2019-07-03 17:25:44 +02:00
|
|
|
%% Clear Workspace and Close figures
|
|
|
|
clear; close all; clc;
|
|
|
|
|
|
|
|
%% Intialize Laplace variable
|
|
|
|
s = zpk('s');
|
|
|
|
|
2019-07-05 10:16:33 +02:00
|
|
|
|
|
|
|
|
|
|
|
% We then import that on =matlab=, and sort them.
|
|
|
|
|
|
|
|
acc_pos = readtable('mat/acc_pos.txt', 'ReadVariableNames', false);
|
|
|
|
acc_pos = table2array(acc_pos(:, 1:4));
|
|
|
|
[~, i] = sort(acc_pos(:, 1));
|
|
|
|
acc_pos = acc_pos(i, 2:4);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% The positions of the sensors relative to the point of interest are shown below.
|
|
|
|
|
|
|
|
data2orgtable([[1:23]', 1000*acc_pos], {}, {'ID', 'x [mm]', 'y [mm]', 'z [mm]'}, ' %.0f ');
|
|
|
|
|
2019-07-03 17:25:44 +02:00
|
|
|
% Windowing
|
|
|
|
% Windowing is used on the force and response signals.
|
|
|
|
|
|
|
|
% A boxcar window (figure [[fig:windowing_force_signal]]) is used for the force signal as once the impact on the structure is done, the measured signal is meaningless.
|
|
|
|
% The parameters are:
|
|
|
|
% - *Start*: $3\%$
|
|
|
|
% - *Stop*: $7\%$
|
|
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
plot(100*[0, 0.03, 0.03, 0.07, 0.07, 1], [0, 0, 1, 1, 0, 0]);
|
|
|
|
xlabel('Time [%]'); ylabel('Amplitude');
|
|
|
|
xlim([0, 100]); ylim([0, 1]);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+NAME: fig:windowing_force_signal
|
|
|
|
% #+CAPTION: Window used for the force signal
|
|
|
|
% [[file:figs/windowing_force_signal.png]]
|
|
|
|
|
|
|
|
% An exponential window (figure [[fig:windowing_response_signal]]) is used for the response signal as we are measuring transient signals and most of the information is located at the beginning of the signal.
|
|
|
|
% The parameters are:
|
|
|
|
% - FlatTop:
|
|
|
|
% - *Start*: $3\%$
|
|
|
|
% - *Stop*: $2.96\%$
|
|
|
|
% - Decreasing point:
|
|
|
|
% - *X*: $60.4\%$
|
|
|
|
% - *Y*: $14.7\%$
|
|
|
|
|
|
|
|
|
|
|
|
x0 = 0.296;
|
|
|
|
xd = 0.604;
|
|
|
|
yd = 0.147;
|
|
|
|
|
|
|
|
alpha = log(yd)/(x0 - xd);
|
|
|
|
|
|
|
|
t = x0:0.01:1.01;
|
|
|
|
y = exp(-alpha*(t-x0));
|
|
|
|
|
|
|
|
figure;
|
|
|
|
plot(100*[0, 0.03, 0.03, x0, t], [0, 0, 1, 1, y]);
|
|
|
|
xlabel('Time [%]'); ylabel('Amplitude');
|
|
|
|
xlim([0, 100]); ylim([0, 1]);
|
|
|
|
|
|
|
|
% Force and Response signals
|
|
|
|
% Let's load some obtained data to look at the force and response signals.
|
|
|
|
|
|
|
|
|
|
|
|
meas1_raw = load('mat/meas_raw_1.mat');
|
|
|
|
|
|
|
|
% Raw Force Data
|
|
|
|
% The force input for the first measurement is shown on figure [[fig:raw_data_force]]. We can see 10 impacts, one zoom on one impact is shown on figure [[fig:raw_data_force_zoom]].
|
|
|
|
|
|
|
|
% The Fourier transform of the force is shown on figure [[fig:fourier_transfor_force_impact]]. This has been obtained without any windowing.
|
|
|
|
|
|
|
|
|
|
|
|
time = linspace(0, meas1_raw.Track1_X_Resolution*length(meas1_raw.Track1), length(meas1_raw.Track1));
|
|
|
|
|
|
|
|
figure;
|
|
|
|
plot(time, meas1_raw.Track1);
|
|
|
|
xlabel('Time [s]');
|
|
|
|
ylabel('Force [N]');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+NAME: fig:raw_data_force
|
|
|
|
% #+CAPTION: Raw Force Data from Hammer Blow
|
|
|
|
% [[file:figs/raw_data_force.png]]
|
|
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
plot(time, meas1_raw.Track1);
|
|
|
|
xlabel('Time [s]');
|
|
|
|
ylabel('Force [N]');
|
|
|
|
xlim([22.1, 22.3]);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+NAME: fig:raw_data_force_zoom
|
|
|
|
% #+CAPTION: Raw Force Data from Hammer Blow - Zoom
|
|
|
|
% [[file:figs/raw_data_force_zoom.png]]
|
|
|
|
|
|
|
|
|
|
|
|
Fs = 1/meas1_raw.Track1_X_Resolution; % Sampling Frequency [Hz]
|
|
|
|
impacts = [5.9, 11.2, 16.6, 22.2, 27.3, 32.7, 38.1, 43.8, 50.4]; % Time just before the impact occurs [s]
|
|
|
|
|
|
|
|
L = 8194;
|
|
|
|
f = Fs*(0:(L/2))/L; % Frequency vector [Hz]
|
|
|
|
|
|
|
|
F_fft = zeros((8193+1)/2+1, length(impacts));
|
|
|
|
|
|
|
|
for i = 1:length(impacts)
|
|
|
|
t0 = impacts(i);
|
|
|
|
[~, i_start] = min(abs(time-t0));
|
|
|
|
i_end = i_start + 8193;
|
|
|
|
|
|
|
|
Y = fft(meas1_raw.Track1(i_start:i_end));
|
|
|
|
|
|
|
|
P2 = abs(Y/L);
|
|
|
|
P1 = P2(1:L/2+1);
|
|
|
|
P1(2:end-1) = 2*P1(2:end-1);
|
|
|
|
F_fft(:, i) = P1;
|
|
|
|
end
|
|
|
|
|
|
|
|
figure;
|
|
|
|
hold on;
|
|
|
|
for i = 1:length(impacts)
|
|
|
|
plot(f, F_fft(:, i), '-k');
|
|
|
|
end
|
|
|
|
hold off;
|
|
|
|
xlim([0, 200]);
|
|
|
|
xlabel('Frequency [Hz]'); ylabel('Force [N]');
|
|
|
|
|
|
|
|
% Raw Response Data
|
|
|
|
% The response signal for the first measurement is shown on figure [[fig:raw_data_acceleration]]. One zoom on one response is shown on figure [[fig:raw_data_acceleration_zoom]].
|
|
|
|
|
|
|
|
% The Fourier transform of the response signals is shown on figure [[fig:fourier_transform_response_signals]]. This has been obtained without any windowing.
|
|
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
plot(time, meas1_raw.Track2);
|
|
|
|
xlabel('Time [s]');
|
|
|
|
ylabel('Acceleration [m/s2]');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+NAME: fig:raw_data_acceleration
|
|
|
|
% #+CAPTION: Raw Acceleration Data from Accelerometer
|
|
|
|
% [[file:figs/raw_data_acceleration.png]]
|
|
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
plot(time, meas1_raw.Track2);
|
|
|
|
xlabel('Time [s]');
|
|
|
|
ylabel('Acceleration [m/s2]');
|
|
|
|
xlim([22.1, 22.5]);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+NAME: fig:raw_data_acceleration_zoom
|
|
|
|
% #+CAPTION: Raw Acceleration Data from Accelerometer - Zoom
|
|
|
|
% [[file:figs/raw_data_acceleration_zoom.png]]
|
|
|
|
|
|
|
|
|
|
|
|
X_fft = zeros((8193+1)/2+1, length(impacts));
|
|
|
|
|
|
|
|
for i = 1:length(impacts)
|
|
|
|
t0 = impacts(i);
|
|
|
|
[~, i_start] = min(abs(time-t0));
|
|
|
|
i_end = i_start + 8193;
|
|
|
|
|
|
|
|
Y = fft(meas1_raw.Track2(i_start:i_end));
|
|
|
|
|
|
|
|
P2 = abs(Y/L);
|
|
|
|
P1 = P2(1:L/2+1);
|
|
|
|
P1(2:end-1) = 2*P1(2:end-1);
|
|
|
|
X_fft(:, i) = P1;
|
|
|
|
end
|
|
|
|
|
|
|
|
figure;
|
|
|
|
hold on;
|
|
|
|
for i = 1:length(impacts)
|
|
|
|
plot(f, X_fft(:, i), '-k');
|
|
|
|
end
|
|
|
|
hold off;
|
|
|
|
xlim([0, 200]);
|
|
|
|
set(gca, 'Yscale', 'log');
|
|
|
|
xlabel('Frequency [Hz]'); ylabel('Acceleration [$m/s^2$]');
|
|
|
|
|
|
|
|
% Computation of one Frequency Response Function
|
|
|
|
% Now that we have obtained the Fourier transform of both the force input and the response signal, we can compute the Frequency Response Function from the force to the acceleration.
|
|
|
|
|
|
|
|
% We then compare the result obtained with the FRF computed by the modal software (figure [[fig:frf_comparison_software]]).
|
|
|
|
|
|
|
|
% The slight difference can probably be explained by the use of windows.
|
|
|
|
|
|
|
|
% In the following analysis, FRF computed from the software will be used.
|
|
|
|
|
|
|
|
|
|
|
|
meas1 = load('mat/meas_frf_coh_1.mat');
|
|
|
|
|
|
|
|
figure;
|
|
|
|
hold on;
|
|
|
|
for i = 1:length(impacts)
|
|
|
|
plot(f, X_fft(:, i)./F_fft(:, i), '-k');
|
|
|
|
end
|
|
|
|
plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_AvSpc_2_RMS_Y_Val)
|
|
|
|
hold off;
|
|
|
|
xlim([0, 200]);
|
|
|
|
set(gca, 'Yscale', 'log');
|
|
|
|
xlabel('Frequency [Hz]'); ylabel('Acceleration/Force [$m/s^2/N$]');
|
|
|
|
|
|
|
|
% Frequency Response Functions and Coherence Results
|
|
|
|
% Let's see one computed Frequency Response Function and one coherence in order to attest the quality of the measurement.
|
|
|
|
|
|
|
|
% First, we load the data.
|
|
|
|
|
|
|
|
meas1 = load('mat/meas_frf_coh_1.mat');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% And we plot on figure [[fig:frf_result_example]] the frequency response function from the force applied in the $X$ direction at the location of the accelerometer number 11 to the acceleration in the $X$ direction as measured by the first accelerometer located on the top platform of the hexapod.
|
|
|
|
|
|
|
|
% The coherence associated is shown on figure [[fig:frf_result_example]].
|
|
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
ax1 = subplot(2, 1, 1);
|
|
|
|
plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_AvXSpc_2_1_RMS_Y_Mod);
|
|
|
|
set(gca, 'Yscale', 'log');
|
|
|
|
set(gca, 'XTickLabel',[]);
|
|
|
|
ylabel('Magnitude');
|
|
|
|
|
|
|
|
ax2 = subplot(2, 1, 2);
|
|
|
|
plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_AvXSpc_2_1_RMS_Y_Phas);
|
|
|
|
ylim([-180, 180]);
|
|
|
|
yticks([-180, -90, 0, 90, 180]);
|
|
|
|
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
|
|
|
|
|
|
|
linkaxes([ax1,ax2],'x');
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% #+NAME: fig:frf_result_example
|
|
|
|
% #+CAPTION: Example of one measured FRF
|
|
|
|
% [[file:figs/frf_result_example.png]]
|
|
|
|
|
|
|
|
|
|
|
|
figure;
|
|
|
|
plot(meas1.FFT1_AvSpc_2_RMS_X_Val, meas1.FFT1_Coh_2_1_RMS_Y_Val);
|
|
|
|
xlabel('Frequency [Hz]');
|
|
|
|
ylabel('Coherence');
|
|
|
|
|
|
|
|
% Generation of a FRF matrix and a Coherence matrix from the measurements
|
|
|
|
% We want here to combine all the Frequency Response Functions measured into one big array called the *Frequency Response Matrix*.
|
|
|
|
|
|
|
|
% The frequency response matrix is an $n \times p \times q$:
|
|
|
|
% - $n$ is the number of measurements: $23 \times 3$ (23 accelerometers measuring 3 directions each)
|
|
|
|
% - $p$ is the number of excitation inputs: $3$
|
|
|
|
% - $q$ is the number of frequency points $\omega_i$
|
|
|
|
|
|
|
|
% Thus, the FRF matrix is an $69 \times 3 \times 801$ matrix.
|
|
|
|
|
|
|
|
|
|
|
|
% #+begin_important
|
|
|
|
% For each frequency point $\omega_i$, we obtain a 2D matrix:
|
|
|
|
% \begin{equation}
|
|
|
|
% \text{FRF}(\omega_i) = \begin{bmatrix}
|
|
|
|
% \frac{D_{1_x}}{F_x}(\omega_i) & \frac{D_{1_x}}{F_y}(\omega_i) & \frac{D_{1_x}}{F_z}(\omega_i) \\
|
|
|
|
% \frac{D_{1_y}}{F_x}(\omega_i) & \frac{D_{1_y}}{F_y}(\omega_i) & \frac{D_{1_y}}{F_z}(\omega_i) \\
|
|
|
|
% \frac{D_{1_z}}{F_x}(\omega_i) & \frac{D_{1_z}}{F_y}(\omega_i) & \frac{D_{1_z}}{F_z}(\omega_i) \\
|
|
|
|
% \frac{D_{2_x}}{F_x}(\omega_i) & \frac{D_{2_x}}{F_y}(\omega_i) & \frac{D_{2_x}}{F_z}(\omega_i) \\
|
|
|
|
% \vdots & \vdots & \vdots \\
|
|
|
|
% \frac{D_{23_z}}{F_x}(\omega_i) & \frac{D_{23_z}}{F_y}(\omega_i) & \frac{D_{23_z}}{F_z}(\omega_i) \\
|
|
|
|
% \end{bmatrix}
|
|
|
|
% \end{equation}
|
|
|
|
% #+end_important
|
|
|
|
|
|
|
|
% We generate such FRF matrix from the measurements using the following script.
|
|
|
|
|
|
|
|
n_meas = 24;
|
|
|
|
n_acc = 23;
|
|
|
|
|
|
|
|
dirs = 'XYZ';
|
|
|
|
|
|
|
|
% Number of Accelerometer * DOF for each acccelerometer / Number of excitation / frequency points
|
|
|
|
FRFs = zeros(3*n_acc, 3, 801);
|
|
|
|
COHs = zeros(3*n_acc, 3, 801);
|
|
|
|
|
|
|
|
% Loop through measurements
|
|
|
|
for i = 1:n_meas
|
|
|
|
% Load the measurement file
|
|
|
|
meas = load(sprintf('mat/meas_frf_coh_%i.mat', i));
|
|
|
|
|
|
|
|
% First: determine what is the exitation (direction and sign)
|
|
|
|
exc_dir = meas.FFT1_AvXSpc_2_1_RMS_RfName(end);
|
|
|
|
exc_sign = meas.FFT1_AvXSpc_2_1_RMS_RfName(end-1);
|
|
|
|
% Determine what is the correct excitation sign
|
|
|
|
exc_factor = str2num([exc_sign, '1']);
|
|
|
|
if exc_dir ~= 'Z'
|
|
|
|
exc_factor = exc_factor*(-1);
|
|
|
|
end
|
|
|
|
|
|
|
|
% Then: loop through the nine measurements and store them at the correct location
|
|
|
|
for j = 2:10
|
|
|
|
% Determine what is the accelerometer and direction
|
|
|
|
[indices_acc_i] = strfind(meas.(sprintf('FFT1_H1_%i_1_RpName', j)), '.');
|
|
|
|
acc_i = str2num(meas.(sprintf('FFT1_H1_%i_1_RpName', j))(indices_acc_i(1)+1:indices_acc_i(2)-1));
|
|
|
|
|
|
|
|
meas_dir = meas.(sprintf('FFT1_H1_%i_1_RpName', j))(end);
|
|
|
|
meas_sign = meas.(sprintf('FFT1_H1_%i_1_RpName', j))(end-1);
|
|
|
|
% Determine what is the correct measurement sign
|
|
|
|
meas_factor = str2num([meas_sign, '1']);
|
|
|
|
if meas_dir ~= 'Z'
|
|
|
|
meas_factor = meas_factor*(-1);
|
|
|
|
end
|
|
|
|
|
|
|
|
FRFs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = exc_factor*meas_factor*meas.(sprintf('FFT1_H1_%i_1_Y_ReIm', j));
|
|
|
|
COHs(find(dirs==meas_dir)+3*(acc_i-1), find(dirs==exc_dir), :) = meas.(sprintf('FFT1_Coh_%i_1_RMS_Y_Val', j));
|
|
|
|
end
|
|
|
|
end
|
|
|
|
freqs = meas.FFT1_Coh_10_1_RMS_X_Val;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% And we save the obtained FRF matrix and Coherence matrix in a =.mat= file.
|
|
|
|
|
|
|
|
save('./mat/frf_coh_matrices.mat', 'FRFs', 'COHs', 'freqs');
|
2019-07-05 10:16:33 +02:00
|
|
|
|
|
|
|
% Solid Bodies considered for further analysis
|
|
|
|
% We consider the following solid bodies for further analysis:
|
|
|
|
% - Bottom Granite
|
|
|
|
% - Top Granite
|
|
|
|
% - Translation Stage
|
|
|
|
% - Tilt Stage
|
|
|
|
% - Spindle
|
|
|
|
% - Hexapod
|
|
|
|
|
|
|
|
% We create a =matlab= structure =solids= that contains the accelerometers ID connected to each solid bodies (as shown on figure [[fig:nass-modal-test]]).
|
|
|
|
|
|
|
|
solids = {};
|
|
|
|
solids.granite_bot = [17, 18, 19, 20];
|
|
|
|
solids.granite_top = [13, 14, 15, 16];
|
|
|
|
solids.ty = [9, 10, 11, 12];
|
|
|
|
solids.ry = [5, 6, 7, 8];
|
|
|
|
solids.rz = [21, 22, 23];
|
|
|
|
solids.hexa = [1, 2, 3, 4];
|
|
|
|
|
|
|
|
solid_names = fields(solids);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
% Finally, we save that into a =.mat= file.
|
|
|
|
|
|
|
|
save('mat/geometry.mat', 'solids', 'solid_names', 'acc_pos');
|