1), e_ty(:, 3))); + xlabel('Time [s]'); ylabel('X Relative Displacement [$\mu m$]'); + xlim([0, 2]); #+end_src -#+NAME: fig:ty_e_time_zoom +#+NAME: fig:x_relative_disp #+HEADER: :tangle no :exports results :results value raw replace :noweb yes -#+begin_src matlab :var filepath="figs/ty_e_time_zoom.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") +#+begin_src matlab :var filepath="figs/x_relative_disp.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") <> #+end_src -#+NAME: fig:ty_e_time_zoom -#+CAPTION: Velocity of the sample and marble in the east direction when scanning with the translation stage - Zoom -#+RESULTS: fig:ty_e_time_zoom -[[file:figs/ty_e_time_zoom.png]] +#+NAME: fig:x_relative_disp +#+CAPTION: X relative displacement of the sample with respect to the marble +#+RESULTS: fig:x_relative_disp +[[file:figs/x_relative_disp.png]] + +#+begin_src matlab + figure; + plot(z_ty(:, 3), 1e6*lsim(1/s, z_ty(:, 2)-z_ty(:, 1), z_ty(:, 3))); + xlabel('Time [s]'); ylabel('Z Relative Displacement [$\mu m$]'); + xlim([0, 2]); +#+end_src + +#+NAME: fig:z_relative_disp +#+HEADER: :tangle no :exports results :results value raw replace :noweb yes +#+begin_src matlab :var filepath="figs/z_relative_disp.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:z_relative_disp +#+CAPTION: Z relative disp of the sample with respect to the marble +#+RESULTS: fig:z_relative_disp +[[file:figs/z_relative_disp.png]] ** Frequency Domain analysis We get the typical ground velocity to compare with the velocities measured. @@ -232,15 +241,23 @@ First for the geophone located on the marble And for the geophone located at the sample position. #+begin_src matlab - [pxz_ty_s, f] = pwelch(z_ty(:, 2), win, [], [], Fs); + [pxz_ty_s, ~] = pwelch(z_ty(:, 2), win, [], [], Fs); [pxe_ty_s, ~] = pwelch(e_ty(:, 2), win, [], [], Fs); [pxe_of_s, ~] = pwelch(e_of(:, 2), win, [], [], Fs); #+end_src +And finally for the relative velocity between the sample and the marble. +#+begin_src matlab + [pxz_ty_r, ~] = pwelch(z_ty(:, 2)-z_ty(:, 1), win, [], [], Fs); + [pxe_ty_r, ~] = pwelch(e_ty(:, 2)-e_ty(:, 1), win, [], [], Fs); + [pxe_of_r, ~] = pwelch(e_of(:, 2)-e_of(:, 1), win, [], [], Fs); +#+end_src + And we plot the ASD of the measured velocities: - figure [[fig:asd_east_marble]] compares the marble velocity in the east direction when scanning and when Ty is OFF - figure [[fig:asd_east_sample]] compares the sample velocity in the east direction when scanning and when Ty is OFF - figure [[fig:asd_z_direction]] shows the marble and sample velocities in the Z direction when scanning with the translation stage +- figure [[fig:asd_e_relative]] shows the relative velocity of the sample with respect to the granite in the X direction when the translation stage is OFF and when it is scanning at 1Hz #+begin_src matlab figure; @@ -319,6 +336,31 @@ And we plot the ASD of the measured velocities: #+RESULTS: fig:asd_z_direction [[file:figs/asd_z_direction.png]] + +#+begin_src matlab + figure; + hold on; + plot(f, sqrt(pxe_of_r), 'DisplayName', 'Ty OFF - Relative - E'); + plot(f, sqrt(pxe_ty_r), 'DisplayName', 'Ty 1Hz - Relative - E'); + hold off; + set(gca, 'xscale', 'log'); + set(gca, 'yscale', 'log'); + xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$') + legend('Location', 'northwest'); + xlim([0.1, 500]); +#+end_src + +#+NAME: fig:asd_e_relative +#+HEADER: :tangle no :exports results :results value raw replace :noweb yes +#+begin_src matlab :var filepath="figs/asd_e_relative.pdf" :var figsize="full-tall" :post pdf2svg(file=*this*, ext="png") + <> +#+end_src + +#+NAME: fig:asd_e_relative +#+CAPTION: Amplitude spectral density of the measured relative velocity in the X direction +#+RESULTS: fig:asd_e_relative +[[file:figs/asd_e_relative.png]] + ** Transfer function from marble motion in the East direction to sample motion in the East direction Let's compute the transfer function for the marble velocity in the east direction to the sample velocity in the east direction. diff --git a/disturbance-ty/matlab/disturbance_ty.m b/disturbance-ty/matlab/disturbance_ty.m index 336ffda..1ecbdab 100644 --- a/disturbance-ty/matlab/disturbance_ty.m +++ b/disturbance-ty/matlab/disturbance_ty.m @@ -23,6 +23,10 @@ e_ty(:, 2) = voltageToVelocityL22(e_ty(:, 2), e_ty(:, 3), 40); e_of(:, 2) = voltageToVelocityL22(e_of(:, 2), e_of(:, 3), 40); % Time domain plots +% We plot the measured velocity of the marble and sample in the vertical direction (figure [[fig:ty_z_time]]) and in the X direction (figure [[fig:ty_e_time]]). + +% We also integrate the relative velocity to obtain the relative displacement (figure [[fig:x_relative_disp]] in the X direction and figure [[fig:z_relative_disp]] in the Z direction). + figure; hold on; @@ -30,7 +34,7 @@ plot(z_ty(:, 3), z_ty(:, 1), 'DisplayName', 'Marble - Z'); plot(z_ty(:, 3), z_ty(:, 2), 'DisplayName', 'Sample - Z'); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); -xlim([0, 100]); +xlim([0, 2]); legend('Location', 'northeast'); @@ -41,24 +45,13 @@ legend('Location', 'northeast'); % [[file:figs/ty_z_time.png]] -xlim([0, 1]); - - - -% #+NAME: fig:ty_z_time_zoom -% #+CAPTION: Z velocity of the sample and marble when scanning with the translation stage - Zoom -% #+RESULTS: fig:ty_z_time_zoom -% [[file:figs/ty_z_time_zoom.png]] - - - figure; hold on; plot(e_ty(:, 3), e_ty(:, 1), 'DisplayName', 'Marble - X'); plot(e_ty(:, 3), e_ty(:, 2), 'DisplayName', 'Sample - X'); hold off; xlabel('Time [s]'); ylabel('Velocity [m/s]'); -xlim([0, 100]); +xlim([0, 2]); legend('Location', 'northeast'); @@ -69,7 +62,23 @@ legend('Location', 'northeast'); % [[file:figs/ty_e_time.png]] -xlim([0, 1]) +figure; +plot(e_ty(:, 3), 1e6*lsim(1/s, e_ty(:, 2)-e_ty(:, 1), e_ty(:, 3))); +xlabel('Time [s]'); ylabel('X Relative Displacement [$\mu m$]'); +xlim([0, 2]); + + + +% #+NAME: fig:x_relative_disp +% #+CAPTION: X relative displacement of the sample with respect to the marble +% #+RESULTS: fig:x_relative_disp +% [[file:figs/x_relative_disp.png]] + + +figure; +plot(z_ty(:, 3), 1e6*lsim(1/s, z_ty(:, 2)-z_ty(:, 1), z_ty(:, 3))); +xlabel('Time [s]'); ylabel('Z Relative Displacement [$\mu m$]'); +xlim([0, 2]); % Frequency Domain analysis % We get the typical ground velocity to compare with the velocities measured. @@ -100,16 +109,25 @@ win = hanning(ceil(10*Fs)); % And for the geophone located at the sample position. -[pxz_ty_s, f] = pwelch(z_ty(:, 2), win, [], [], Fs); +[pxz_ty_s, ~] = pwelch(z_ty(:, 2), win, [], [], Fs); [pxe_ty_s, ~] = pwelch(e_ty(:, 2), win, [], [], Fs); [pxe_of_s, ~] = pwelch(e_of(:, 2), win, [], [], Fs); +% And finally for the relative velocity between the sample and the marble. + +[pxz_ty_r, ~] = pwelch(z_ty(:, 2)-z_ty(:, 1), win, [], [], Fs); +[pxe_ty_r, ~] = pwelch(e_ty(:, 2)-e_ty(:, 1), win, [], [], Fs); +[pxe_of_r, ~] = pwelch(e_of(:, 2)-e_of(:, 1), win, [], [], Fs); + + + % And we plot the ASD of the measured velocities: % - figure [[fig:asd_east_marble]] compares the marble velocity in the east direction when scanning and when Ty is OFF % - figure [[fig:asd_east_sample]] compares the sample velocity in the east direction when scanning and when Ty is OFF % - figure [[fig:asd_z_direction]] shows the marble and sample velocities in the Z direction when scanning with the translation stage +% - figure [[fig:asd_e_relative]] shows the relative velocity of the sample with respect to the granite in the X direction when the translation stage is OFF and when it is scanning at 1Hz figure; @@ -162,7 +180,27 @@ plot(f_gm, sqrt(pxx_gm), 'k--', 'DisplayName', 'Ground Motion'); hold off; set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log'); -xlabel('Frequency [Hz]'); ylabel('ASD of the measured Voltage $\left[\frac{V}{\sqrt{Hz}}\right]$') +xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$') +legend('Location', 'northwest'); +xlim([0.1, 500]); + + + +% #+NAME: fig:asd_z_direction +% #+CAPTION: Amplitude spectral density of the measure velocity corresponding to the geophone in the vertical direction located on the granite and at the sample location when the translation stage is scanning at 1Hz +% #+RESULTS: fig:asd_z_direction +% [[file:figs/asd_z_direction.png]] + + + +figure; +hold on; +plot(f, sqrt(pxe_of_r), 'DisplayName', 'Ty OFF - Relative - E'); +plot(f, sqrt(pxe_ty_r), 'DisplayName', 'Ty 1Hz - Relative - E'); +hold off; +set(gca, 'xscale', 'log'); +set(gca, 'yscale', 'log'); +xlabel('Frequency [Hz]'); ylabel('ASD of the measured velocity $\left[\frac{m/s}{\sqrt{Hz}}\right]$') legend('Location', 'northwest'); xlim([0.1, 500]);