nass-micro-station-measurem.../slip-ring-test/index.org

145 lines
5.1 KiB
Org Mode
Raw Normal View History

2019-05-02 14:06:23 +02:00
#+TITLE:Effect of the rotation of the Slip-Ring
:DRAWER:
#+STARTUP: overview
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/readtheorg.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="../css/zenburn.css"/>
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="../js/bootstrap.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="../js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script type="text/javascript" src="../js/readtheorg.js"></script>
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :results output
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
:END:
* Measurement Description
Random Signal is generated by one DAC of the SpeedGoat.
The signal going out of the DAC is split into two:
- one BNC cable is directly connected to one ADC of the SpeedGoat
- one BNC cable goes two times in the Slip-Ring (from bottom to top and then from top to bottom) and then is connected to one ADC of the SpeedGoat
Two measurements are done.
| Data File | Description |
|--------------------+-----------------------|
| =mat/data_001.mat= | Slip-ring not turning |
| =mat/data_002.mat= | Slip-ring turning |
For each measurement, the measured signals are:
| Data File | Description |
|-----------+------------------------------------|
| =t= | Time vector |
| =x1= | Direct signal |
| =x2= | Signal going through the Slip-Ring |
The goal is to determine is the signal is altered when the spindle is rotating.
Here, the rotation speed of the Slip-Ring is set to 1rpm.
* Matlab Init :noexport:ignore:
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
* Load data
We load the data of the z axis of two geophones.
#+begin_src matlab :results none
sr_off = load('mat/data_001.mat', 't', 'x1', 'x2');
sr_on = load('mat/data_002.mat', 't', 'x1', 'x2');
#+end_src
* Analysis
Let's first look at the signal produced by the DAC (figure [[fig:random_signal]]).
#+begin_src matlab :results none
figure;
hold on;
plot(sr_on.t, sr_on.x1);
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0 10]);
#+end_src
#+NAME: fig:random_signal
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/random_signal.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:random_signal
#+CAPTION: Random signal produced by the DAC
#+RESULTS: fig:random_signal
[[file:figs/random_signal.png]]
We now look at the difference between the signal directly measured by the ADC and the signal that goes through the slip-ring (figure [[fig:slipring_comp_signals]]).
#+begin_src matlab :results none
figure;
hold on;
2019-05-03 17:33:15 +02:00
plot(sr_on.t, sr_on.x1 - sr_on.x2, 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
2019-05-02 14:06:23 +02:00
plot(sr_off.t, sr_off.x1 - sr_off.x2,'DisplayName', 'Slip-Ring off');
hold off;
xlabel('Time [s]'); ylabel('Voltage [V]');
xlim([0 10]);
legend('Location', 'northeast');
#+end_src
#+NAME: fig:slipring_comp_signals
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/slipring_comp_signals.pdf" :var figsize="wide-normal" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:slipring_comp_signals
#+CAPTION: Alteration of the signal when the slip-ring is turning
#+RESULTS: fig:slipring_comp_signals
[[file:figs/slipring_comp_signals.png]]
2019-05-03 17:33:15 +02:00
#+begin_src matlab :results none
dt = sr_on.t(2) - sr_on.t(1);
Fs = 1/dt; % [Hz]
win = hanning(ceil(1*Fs));
#+end_src
#+begin_src matlab :results none
[pxx_on, f] = pwelch(sr_on.x1 - sr_on.x2, win, [], [], Fs);
[pxx_off, ~] = pwelch(sr_off.x1 - sr_off.x2, win, [], [], Fs);
#+end_src
#+begin_src matlab :results none :exports none
figure;
hold on;
plot(f, sqrt(pxx_on), 'DisplayName', 'Slip-Ring - $\omega = 1rpm$');
plot(f, sqrt(pxx_off),'DisplayName', 'Slip-Ring off');
hold off;
set(gca, 'xscale', 'log'); set(gca, 'yscale', 'log');
xlabel('Frequency [Hz]'); ylabel('PSD $\left[\frac{V}{\sqrt{Hz}}\right]$');
legend('Location', 'northeast');
xlim([1, 500]);
#+end_src
#+NAME: fig:psd_noise
#+HEADER: :tangle no :exports results :results value raw replace :noweb yes
#+begin_src matlab :var filepath="figs/psd_noise.pdf" :var figsize="wide-tall" :post pdf2svg(file=*this*, ext="png")
<<plt-matlab>>
#+end_src
#+NAME: fig:psd_noise
#+CAPTION: ASD of the measured noise
#+RESULTS: fig:psd_noise
[[file:figs/psd_noise.png]]
2019-05-02 14:06:23 +02:00
* Conclusion
2019-05-02 14:09:20 +02:00
#+begin_note
2019-05-02 14:06:23 +02:00
*Remaining questions*:
- Should the measurement be redone using voltage amplifiers?
- Use higher rotation speed and measure for longer periods (to have multiple revolutions) ?
2019-05-02 14:09:20 +02:00
#+end_note