Use online CSS and JS

This commit is contained in:
Thomas Dehaeze 2020-11-12 10:34:47 +01:00
parent b9ea3cb05d
commit d4579bf04d
8 changed files with 205 additions and 1556 deletions

View File

@ -1,145 +0,0 @@
.org-bold { /* bold */ font-weight: bold; }
.org-bold-italic { /* bold-italic */ font-weight: bold; font-style: italic; }
.org-buffer-menu-buffer { /* buffer-menu-buffer */ font-weight: bold; }
.org-builtin { /* font-lock-builtin-face */ color: #7a378b; }
.org-button { /* button */ text-decoration: underline; }
.org-calendar-today { /* calendar-today */ text-decoration: underline; }
.org-change-log-acknowledgement { /* change-log-acknowledgement */ color: #b22222; }
.org-change-log-conditionals { /* change-log-conditionals */ color: #a0522d; }
.org-change-log-date { /* change-log-date */ color: #8b2252; }
.org-change-log-email { /* change-log-email */ color: #a0522d; }
.org-change-log-file { /* change-log-file */ color: #0000ff; }
.org-change-log-function { /* change-log-function */ color: #a0522d; }
.org-change-log-list { /* change-log-list */ color: #a020f0; }
.org-change-log-name { /* change-log-name */ color: #008b8b; }
.org-comint-highlight-input { /* comint-highlight-input */ font-weight: bold; }
.org-comint-highlight-prompt { /* comint-highlight-prompt */ color: #00008b; }
.org-comment { /* font-lock-comment-face */ color: #999988; font-style: italic; }
.org-comment-delimiter { /* font-lock-comment-delimiter-face */ color: #999988; font-style: italic; }
.org-completions-annotations { /* completions-annotations */ font-style: italic; }
.org-completions-common-part { /* completions-common-part */ color: #000000; background-color: #ffffff; }
.org-completions-first-difference { /* completions-first-difference */ font-weight: bold; }
.org-constant { /* font-lock-constant-face */ color: #008b8b; }
.org-diary { /* diary */ color: #ff0000; }
.org-diff-context { /* diff-context */ color: #7f7f7f; }
.org-diff-file-header { /* diff-file-header */ background-color: #b3b3b3; font-weight: bold; }
.org-diff-function { /* diff-function */ background-color: #cccccc; }
.org-diff-header { /* diff-header */ background-color: #cccccc; }
.org-diff-hunk-header { /* diff-hunk-header */ background-color: #cccccc; }
.org-diff-index { /* diff-index */ background-color: #b3b3b3; font-weight: bold; }
.org-diff-nonexistent { /* diff-nonexistent */ background-color: #b3b3b3; font-weight: bold; }
.org-diff-refine-change { /* diff-refine-change */ background-color: #d9d9d9; }
.org-dired-directory { /* dired-directory */ color: #0000ff; }
.org-dired-flagged { /* dired-flagged */ color: #ff0000; font-weight: bold; }
.org-dired-header { /* dired-header */ color: #228b22; }
.org-dired-ignored { /* dired-ignored */ color: #7f7f7f; }
.org-dired-mark { /* dired-mark */ color: #008b8b; }
.org-dired-marked { /* dired-marked */ color: #ff0000; font-weight: bold; }
.org-dired-perm-write { /* dired-perm-write */ color: #b22222; }
.org-dired-symlink { /* dired-symlink */ color: #a020f0; }
.org-dired-warning { /* dired-warning */ color: #ff0000; font-weight: bold; }
.org-doc { /* font-lock-doc-face */ color: #8b2252; }
.org-escape-glyph { /* escape-glyph */ color: #a52a2a; }
.org-file-name-shadow { /* file-name-shadow */ color: #7f7f7f; }
.org-flyspell-duplicate { /* flyspell-duplicate */ color: #cdad00; font-weight: bold; text-decoration: underline; }
.org-flyspell-incorrect { /* flyspell-incorrect */ color: #ff4500; font-weight: bold; text-decoration: underline; }
.org-fringe { /* fringe */ background-color: #f2f2f2; }
.org-function-name { /* font-lock-function-name-face */ color: teal; }
.org-header-line { /* header-line */ color: #333333; background-color: #e5e5e5; }
.org-help-argument-name { /* help-argument-name */ font-style: italic; }
.org-highlight { /* highlight */ background-color: #b4eeb4; }
.org-holiday { /* holiday */ background-color: #ffc0cb; }
.org-isearch { /* isearch */ color: #b0e2ff; background-color: #cd00cd; }
.org-isearch-fail { /* isearch-fail */ background-color: #ffc1c1; }
.org-italic { /* italic */ font-style: italic; }
.org-keyword { /* font-lock-keyword-face */ color: #0086b3; }
.org-lazy-highlight { /* lazy-highlight */ background-color: #afeeee; }
.org-link { /* link */ color: #0000ff; text-decoration: underline; }
.org-link-visited { /* link-visited */ color: #8b008b; text-decoration: underline; }
.org-log-edit-header { /* log-edit-header */ color: #a020f0; }
.org-log-edit-summary { /* log-edit-summary */ color: #0000ff; }
.org-log-edit-unknown-header { /* log-edit-unknown-header */ color: #b22222; }
.org-match { /* match */ background-color: #ffff00; }
.org-next-error { /* next-error */ background-color: #eedc82; }
.org-nobreak-space { /* nobreak-space */ color: #a52a2a; text-decoration: underline; }
.org-org-archived { /* org-archived */ color: #7f7f7f; }
.org-org-block { /* org-block */ color: #7f7f7f; }
.org-org-block-begin-line { /* org-block-begin-line */ color: #b22222; }
.org-org-block-end-line { /* org-block-end-line */ color: #b22222; }
.org-org-checkbox { /* org-checkbox */ font-weight: bold; }
.org-org-checkbox-statistics-done { /* org-checkbox-statistics-done */ color: #228b22; font-weight: bold; }
.org-org-checkbox-statistics-todo { /* org-checkbox-statistics-todo */ color: #ff0000; font-weight: bold; }
.org-org-clock-overlay { /* org-clock-overlay */ background-color: #ffff00; }
.org-org-code { /* org-code */ color: #7f7f7f; }
.org-org-column { /* org-column */ background-color: #e5e5e5; }
.org-org-column-title { /* org-column-title */ background-color: #e5e5e5; font-weight: bold; text-decoration: underline; }
.org-org-date { /* org-date */ color: #a020f0; text-decoration: underline; }
.org-org-document-info { /* org-document-info */ color: #191970; }
.org-org-document-info-keyword { /* org-document-info-keyword */ color: #7f7f7f; }
.org-org-document-title { /* org-document-title */ color: #191970; font-size: 144%; font-weight: bold; }
.org-org-done { /* org-done */ color: #228b22; font-weight: bold; }
.org-org-drawer { /* org-drawer */ color: #0000ff; }
.org-org-ellipsis { /* org-ellipsis */ color: #b8860b; text-decoration: underline; }
.org-org-footnote { /* org-footnote */ color: #a020f0; text-decoration: underline; }
.org-org-formula { /* org-formula */ color: #b22222; }
.org-org-headline-done { /* org-headline-done */ color: #bc8f8f; }
.org-org-hide { /* org-hide */ color: #ffffff; }
.org-org-latex-and-export-specials { /* org-latex-and-export-specials */ color: #8b4513; }
.org-org-level-1 { /* org-level-1 */ color: #0000ff; }
.org-org-level-2 { /* org-level-2 */ color: #a0522d; }
.org-org-level-3 { /* org-level-3 */ color: #a020f0; }
.org-org-level-4 { /* org-level-4 */ color: #b22222; }
.org-org-level-5 { /* org-level-5 */ color: #228b22; }
.org-org-level-6 { /* org-level-6 */ color: #008b8b; }
.org-org-level-7 { /* org-level-7 */ color: #7a378b; }
.org-org-level-8 { /* org-level-8 */ color: #8b2252; }
.org-org-link { /* org-link */ color: #0000ff; text-decoration: underline; }
.org-org-meta-line { /* org-meta-line */ color: #b22222; }
.org-org-mode-line-clock { /* org-mode-line-clock */ color: #000000; background-color: #bfbfbf; }
.org-org-mode-line-clock-overrun { /* org-mode-line-clock-overrun */ color: #000000; background-color: #ff0000; }
.org-org-quote { /* org-quote */ color: #7f7f7f; }
.org-org-scheduled { /* org-scheduled */ color: #006400; }
.org-org-scheduled-previously { /* org-scheduled-previously */ color: #b22222; }
.org-org-scheduled-today { /* org-scheduled-today */ color: #006400; }
.org-org-sexp-date { /* org-sexp-date */ color: #a020f0; }
.org-org-special-keyword { /* org-special-keyword */ color: #a020f0; }
.org-org-table { /* org-table */ color: #0000ff; }
.org-org-tag { /* org-tag */ font-weight: bold; }
.org-org-target { /* org-target */ text-decoration: underline; }
.org-org-time-grid { /* org-time-grid */ color: #b8860b; }
.org-org-todo { /* org-todo */ color: #ff0000; font-weight: bold; }
.org-org-upcoming-deadline { /* org-upcoming-deadline */ color: #b22222; }
.org-org-verbatim { /* org-verbatim */ color: #7f7f7f; }
.org-org-verse { /* org-verse */ color: #7f7f7f; }
.org-org-warning { /* org-warning */ color: #ff0000; font-weight: bold; }
.org-outline-1 { /* outline-1 */ color: #0000ff; }
.org-outline-2 { /* outline-2 */ color: #a0522d; }
.org-outline-3 { /* outline-3 */ color: #a020f0; }
.org-outline-4 { /* outline-4 */ color: #b22222; }
.org-outline-5 { /* outline-5 */ color: #228b22; }
.org-outline-6 { /* outline-6 */ color: #008b8b; }
.org-outline-7 { /* outline-7 */ color: #7a378b; }
.org-outline-8 { /* outline-8 */ color: #8b2252; }
.org-preprocessor { /* font-lock-preprocessor-face */ color: #7a378b; }
.org-query-replace { /* query-replace */ color: #b0e2ff; background-color: #cd00cd; }
.org-regexp-grouping-backslash { /* font-lock-regexp-grouping-backslash */ font-weight: bold; }
.org-regexp-grouping-construct { /* font-lock-regexp-grouping-construct */ font-weight: bold; }
.org-region { /* region */ background-color: #eedc82; }
.org-secondary-selection { /* secondary-selection */ background-color: #ffff00; }
.org-shadow { /* shadow */ color: #7f7f7f; }
.org-show-paren-match { /* show-paren-match */ background-color: #40e0d0; }
.org-show-paren-mismatch { /* show-paren-mismatch */ color: #ffffff; background-color: #a020f0; }
.org-string { /* font-lock-string-face */ color: #dd1144; }
.org-tool-bar { /* tool-bar */ color: #000000; background-color: #bfbfbf; }
.org-tooltip { /* tooltip */ color: #000000; background-color: #ffffe0; }
.org-trailing-whitespace { /* trailing-whitespace */ background-color: #ff0000; }
.org-type { /* font-lock-type-face */ color: #228b22; }
.org-underline { /* underline */ text-decoration: underline; }
.org-variable-name { /* font-lock-variable-name-face */ color: teal; }
.org-warning { /* font-lock-warning-face */ color: #ff0000; font-weight: bold; }
.org-widget-button { /* widget-button */ font-weight: bold; }
.org-widget-button-pressed { /* widget-button-pressed */ color: #ff0000; }
.org-widget-documentation { /* widget-documentation */ color: #006400; }
.org-widget-field { /* widget-field */ background-color: #d9d9d9; }
.org-widget-inactive { /* widget-inactive */ color: #7f7f7f; }
.org-widget-single-line-field { /* widget-single-line-field */ background-color: #d9d9d9; }

File diff suppressed because it is too large Load Diff

View File

@ -3,17 +3,13 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-10-29 jeu. 10:08 -->
<!-- 2020-11-12 jeu. 10:34 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Finite Element Model with Simscape</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<script src="./js/jquery.min.js"></script>
<script src="./js/bootstrap.min.js"></script>
<script src="./js/jquery.stickytableheaders.min.js"></script>
<script src="./js/readtheorg.js"></script>
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
<script>MathJax = {
tex: {
tags: 'ams',
@ -34,88 +30,88 @@
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org3ded9a3">1. Amplified Piezoelectric Actuator - 3D elements</a>
<li><a href="#org5a554a0">1. Amplified Piezoelectric Actuator - 3D elements</a>
<ul>
<li><a href="#org7436688">1.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org4ad8afa">1.2. Output parameters</a></li>
<li><a href="#org1477fec">1.3. Piezoelectric parameters</a></li>
<li><a href="#orgdd0f3d7">1.4. Identification of the Dynamics</a></li>
<li><a href="#org740df84">1.5. Comparison with Ansys</a></li>
<li><a href="#org1555a0d">1.6. Force Sensor</a></li>
<li><a href="#org71b73d0">1.7. Distributed Actuator</a></li>
<li><a href="#org023858d">1.8. Distributed Actuator and Force Sensor</a></li>
<li><a href="#org91149a1">1.9. Dynamics from input voltage to displacement</a></li>
<li><a href="#orgc531f2d">1.10. Dynamics from input voltage to output voltage</a></li>
<li><a href="#org527cbaa">1.11. Identification for a simpler model</a></li>
<li><a href="#org29056ab">1.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#orgccb0a56">1.2. Output parameters</a></li>
<li><a href="#orgdd7c7ba">1.3. Piezoelectric parameters</a></li>
<li><a href="#orgb2959d5">1.4. Identification of the Dynamics</a></li>
<li><a href="#org1e29135">1.5. Comparison with Ansys</a></li>
<li><a href="#org3f1fc2e">1.6. Force Sensor</a></li>
<li><a href="#org4f1753f">1.7. Distributed Actuator</a></li>
<li><a href="#org21246e5">1.8. Distributed Actuator and Force Sensor</a></li>
<li><a href="#orgd0b2aaa">1.9. Dynamics from input voltage to displacement</a></li>
<li><a href="#org5452b7e">1.10. Dynamics from input voltage to output voltage</a></li>
<li><a href="#orgaff4afc">1.11. Identification for a simpler model</a></li>
</ul>
</li>
<li><a href="#org5e5f531">2. APA300ML</a>
<li><a href="#org3dc5d8d">2. APA300ML</a>
<ul>
<li><a href="#org9691c9e">2.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org34676bd">2.2. Output parameters</a></li>
<li><a href="#orgf6ad2fe">2.3. Piezoelectric parameters</a></li>
<li><a href="#orgfcc3b27">2.4. Identification of the APA Characteristics</a>
<li><a href="#org3eaf978">2.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org160ca26">2.2. Output parameters</a></li>
<li><a href="#org7932f3c">2.3. Piezoelectric parameters</a></li>
<li><a href="#org18316cd">2.4. Identification of the APA Characteristics</a>
<ul>
<li><a href="#org7c141d1">2.4.1. Stiffness</a></li>
<li><a href="#org6336a4d">2.4.2. Resonance Frequency</a></li>
<li><a href="#org7adcbea">2.4.3. Amplification factor</a></li>
<li><a href="#org924ba9a">2.4.4. Stroke</a></li>
<li><a href="#orgc0281f1">2.4.1. Stiffness</a></li>
<li><a href="#orgcebe0f9">2.4.2. Resonance Frequency</a></li>
<li><a href="#orgda4f233">2.4.3. Amplification factor</a></li>
<li><a href="#org59829b6">2.4.4. Stroke</a></li>
</ul>
</li>
<li><a href="#org0334d98">2.5. Identification of the Dynamics</a></li>
<li><a href="#org889c8e8">2.6. IFF</a></li>
<li><a href="#org6f11c82">2.7. DVF</a></li>
<li><a href="#org1c376b5">2.8. Identification for a simpler model</a></li>
<li><a href="#org30bc4bf">2.9. Identification of the stiffness properties</a>
<li><a href="#org1cbc8a6">2.5. Identification of the Dynamics</a></li>
<li><a href="#org44a32d5">2.6. IFF</a></li>
<li><a href="#org3e558c6">2.7. DVF</a></li>
<li><a href="#orgad3fdd9">2.8. Identification for a simpler model</a></li>
<li><a href="#orge0b9f5a">2.9. Identification of the stiffness properties</a>
<ul>
<li><a href="#orge89f3f8">2.9.1. APA Alone</a></li>
<li><a href="#org4651c6e">2.9.2. See how the global stiffness is changing with the flexible joints</a></li>
<li><a href="#org52ddecb">2.9.1. APA Alone</a></li>
<li><a href="#org02b6855">2.9.2. See how the global stiffness is changing with the flexible joints</a></li>
</ul>
</li>
<li><a href="#orgbb1e485">2.10. Effect of APA300ML in the flexibility of the leg</a></li>
<li><a href="#org34de703">2.10. Effect of APA300ML in the flexibility of the leg</a></li>
</ul>
</li>
<li><a href="#org71e2995">3. Flexible Joint</a>
<li><a href="#orgb6c0ee0">3. Flexible Joint</a>
<ul>
<li><a href="#org4609327">3.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org222b467">3.2. Output parameters</a></li>
<li><a href="#orgace43b0">3.3. Flexible Joint Characteristics</a></li>
<li><a href="#orgc60e392">3.4. Identification of the parameters using Simscape</a></li>
<li><a href="#org43c8aa7">3.5. Simpler Model</a></li>
<li><a href="#orgd7b1d5f">3.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org9778a32">3.2. Output parameters</a></li>
<li><a href="#orgcb9bad1">3.3. Flexible Joint Characteristics</a></li>
<li><a href="#org4dadc02">3.4. Identification of the parameters using Simscape</a></li>
<li><a href="#org30336a6">3.5. Simpler Model</a></li>
</ul>
</li>
<li><a href="#org5d2c10d">4. Optimal Flexible Joint</a>
<li><a href="#orgd9d5aff">4. Optimal Flexible Joint</a>
<ul>
<li><a href="#orgfec12e9">4.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org51a4b8d">4.2. Output parameters</a></li>
<li><a href="#org9df419b">4.3. Flexible Joint Characteristics</a></li>
<li><a href="#org4ea4053">4.4. Identification of the parameters using Simscape</a></li>
<li><a href="#org070daa9">4.5. Simpler Model</a></li>
<li><a href="#org83c1679">4.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#orgbee4a84">4.2. Output parameters</a></li>
<li><a href="#org7609951">4.3. Flexible Joint Characteristics</a></li>
<li><a href="#org8bf4f56">4.4. Identification of the parameters using Simscape</a></li>
<li><a href="#orgd8cb8ff">4.5. Simpler Model</a></li>
</ul>
</li>
<li><a href="#org72ebb5c">5. Integral Force Feedback with Amplified Piezo</a>
<li><a href="#org7f2d76d">5. Integral Force Feedback with Amplified Piezo</a>
<ul>
<li><a href="#orgffa90de">5.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org4ac5a6e">5.2. IFF Plant</a></li>
<li><a href="#orgdc46434">5.3. IFF controller</a></li>
<li><a href="#orgc9d8168">5.4. Closed Loop System</a></li>
<li><a href="#orgd9dc7be">5.1. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org3671fca">5.2. IFF Plant</a></li>
<li><a href="#org1cbfb66">5.3. IFF controller</a></li>
<li><a href="#org7b29313">5.4. Closed Loop System</a></li>
</ul>
</li>
<li><a href="#orge46f2bf">6. Complete Strut with Encoder</a>
<li><a href="#org1272d3f">6. Complete Strut with Encoder</a>
<ul>
<li><a href="#org9c8b2a0">6.1. Introduction</a></li>
<li><a href="#org6b21925">6.2. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org40668e1">6.3. Output parameters</a></li>
<li><a href="#org6d5c440">6.4. Piezoelectric parameters</a></li>
<li><a href="#org2521017">6.5. Identification of the Dynamics</a></li>
<li><a href="#orgddf8d43">6.1. Introduction</a></li>
<li><a href="#org4742c38">6.2. Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</a></li>
<li><a href="#org332b172">6.3. Output parameters</a></li>
<li><a href="#orgadca4a4">6.4. Piezoelectric parameters</a></li>
<li><a href="#org226d3f3">6.5. Identification of the Dynamics</a></li>
</ul>
</li>
</ul>
</div>
</div>
<div id="outline-container-org3ded9a3" class="outline-2">
<h2 id="org3ded9a3"><span class="section-number-2">1</span> Amplified Piezoelectric Actuator - 3D elements</h2>
<div id="outline-container-org5a554a0" class="outline-2">
<h2 id="org5a554a0"><span class="section-number-2">1</span> Amplified Piezoelectric Actuator - 3D elements</h2>
<div class="outline-text-2" id="text-1">
<p>
The idea here is to:
@ -129,8 +125,8 @@ The idea here is to:
</ul>
</div>
<div id="outline-container-org7436688" class="outline-3">
<h3 id="org7436688"><span class="section-number-3">1.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div id="outline-container-org29056ab" class="outline-3">
<h3 id="org29056ab"><span class="section-number-3">1.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div class="outline-text-3" id="text-1-1">
<p>
We first extract the stiffness and mass matrices.
@ -156,8 +152,8 @@ Then, we extract the coordinates of the interface nodes.
</div>
</div>
<div id="outline-container-org4ad8afa" class="outline-3">
<h3 id="org4ad8afa"><span class="section-number-3">1.2</span> Output parameters</h3>
<div id="outline-container-orgccb0a56" class="outline-3">
<h3 id="orgccb0a56"><span class="section-number-3">1.2</span> Output parameters</h3>
<div class="outline-text-3" id="text-1-2">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/piezo_amplified_3d.mat'</span>, <span class="org-string">'int_xyz'</span>, <span class="org-string">'int_i'</span>, <span class="org-string">'n_xyz'</span>, <span class="org-string">'n_i'</span>, <span class="org-string">'nodes'</span>, <span class="org-string">'M'</span>, <span class="org-string">'K'</span>);
@ -196,7 +192,7 @@ Then, we extract the coordinates of the interface nodes.
</table>
<div id="org52ce3d2" class="figure">
<div id="orgf427fec" class="figure">
<p><img src="figs/amplified_piezo_interface_nodes.png" alt="amplified_piezo_interface_nodes.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Interface Nodes for the Amplified Piezo Actuator</p>
@ -654,8 +650,8 @@ Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <c
</div>
<div id="outline-container-org1477fec" class="outline-3">
<h3 id="org1477fec"><span class="section-number-3">1.3</span> Piezoelectric parameters</h3>
<div id="outline-container-orgdd7c7ba" class="outline-3">
<h3 id="orgdd7c7ba"><span class="section-number-3">1.3</span> Piezoelectric parameters</h3>
<div class="outline-text-3" id="text-1-3">
<p>
Parameters for the APA95ML:
@ -716,8 +712,8 @@ where:
</div>
</div>
<div id="outline-container-orgdd0f3d7" class="outline-3">
<h3 id="orgdd0f3d7"><span class="section-number-3">1.4</span> Identification of the Dynamics</h3>
<div id="outline-container-orgb2959d5" class="outline-3">
<h3 id="orgb2959d5"><span class="section-number-3">1.4</span> Identification of the Dynamics</h3>
<div class="outline-text-3" id="text-1-4">
<p>
The flexible element is imported using the <code>Reduced Order Flexible Solid</code> simscape block.
@ -769,7 +765,7 @@ And the dynamics is identified.
</p>
<p>
The two identified dynamics are compared in Figure <a href="#org49f8567">2</a>.
The two identified dynamics are compared in Figure <a href="#orgd90f204">2</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
@ -785,7 +781,7 @@ Ghm = <span class="org-type">-</span>linearize(mdl, io);
</div>
<div id="org49f8567" class="figure">
<div id="orgd90f204" class="figure">
<p><img src="figs/dynamics_act_disp_comp_mass.png" alt="dynamics_act_disp_comp_mass.png" />
</p>
<p><span class="figure-number">Figure 2: </span>Dynamics from \(F\) to \(d\) without a payload and with a 10kg payload</p>
@ -793,8 +789,8 @@ Ghm = <span class="org-type">-</span>linearize(mdl, io);
</div>
</div>
<div id="outline-container-org740df84" class="outline-3">
<h3 id="org740df84"><span class="section-number-3">1.5</span> Comparison with Ansys</h3>
<div id="outline-container-org1e29135" class="outline-3">
<h3 id="org1e29135"><span class="section-number-3">1.5</span> Comparison with Ansys</h3>
<div class="outline-text-3" id="text-1-5">
<p>
Let&rsquo;s import the results from an Harmonic response analysis in Ansys.
@ -806,11 +802,11 @@ Gresp10 = readtable(<span class="org-string">'FEA_HarmResponse_10kg.txt'</span>)
</div>
<p>
The obtained dynamics from the Simscape model and from the Ansys analysis are compare in Figure <a href="#orga47bfac">3</a>.
The obtained dynamics from the Simscape model and from the Ansys analysis are compare in Figure <a href="#org32de39c">3</a>.
</p>
<div id="orga47bfac" class="figure">
<div id="org32de39c" class="figure">
<p><img src="figs/dynamics_force_disp_comp_anasys.png" alt="dynamics_force_disp_comp_anasys.png" />
</p>
<p><span class="figure-number">Figure 3: </span>Comparison of the obtained dynamics using Simscape with the harmonic response analysis using Ansys</p>
@ -818,15 +814,15 @@ The obtained dynamics from the Simscape model and from the Ansys analysis are co
</div>
</div>
<div id="outline-container-org1555a0d" class="outline-3">
<h3 id="org1555a0d"><span class="section-number-3">1.6</span> Force Sensor</h3>
<div id="outline-container-org3f1fc2e" class="outline-3">
<h3 id="org3f1fc2e"><span class="section-number-3">1.6</span> Force Sensor</h3>
<div class="outline-text-3" id="text-1-6">
<p>
The dynamics is identified from internal forces applied between nodes 3 and 11 to the relative displacement of nodes 11 and 13.
</p>
<p>
The obtained dynamics is shown in Figure <a href="#orgb045fc0">4</a>.
The obtained dynamics is shown in Figure <a href="#org5ab3306">4</a>.
</p>
<div class="org-src-container">
@ -866,7 +862,7 @@ Gfm = linearize(mdl, io);
</div>
<div id="orgb045fc0" class="figure">
<div id="org5ab3306" class="figure">
<p><img src="figs/dynamics_force_force_sensor_comp_mass.png" alt="dynamics_force_force_sensor_comp_mass.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Dynamics from \(F\) to \(F_m\) for \(m=0\) and \(m = 10kg\)</p>
@ -874,8 +870,8 @@ Gfm = linearize(mdl, io);
</div>
</div>
<div id="outline-container-org71b73d0" class="outline-3">
<h3 id="org71b73d0"><span class="section-number-3">1.7</span> Distributed Actuator</h3>
<div id="outline-container-org4f1753f" class="outline-3">
<h3 id="org4f1753f"><span class="section-number-3">1.7</span> Distributed Actuator</h3>
<div class="outline-text-3" id="text-1-7">
<div class="org-src-container">
<pre class="src src-matlab">m = 0;
@ -924,8 +920,8 @@ Gdm = linearize(mdl, io);
</div>
</div>
<div id="outline-container-org023858d" class="outline-3">
<h3 id="org023858d"><span class="section-number-3">1.8</span> Distributed Actuator and Force Sensor</h3>
<div id="outline-container-org21246e5" class="outline-3">
<h3 id="org21246e5"><span class="section-number-3">1.8</span> Distributed Actuator and Force Sensor</h3>
<div class="outline-text-3" id="text-1-8">
<div class="org-src-container">
<pre class="src src-matlab">m = 0;
@ -965,8 +961,8 @@ Gfdm = linearize(mdl, io);
</div>
</div>
<div id="outline-container-org91149a1" class="outline-3">
<h3 id="org91149a1"><span class="section-number-3">1.9</span> Dynamics from input voltage to displacement</h3>
<div id="outline-container-orgd0b2aaa" class="outline-3">
<h3 id="orgd0b2aaa"><span class="section-number-3">1.9</span> Dynamics from input voltage to displacement</h3>
<div class="outline-text-3" id="text-1-9">
<div class="org-src-container">
<pre class="src src-matlab">m = 5;
@ -978,7 +974,7 @@ And the dynamics is identified.
</p>
<p>
The two identified dynamics are compared in Figure <a href="#org49f8567">2</a>.
The two identified dynamics are compared in Figure <a href="#orgd90f204">2</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab"><span class="org-matlab-cellbreak"><span class="org-comment">%% Name of the Simulink File</span></span>
@ -1000,8 +996,8 @@ G = <span class="org-type">-</span>linearize(mdl, io);
</div>
</div>
<div id="outline-container-orgc531f2d" class="outline-3">
<h3 id="orgc531f2d"><span class="section-number-3">1.10</span> Dynamics from input voltage to output voltage</h3>
<div id="outline-container-org5452b7e" class="outline-3">
<h3 id="org5452b7e"><span class="section-number-3">1.10</span> Dynamics from input voltage to output voltage</h3>
<div class="outline-text-3" id="text-1-10">
<div class="org-src-container">
<pre class="src src-matlab">m = 5;
@ -1023,8 +1019,8 @@ G = <span class="org-type">-</span>linearize(mdl, io);
</div>
</div>
<div id="outline-container-org527cbaa" class="outline-3">
<h3 id="org527cbaa"><span class="section-number-3">1.11</span> Identification for a simpler model</h3>
<div id="outline-container-orgaff4afc" class="outline-3">
<h3 id="orgaff4afc"><span class="section-number-3">1.11</span> Identification for a simpler model</h3>
<div class="outline-text-3" id="text-1-11">
<p>
The goal in this section is to identify the parameters of a simple APA model from the FEM.
@ -1036,12 +1032,12 @@ The presented model is based on (<a href="#citeproc_bib_item_2">Souleille et al.
</p>
<p>
The model represents the Amplified Piezo Actuator (APA) from Cedrat-Technologies (Figure <a href="#orgb1100b8">5</a>).
The model represents the Amplified Piezo Actuator (APA) from Cedrat-Technologies (Figure <a href="#org73ab5e6">5</a>).
The parameters are shown in the table below.
</p>
<div id="orgb1100b8" class="figure">
<div id="org73ab5e6" class="figure">
<p><img src="./figs/souleille18_model_piezo.png" alt="souleille18_model_piezo.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload mounted on such isolator</p>
@ -1190,7 +1186,7 @@ Adjust the DC gain for the force sensor:
</div>
<div id="org6fbe971" class="figure">
<div id="org629ff2d" class="figure">
<p><img src="figs/apa95ml_comp_simpler_model.png" alt="apa95ml_comp_simpler_model.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Comparison of the Dynamics between the FEM model and the simplified one</p>
@ -1207,19 +1203,19 @@ We save the parameters of the simplified model for the APA95ML:
</div>
</div>
<div id="outline-container-org5e5f531" class="outline-2">
<h2 id="org5e5f531"><span class="section-number-2">2</span> APA300ML</h2>
<div id="outline-container-org3dc5d8d" class="outline-2">
<h2 id="org3dc5d8d"><span class="section-number-2">2</span> APA300ML</h2>
<div class="outline-text-2" id="text-2">
<div id="orgbd02022" class="figure">
<div id="org60aa4c9" class="figure">
<p><img src="figs/apa300ml_ansys.jpg" alt="apa300ml_ansys.jpg" />
</p>
<p><span class="figure-number">Figure 7: </span>Ansys FEM of the APA300ML</p>
</div>
</div>
<div id="outline-container-org9691c9e" class="outline-3">
<h3 id="org9691c9e"><span class="section-number-3">2.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div id="outline-container-org3eaf978" class="outline-3">
<h3 id="org3eaf978"><span class="section-number-3">2.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div class="outline-text-3" id="text-2-1">
<p>
We first extract the stiffness and mass matrices.
@ -1245,8 +1241,8 @@ Then, we extract the coordinates of the interface nodes.
</div>
</div>
<div id="outline-container-org34676bd" class="outline-3">
<h3 id="org34676bd"><span class="section-number-3">2.2</span> Output parameters</h3>
<div id="outline-container-org160ca26" class="outline-3">
<h3 id="org160ca26"><span class="section-number-3">2.2</span> Output parameters</h3>
<div class="outline-text-3" id="text-2-2">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/APA300ML.mat'</span>, <span class="org-string">'int_xyz'</span>, <span class="org-string">'int_i'</span>, <span class="org-string">'n_xyz'</span>, <span class="org-string">'n_i'</span>, <span class="org-string">'nodes'</span>, <span class="org-string">'M'</span>, <span class="org-string">'K'</span>);
@ -1687,8 +1683,8 @@ Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <c
</div>
</div>
<div id="outline-container-orgf6ad2fe" class="outline-3">
<h3 id="orgf6ad2fe"><span class="section-number-3">2.3</span> Piezoelectric parameters</h3>
<div id="outline-container-org7932f3c" class="outline-3">
<h3 id="org7932f3c"><span class="section-number-3">2.3</span> Piezoelectric parameters</h3>
<div class="outline-text-3" id="text-2-3">
<p>
Parameters for the APA300ML:
@ -1749,12 +1745,12 @@ where:
</div>
</div>
<div id="outline-container-orgfcc3b27" class="outline-3">
<h3 id="orgfcc3b27"><span class="section-number-3">2.4</span> Identification of the APA Characteristics</h3>
<div id="outline-container-org18316cd" class="outline-3">
<h3 id="org18316cd"><span class="section-number-3">2.4</span> Identification of the APA Characteristics</h3>
<div class="outline-text-3" id="text-2-4">
</div>
<div id="outline-container-org7c141d1" class="outline-4">
<h4 id="org7c141d1"><span class="section-number-4">2.4.1</span> Stiffness</h4>
<div id="outline-container-orgc0281f1" class="outline-4">
<h4 id="orgc0281f1"><span class="section-number-4">2.4.1</span> Stiffness</h4>
<div class="outline-text-4" id="text-2-4-1">
<p>
The transfer function from vertical external force to the relative vertical displacement is identified.
@ -1779,16 +1775,16 @@ The specified stiffness in the datasheet is \(k = 1.8\, [N/\mu m]\).
</div>
</div>
<div id="outline-container-org6336a4d" class="outline-4">
<h4 id="org6336a4d"><span class="section-number-4">2.4.2</span> Resonance Frequency</h4>
<div id="outline-container-orgcebe0f9" class="outline-4">
<h4 id="orgcebe0f9"><span class="section-number-4">2.4.2</span> Resonance Frequency</h4>
<div class="outline-text-4" id="text-2-4-2">
<p>
The resonance frequency is specified to be between 650Hz and 840Hz.
This is also the case for the FEM model (Figure <a href="#org2f62cd6">8</a>).
This is also the case for the FEM model (Figure <a href="#orgbb4a26e">8</a>).
</p>
<div id="org2f62cd6" class="figure">
<div id="orgbb4a26e" class="figure">
<p><img src="figs/apa300ml_resonance.png" alt="apa300ml_resonance.png" />
</p>
<p><span class="figure-number">Figure 8: </span>First resonance is around 800Hz</p>
@ -1796,8 +1792,8 @@ This is also the case for the FEM model (Figure <a href="#org2f62cd6">8</a>).
</div>
</div>
<div id="outline-container-org7adcbea" class="outline-4">
<h4 id="org7adcbea"><span class="section-number-4">2.4.3</span> Amplification factor</h4>
<div id="outline-container-orgda4f233" class="outline-4">
<h4 id="orgda4f233"><span class="section-number-4">2.4.3</span> Amplification factor</h4>
<div class="outline-text-4" id="text-2-4-3">
<p>
The amplification factor is the ratio of the axial displacement to the stack displacement.
@ -1830,8 +1826,8 @@ If we take the ratio of the piezo height and length (approximation of the amplif
</div>
</div>
<div id="outline-container-org924ba9a" class="outline-4">
<h4 id="org924ba9a"><span class="section-number-4">2.4.4</span> Stroke</h4>
<div id="outline-container-org59829b6" class="outline-4">
<h4 id="org59829b6"><span class="section-number-4">2.4.4</span> Stroke</h4>
<div class="outline-text-4" id="text-2-4-4">
<p>
Estimation of the actuator stroke:
@ -1862,8 +1858,8 @@ This is exactly the specified stroke in the data-sheet.
</div>
</div>
<div id="outline-container-org0334d98" class="outline-3">
<h3 id="org0334d98"><span class="section-number-3">2.5</span> Identification of the Dynamics</h3>
<div id="outline-container-org1cbc8a6" class="outline-3">
<h3 id="org1cbc8a6"><span class="section-number-3">2.5</span> Identification of the Dynamics</h3>
<div class="outline-text-3" id="text-2-5">
<p>
The flexible element is imported using the <code>Reduced Order Flexible Solid</code> simscape block.
@ -1889,7 +1885,7 @@ The same dynamics is identified for a payload mass of 10Kg.
</div>
<div id="org452a3a7" class="figure">
<div id="orgb07566c" class="figure">
<p><img src="figs/apa300ml_plant_dynamics.png" alt="apa300ml_plant_dynamics.png" />
</p>
<p><span class="figure-number">Figure 9: </span>Transfer function from forces applied by the stack to the axial displacement of the APA</p>
@ -1897,28 +1893,28 @@ The same dynamics is identified for a payload mass of 10Kg.
</div>
</div>
<div id="outline-container-org889c8e8" class="outline-3">
<h3 id="org889c8e8"><span class="section-number-3">2.6</span> IFF</h3>
<div id="outline-container-org44a32d5" class="outline-3">
<h3 id="org44a32d5"><span class="section-number-3">2.6</span> IFF</h3>
<div class="outline-text-3" id="text-2-6">
<p>
Let&rsquo;s use 2 stacks as actuators and 1 stack as force sensor.
</p>
<p>
The transfer function from actuator to sensors is identified and shown in Figure <a href="#orge704515">10</a>.
The transfer function from actuator to sensors is identified and shown in Figure <a href="#org0cb4e3c">10</a>.
</p>
<div id="orge704515" class="figure">
<div id="org0cb4e3c" class="figure">
<p><img src="figs/apa300ml_iff_plant.png" alt="apa300ml_iff_plant.png" />
</p>
<p><span class="figure-number">Figure 10: </span>Transfer function from actuator to force sensor</p>
</div>
<p>
For root locus corresponding to IFF is shown in Figure <a href="#org4d28155">11</a>.
For root locus corresponding to IFF is shown in Figure <a href="#org57c3b0d">11</a>.
</p>
<div id="org4d28155" class="figure">
<div id="org57c3b0d" class="figure">
<p><img src="figs/apa300ml_iff_root_locus.png" alt="apa300ml_iff_root_locus.png" />
</p>
<p><span class="figure-number">Figure 11: </span>Root Locus for IFF</p>
@ -1926,25 +1922,25 @@ For root locus corresponding to IFF is shown in Figure <a href="#org4d28155">11<
</div>
</div>
<div id="outline-container-org6f11c82" class="outline-3">
<h3 id="org6f11c82"><span class="section-number-3">2.7</span> DVF</h3>
<div id="outline-container-org3e558c6" class="outline-3">
<h3 id="org3e558c6"><span class="section-number-3">2.7</span> DVF</h3>
<div class="outline-text-3" id="text-2-7">
<p>
Now the dynamics from the stack actuator to the relative motion sensor is identified and shown in Figure <a href="#org84dd7d9">12</a>.
Now the dynamics from the stack actuator to the relative motion sensor is identified and shown in Figure <a href="#org828d315">12</a>.
</p>
<div id="org84dd7d9" class="figure">
<div id="org828d315" class="figure">
<p><img src="figs/apa300ml_dvf_plant.png" alt="apa300ml_dvf_plant.png" />
</p>
<p><span class="figure-number">Figure 12: </span>Transfer function from stack actuator to relative motion sensor</p>
</div>
<p>
The root locus for DVF is shown in Figure <a href="#org362161f">13</a>.
The root locus for DVF is shown in Figure <a href="#orgf2f0551">13</a>.
</p>
<div id="org362161f" class="figure">
<div id="orgf2f0551" class="figure">
<p><img src="figs/apa300ml_dvf_root_locus.png" alt="apa300ml_dvf_root_locus.png" />
</p>
<p><span class="figure-number">Figure 13: </span>Root Locus for Direct Velocity Feedback</p>
@ -1952,8 +1948,8 @@ The root locus for DVF is shown in Figure <a href="#org362161f">13</a>.
</div>
</div>
<div id="outline-container-org1c376b5" class="outline-3">
<h3 id="org1c376b5"><span class="section-number-3">2.8</span> Identification for a simpler model</h3>
<div id="outline-container-orgad3fdd9" class="outline-3">
<h3 id="orgad3fdd9"><span class="section-number-3">2.8</span> Identification for a simpler model</h3>
<div class="outline-text-3" id="text-2-8">
<p>
The goal in this section is to identify the parameters of a simple APA model from the FEM.
@ -1965,12 +1961,12 @@ The presented model is based on (<a href="#citeproc_bib_item_2">Souleille et al.
</p>
<p>
The model represents the Amplified Piezo Actuator (APA) from Cedrat-Technologies (Figure <a href="#orgb1100b8">5</a>).
The model represents the Amplified Piezo Actuator (APA) from Cedrat-Technologies (Figure <a href="#org73ab5e6">5</a>).
The parameters are shown in the table below.
</p>
<div id="orgd4eeaf2" class="figure">
<div id="org2d53ab0" class="figure">
<p><img src="./figs/souleille18_model_piezo.png" alt="souleille18_model_piezo.png" />
</p>
<p><span class="figure-number">Figure 14: </span>Picture of an APA100M from Cedrat Technologies. Simplified model of a one DoF payload mounted on such isolator</p>
@ -2119,7 +2115,7 @@ Adjust the DC gain for the force sensor:
</div>
<div id="org36826f6" class="figure">
<div id="org6c57210" class="figure">
<p><img src="figs/apa300ml_comp_simpler_model.png" alt="apa300ml_comp_simpler_model.png" />
</p>
<p><span class="figure-number">Figure 15: </span>Comparison of the Dynamics between the FEM model and the simplified one</p>
@ -2129,7 +2125,7 @@ Adjust the DC gain for the force sensor:
We now compare the FEM model with the simplified simscape model.
</p>
<div id="orge85d5a8" class="figure">
<div id="orgdec5f8c" class="figure">
<p><img src="figs/apa300ml_comp_simpler_simscape.png" alt="apa300ml_comp_simpler_simscape.png" />
</p>
<p><span class="figure-number">Figure 16: </span>Comparison of the Dynamics between the FEM model and the simplified simscape model</p>
@ -2145,12 +2141,12 @@ We save the parameters of the simplified model for the APA300ML:
</div>
</div>
<div id="outline-container-org30bc4bf" class="outline-3">
<h3 id="org30bc4bf"><span class="section-number-3">2.9</span> Identification of the stiffness properties</h3>
<div id="outline-container-orge0b9f5a" class="outline-3">
<h3 id="orge0b9f5a"><span class="section-number-3">2.9</span> Identification of the stiffness properties</h3>
<div class="outline-text-3" id="text-2-9">
</div>
<div id="outline-container-orge89f3f8" class="outline-4">
<h4 id="orge89f3f8"><span class="section-number-4">2.9.1</span> APA Alone</h4>
<div id="outline-container-org52ddecb" class="outline-4">
<h4 id="org52ddecb"><span class="section-number-4">2.9.1</span> APA Alone</h4>
<div class="outline-text-4" id="text-2-9-1">
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@ -2201,8 +2197,8 @@ We save the parameters of the simplified model for the APA300ML:
</div>
</div>
<div id="outline-container-org4651c6e" class="outline-4">
<h4 id="org4651c6e"><span class="section-number-4">2.9.2</span> See how the global stiffness is changing with the flexible joints</h4>
<div id="outline-container-org02b6855" class="outline-4">
<h4 id="org02b6855"><span class="section-number-4">2.9.2</span> See how the global stiffness is changing with the flexible joints</h4>
<div class="outline-text-4" id="text-2-9-2">
<div class="org-src-container">
<pre class="src src-matlab">flex = load(<span class="org-string">'./mat/flexor_ID16.mat'</span>, <span class="org-string">'int_xyz'</span>, <span class="org-string">'int_i'</span>, <span class="org-string">'n_xyz'</span>, <span class="org-string">'n_i'</span>, <span class="org-string">'nodes'</span>, <span class="org-string">'M'</span>, <span class="org-string">'K'</span>);
@ -2290,8 +2286,8 @@ legend(<span class="org-string">'location'</span>, <span class="org-string">'nor
</div>
</div>
<div id="outline-container-orgbb1e485" class="outline-3">
<h3 id="orgbb1e485"><span class="section-number-3">2.10</span> Effect of APA300ML in the flexibility of the leg</h3>
<div id="outline-container-org34de703" class="outline-3">
<h3 id="org34de703"><span class="section-number-3">2.10</span> Effect of APA300ML in the flexibility of the leg</h3>
<div class="outline-text-3" id="text-2-10">
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
@ -2352,11 +2348,11 @@ legend(<span class="org-string">'location'</span>, <span class="org-string">'nor
</div>
</div>
<div id="outline-container-org71e2995" class="outline-2">
<h2 id="org71e2995"><span class="section-number-2">3</span> Flexible Joint</h2>
<div id="outline-container-orgb6c0ee0" class="outline-2">
<h2 id="orgb6c0ee0"><span class="section-number-2">3</span> Flexible Joint</h2>
<div class="outline-text-2" id="text-3">
<p>
The studied flexor is shown in Figure <a href="#org0b718d7">17</a>.
The studied flexor is shown in Figure <a href="#orgdff9d67">17</a>.
</p>
<p>
@ -2369,15 +2365,15 @@ A simplified model of the flexor is then developped.
</p>
<div id="org0b718d7" class="figure">
<div id="orgdff9d67" class="figure">
<p><img src="figs/flexor_id16_screenshot.png" alt="flexor_id16_screenshot.png" />
</p>
<p><span class="figure-number">Figure 17: </span>Flexor studied</p>
</div>
</div>
<div id="outline-container-org4609327" class="outline-3">
<h3 id="org4609327"><span class="section-number-3">3.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div id="outline-container-orgd7b1d5f" class="outline-3">
<h3 id="orgd7b1d5f"><span class="section-number-3">3.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div class="outline-text-3" id="text-3-1">
<p>
We first extract the stiffness and mass matrices.
@ -2403,8 +2399,8 @@ Then, we extract the coordinates of the interface nodes.
</div>
</div>
<div id="outline-container-org222b467" class="outline-3">
<h3 id="org222b467"><span class="section-number-3">3.2</span> Output parameters</h3>
<div id="outline-container-org9778a32" class="outline-3">
<h3 id="org9778a32"><span class="section-number-3">3.2</span> Output parameters</h3>
<div class="outline-text-3" id="text-3-2">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/flexor_ID16.mat'</span>, <span class="org-string">'int_xyz'</span>, <span class="org-string">'int_i'</span>, <span class="org-string">'n_xyz'</span>, <span class="org-string">'n_i'</span>, <span class="org-string">'nodes'</span>, <span class="org-string">'M'</span>, <span class="org-string">'K'</span>);
@ -2805,8 +2801,8 @@ Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <c
</div>
</div>
<div id="outline-container-orgace43b0" class="outline-3">
<h3 id="orgace43b0"><span class="section-number-3">3.3</span> Flexible Joint Characteristics</h3>
<div id="outline-container-orgcb9bad1" class="outline-3">
<h3 id="orgcb9bad1"><span class="section-number-3">3.3</span> Flexible Joint Characteristics</h3>
<div class="outline-text-3" id="text-3-3">
<p>
The most important parameters of the flexible joint can be directly estimated from the stiffness matrix.
@ -2864,8 +2860,8 @@ The most important parameters of the flexible joint can be directly estimated fr
</div>
</div>
<div id="outline-container-orgc60e392" class="outline-3">
<h3 id="orgc60e392"><span class="section-number-3">3.4</span> Identification of the parameters using Simscape</h3>
<div id="outline-container-org4dadc02" class="outline-3">
<h3 id="org4dadc02"><span class="section-number-3">3.4</span> Identification of the parameters using Simscape</h3>
<div class="outline-text-3" id="text-3-4">
<p>
The flexor is now imported into Simscape and its parameters are estimated using an identification.
@ -2922,15 +2918,15 @@ And we find the same parameters as the one estimated from the Stiffness matrix.
</div>
</div>
<div id="outline-container-org43c8aa7" class="outline-3">
<h3 id="org43c8aa7"><span class="section-number-3">3.5</span> Simpler Model</h3>
<div id="outline-container-org30336a6" class="outline-3">
<h3 id="org30336a6"><span class="section-number-3">3.5</span> Simpler Model</h3>
<div class="outline-text-3" id="text-3-5">
<p>
Let&rsquo;s now model the flexible joint with a &ldquo;perfect&rdquo; Bushing joint as shown in Figure <a href="#orga4765e3">18</a>.
Let&rsquo;s now model the flexible joint with a &ldquo;perfect&rdquo; Bushing joint as shown in Figure <a href="#org9c5b090">18</a>.
</p>
<div id="orga4765e3" class="figure">
<div id="org9c5b090" class="figure">
<p><img src="figs/flexible_joint_simscape.png" alt="flexible_joint_simscape.png" />
</p>
<p><span class="figure-number">Figure 18: </span>Bushing Joint used to model the flexible joint</p>
@ -2955,7 +2951,7 @@ The two obtained dynamics are compared in Figure
</p>
<div id="org54ce633" class="figure">
<div id="org6baee4c" class="figure">
<p><img src="figs/flexor_ID16_compare_bushing_joint.png" alt="flexor_ID16_compare_bushing_joint.png" />
</p>
<p><span class="figure-number">Figure 19: </span>Comparison of the Joint compliance between the FEM model and the simpler model</p>
@ -2964,19 +2960,19 @@ The two obtained dynamics are compared in Figure
</div>
</div>
<div id="outline-container-org5d2c10d" class="outline-2">
<h2 id="org5d2c10d"><span class="section-number-2">4</span> Optimal Flexible Joint</h2>
<div id="outline-container-orgd9d5aff" class="outline-2">
<h2 id="orgd9d5aff"><span class="section-number-2">4</span> Optimal Flexible Joint</h2>
<div class="outline-text-2" id="text-4">
<div id="orgc598a8a" class="figure">
<div id="org47739fa" class="figure">
<p><img src="data/flexor_circ_025/CS.jpg" alt="CS.jpg" />
</p>
<p><span class="figure-number">Figure 20: </span>Flexor studied</p>
</div>
</div>
<div id="outline-container-orgfec12e9" class="outline-3">
<h3 id="orgfec12e9"><span class="section-number-3">4.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div id="outline-container-org83c1679" class="outline-3">
<h3 id="org83c1679"><span class="section-number-3">4.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div class="outline-text-3" id="text-4-1">
<p>
We first extract the stiffness and mass matrices.
@ -3002,8 +2998,8 @@ Then, we extract the coordinates of the interface nodes.
</div>
</div>
<div id="outline-container-org51a4b8d" class="outline-3">
<h3 id="org51a4b8d"><span class="section-number-3">4.2</span> Output parameters</h3>
<div id="outline-container-orgbee4a84" class="outline-3">
<h3 id="orgbee4a84"><span class="section-number-3">4.2</span> Output parameters</h3>
<div class="outline-text-3" id="text-4-2">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/flexor_025.mat'</span>, <span class="org-string">'int_xyz'</span>, <span class="org-string">'int_i'</span>, <span class="org-string">'n_xyz'</span>, <span class="org-string">'n_i'</span>, <span class="org-string">'nodes'</span>, <span class="org-string">'M'</span>, <span class="org-string">'K'</span>);
@ -3404,8 +3400,8 @@ Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <c
</div>
</div>
<div id="outline-container-org9df419b" class="outline-3">
<h3 id="org9df419b"><span class="section-number-3">4.3</span> Flexible Joint Characteristics</h3>
<div id="outline-container-org7609951" class="outline-3">
<h3 id="org7609951"><span class="section-number-3">4.3</span> Flexible Joint Characteristics</h3>
<div class="outline-text-3" id="text-4-3">
<p>
The most important parameters of the flexible joint can be directly estimated from the stiffness matrix.
@ -3455,8 +3451,8 @@ The most important parameters of the flexible joint can be directly estimated fr
</div>
</div>
<div id="outline-container-org4ea4053" class="outline-3">
<h3 id="org4ea4053"><span class="section-number-3">4.4</span> Identification of the parameters using Simscape</h3>
<div id="outline-container-org8bf4f56" class="outline-3">
<h3 id="org8bf4f56"><span class="section-number-3">4.4</span> Identification of the parameters using Simscape</h3>
<div class="outline-text-3" id="text-4-4">
<p>
The flexor is now imported into Simscape and its parameters are estimated using an identification.
@ -3513,15 +3509,15 @@ And we find the same parameters as the one estimated from the Stiffness matrix.
</div>
</div>
<div id="outline-container-org070daa9" class="outline-3">
<h3 id="org070daa9"><span class="section-number-3">4.5</span> Simpler Model</h3>
<div id="outline-container-orgd8cb8ff" class="outline-3">
<h3 id="orgd8cb8ff"><span class="section-number-3">4.5</span> Simpler Model</h3>
<div class="outline-text-3" id="text-4-5">
<p>
Let&rsquo;s now model the flexible joint with a &ldquo;perfect&rdquo; Bushing joint as shown in Figure <a href="#orga4765e3">18</a>.
Let&rsquo;s now model the flexible joint with a &ldquo;perfect&rdquo; Bushing joint as shown in Figure <a href="#org9c5b090">18</a>.
</p>
<div id="orgaded736" class="figure">
<div id="orgc5e5982" class="figure">
<p><img src="figs/flexible_joint_simscape.png" alt="flexible_joint_simscape.png" />
</p>
<p><span class="figure-number">Figure 21: </span>Bushing Joint used to model the flexible joint</p>
@ -3546,7 +3542,7 @@ The two obtained dynamics are compared in Figure
</p>
<div id="orga26c578" class="figure">
<div id="org2936555" class="figure">
<p><img src="figs/flexor_ID16_compare_bushing_joint.png" alt="flexor_ID16_compare_bushing_joint.png" />
</p>
<p><span class="figure-number">Figure 22: </span>Comparison of the Joint compliance between the FEM model and the simpler model</p>
@ -3555,16 +3551,16 @@ The two obtained dynamics are compared in Figure
</div>
</div>
<div id="outline-container-org72ebb5c" class="outline-2">
<h2 id="org72ebb5c"><span class="section-number-2">5</span> Integral Force Feedback with Amplified Piezo</h2>
<div id="outline-container-org7f2d76d" class="outline-2">
<h2 id="org7f2d76d"><span class="section-number-2">5</span> Integral Force Feedback with Amplified Piezo</h2>
<div class="outline-text-2" id="text-5">
<p>
In this section, we try to replicate the results obtained in (<a href="#citeproc_bib_item_2">Souleille et al. 2018</a>).
</p>
</div>
<div id="outline-container-orgffa90de" class="outline-3">
<h3 id="orgffa90de"><span class="section-number-3">5.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div id="outline-container-orgd9dc7be" class="outline-3">
<h3 id="orgd9dc7be"><span class="section-number-3">5.1</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div class="outline-text-3" id="text-5-1">
<p>
We first extract the stiffness and mass matrices.
@ -3585,11 +3581,11 @@ Then, we extract the coordinates of the interface nodes.
</div>
</div>
<div id="outline-container-org4ac5a6e" class="outline-3">
<h3 id="org4ac5a6e"><span class="section-number-3">5.2</span> IFF Plant</h3>
<div id="outline-container-org3671fca" class="outline-3">
<h3 id="org3671fca"><span class="section-number-3">5.2</span> IFF Plant</h3>
<div class="outline-text-3" id="text-5-2">
<p>
The transfer function from the force actuator to the force sensor is identified and shown in Figure <a href="#org4390f0c">23</a>.
The transfer function from the force actuator to the force sensor is identified and shown in Figure <a href="#org294cdfb">23</a>.
</p>
<div class="org-src-container">
@ -3626,7 +3622,7 @@ Gf = linearize(mdl, io);
</div>
<div id="org4390f0c" class="figure">
<div id="org294cdfb" class="figure">
<p><img src="figs/piezo_amplified_iff_plant.png" alt="piezo_amplified_iff_plant.png" />
</p>
<p><span class="figure-number">Figure 23: </span>IFF Plant</p>
@ -3634,11 +3630,11 @@ Gf = linearize(mdl, io);
</div>
</div>
<div id="outline-container-orgdc46434" class="outline-3">
<h3 id="orgdc46434"><span class="section-number-3">5.3</span> IFF controller</h3>
<div id="outline-container-org1cbfb66" class="outline-3">
<h3 id="org1cbfb66"><span class="section-number-3">5.3</span> IFF controller</h3>
<div class="outline-text-3" id="text-5-3">
<p>
The controller is defined and the loop gain is shown in Figure <a href="#orgc28c610">24</a>.
The controller is defined and the loop gain is shown in Figure <a href="#orgbcc66e9">24</a>.
</p>
<div class="org-src-container">
<pre class="src src-matlab">Kiff = <span class="org-type">-</span>1e12<span class="org-type">/</span>s;
@ -3646,7 +3642,7 @@ The controller is defined and the loop gain is shown in Figure <a href="#orgc28c
</div>
<div id="orgc28c610" class="figure">
<div id="orgbcc66e9" class="figure">
<p><img src="figs/piezo_amplified_iff_loop_gain.png" alt="piezo_amplified_iff_loop_gain.png" />
</p>
<p><span class="figure-number">Figure 24: </span>IFF Loop Gain</p>
@ -3654,8 +3650,8 @@ The controller is defined and the loop gain is shown in Figure <a href="#orgc28c
</div>
</div>
<div id="outline-container-orgc9d8168" class="outline-3">
<h3 id="orgc9d8168"><span class="section-number-3">5.4</span> Closed Loop System</h3>
<div id="outline-container-org7b29313" class="outline-3">
<h3 id="org7b29313"><span class="section-number-3">5.4</span> Closed Loop System</h3>
<div class="outline-text-3" id="text-5-4">
<div class="org-src-container">
<pre class="src src-matlab">m = 10;
@ -3698,7 +3694,7 @@ G.OutputName = {<span class="org-string">'x1'</span>, <span class="org-string">
</div>
<div id="orgcc44982" class="figure">
<div id="org9317d23" class="figure">
<p><img src="figs/piezo_amplified_iff_comp.png" alt="piezo_amplified_iff_comp.png" />
</p>
<p><span class="figure-number">Figure 25: </span>OL and CL transfer functions</p>
@ -3706,7 +3702,7 @@ G.OutputName = {<span class="org-string">'x1'</span>, <span class="org-string">
<div id="org9e21ddc" class="figure">
<div id="org7f216a9" class="figure">
<p><img src="figs/souleille18_results.png" alt="souleille18_results.png" />
</p>
<p><span class="figure-number">Figure 26: </span>Results obtained in <a class='org-ref-reference' href="#souleille18_concep_activ_mount_space_applic">souleille18_concep_activ_mount_space_applic</a></p>
@ -3715,15 +3711,15 @@ G.OutputName = {<span class="org-string">'x1'</span>, <span class="org-string">
</div>
</div>
<div id="outline-container-orge46f2bf" class="outline-2">
<h2 id="orge46f2bf"><span class="section-number-2">6</span> Complete Strut with Encoder</h2>
<div id="outline-container-org1272d3f" class="outline-2">
<h2 id="org1272d3f"><span class="section-number-2">6</span> Complete Strut with Encoder</h2>
<div class="outline-text-2" id="text-6">
</div>
<div id="outline-container-org9c8b2a0" class="outline-3">
<h3 id="org9c8b2a0"><span class="section-number-3">6.1</span> Introduction</h3>
<div id="outline-container-orgddf8d43" class="outline-3">
<h3 id="orgddf8d43"><span class="section-number-3">6.1</span> Introduction</h3>
<div class="outline-text-3" id="text-6-1">
<div id="org169745c" class="figure">
<div id="org1af2e05" class="figure">
<p><img src="data/strut_encoder/points3.jpg" alt="points3.jpg" />
</p>
<p><span class="figure-number">Figure 27: </span>Interface points</p>
@ -3735,8 +3731,8 @@ Flexible joints have 0.25mm width.
</div>
</div>
<div id="outline-container-org6b21925" class="outline-3">
<h3 id="org6b21925"><span class="section-number-3">6.2</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div id="outline-container-org4742c38" class="outline-3">
<h3 id="org4742c38"><span class="section-number-3">6.2</span> Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates</h3>
<div class="outline-text-3" id="text-6-2">
<p>
We first extract the stiffness and mass matrices.
@ -3762,8 +3758,8 @@ Then, we extract the coordinates of the interface nodes.
</div>
</div>
<div id="outline-container-org40668e1" class="outline-3">
<h3 id="org40668e1"><span class="section-number-3">6.3</span> Output parameters</h3>
<div id="outline-container-org332b172" class="outline-3">
<h3 id="org332b172"><span class="section-number-3">6.3</span> Output parameters</h3>
<div class="outline-text-3" id="text-6-3">
<div class="org-src-container">
<pre class="src src-matlab">load(<span class="org-string">'./mat/strut_encoder.mat'</span>, <span class="org-string">'int_xyz'</span>, <span class="org-string">'int_i'</span>, <span class="org-string">'n_xyz'</span>, <span class="org-string">'n_i'</span>, <span class="org-string">'nodes'</span>, <span class="org-string">'M'</span>, <span class="org-string">'K'</span>);
@ -4215,8 +4211,8 @@ Using <code>K</code>, <code>M</code> and <code>int_xyz</code>, we can use the <c
<div id="outline-container-org6d5c440" class="outline-3">
<h3 id="org6d5c440"><span class="section-number-3">6.4</span> Piezoelectric parameters</h3>
<div id="outline-container-orgadca4a4" class="outline-3">
<h3 id="orgadca4a4"><span class="section-number-3">6.4</span> Piezoelectric parameters</h3>
<div class="outline-text-3" id="text-6-4">
<p>
Parameters for the APA300ML:
@ -4240,8 +4236,8 @@ ns = 1; <span class="org-comment">% Number of stacks used as force sensor</span>
</div>
</div>
<div id="outline-container-org2521017" class="outline-3">
<h3 id="org2521017"><span class="section-number-3">6.5</span> Identification of the Dynamics</h3>
<div id="outline-container-org226d3f3" class="outline-3">
<h3 id="org226d3f3"><span class="section-number-3">6.5</span> Identification of the Dynamics</h3>
<div class="outline-text-3" id="text-6-5">
<p>
The dynamics is identified from the applied force to the measured relative displacement.
@ -4267,7 +4263,7 @@ The same dynamics is identified for a payload mass of 10Kg.
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-10-29 jeu. 10:08</p>
<p class="date">Created: 2020-11-12 jeu. 10:34</p>
</div>
</body>
</html>

View File

@ -9,12 +9,8 @@
#+HTML_LINK_HOME: ../index.html
#+HTML_LINK_UP: ../index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
#+HTML_HEAD: <script src="./js/jquery.min.js"></script>
#+HTML_HEAD: <script src="./js/bootstrap.min.js"></script>
#+HTML_HEAD: <script src="./js/jquery.stickytableheaders.min.js"></script>
#+HTML_HEAD: <script src="./js/readtheorg.js"></script>
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
@ -57,7 +53,6 @@ The idea here is to:
#+end_src
#+begin_src matlab
addpath('./src/');
addpath('./data/piezo_amplified_3d/');
#+end_src
@ -843,7 +838,6 @@ We save the parameters of the simplified model for the APA95ML:
#+end_src
#+begin_src matlab
addpath('./src/');
addpath('./data/APA300ML_new/');
#+end_src
@ -1935,7 +1929,6 @@ A simplified model of the flexor is then developped.
#+end_src
#+begin_src matlab
addpath('./src/');
addpath('./data/flexor_ID16/');
#+end_src
@ -2176,7 +2169,6 @@ The two obtained dynamics are compared in Figure
#+end_src
#+begin_src matlab
addpath('./src/');
addpath('./data/flexor_circ_025/');
#+end_src
@ -2415,7 +2407,6 @@ In this section, we try to replicate the results obtained in cite:souleille18_co
#+end_src
#+begin_src matlab
addpath('./src/');
addpath('./data/piezo_amplified_IFF/');
#+end_src
@ -2681,7 +2672,6 @@ Flexible joints have 0.25mm width.
#+end_src
#+begin_src matlab
addpath('./src/');
addpath('./data/strut_encoder/');
#+end_src

7
js/bootstrap.min.js vendored

File diff suppressed because one or more lines are too long

4
js/jquery.min.js vendored

File diff suppressed because one or more lines are too long

View File

@ -1 +0,0 @@
!function(a,b){"use strict";function c(c,g){var h=this;h.$el=a(c),h.el=c,h.id=e++,h.$window=a(b),h.$document=a(document),h.$el.bind("destroyed",a.proxy(h.teardown,h)),h.$clonedHeader=null,h.$originalHeader=null,h.isSticky=!1,h.hasBeenSticky=!1,h.leftOffset=null,h.topOffset=null,h.init=function(){h.$el.each(function(){var b=a(this);b.css("padding",0),h.$originalHeader=a("thead:first",this),h.$clonedHeader=h.$originalHeader.clone(),b.trigger("clonedHeader."+d,[h.$clonedHeader]),h.$clonedHeader.addClass("tableFloatingHeader"),h.$clonedHeader.css("display","none"),h.$originalHeader.addClass("tableFloatingHeaderOriginal"),h.$originalHeader.after(h.$clonedHeader),h.$printStyle=a('<style type="text/css" media="print">.tableFloatingHeader{display:none !important;}.tableFloatingHeaderOriginal{position:static !important;}</style>'),a("head").append(h.$printStyle)}),h.setOptions(g),h.updateWidth(),h.toggleHeaders(),h.bind()},h.destroy=function(){h.$el.unbind("destroyed",h.teardown),h.teardown()},h.teardown=function(){h.isSticky&&h.$originalHeader.css("position","static"),a.removeData(h.el,"plugin_"+d),h.unbind(),h.$clonedHeader.remove(),h.$originalHeader.removeClass("tableFloatingHeaderOriginal"),h.$originalHeader.css("visibility","visible"),h.$printStyle.remove(),h.el=null,h.$el=null},h.bind=function(){h.$scrollableArea.on("scroll."+d,h.toggleHeaders),h.isWindowScrolling||(h.$window.on("scroll."+d+h.id,h.setPositionValues),h.$window.on("resize."+d+h.id,h.toggleHeaders)),h.$scrollableArea.on("resize."+d,h.toggleHeaders),h.$scrollableArea.on("resize."+d,h.updateWidth)},h.unbind=function(){h.$scrollableArea.off("."+d,h.toggleHeaders),h.isWindowScrolling||(h.$window.off("."+d+h.id,h.setPositionValues),h.$window.off("."+d+h.id,h.toggleHeaders)),h.$scrollableArea.off("."+d,h.updateWidth)},h.toggleHeaders=function(){h.$el&&h.$el.each(function(){var b,c=a(this),d=h.isWindowScrolling?isNaN(h.options.fixedOffset)?h.options.fixedOffset.outerHeight():h.options.fixedOffset:h.$scrollableArea.offset().top+(isNaN(h.options.fixedOffset)?0:h.options.fixedOffset),e=c.offset(),f=h.$scrollableArea.scrollTop()+d,g=h.$scrollableArea.scrollLeft(),i=h.isWindowScrolling?f>e.top:d>e.top,j=(h.isWindowScrolling?f:0)<e.top+c.height()-h.$clonedHeader.height()-(h.isWindowScrolling?0:d);i&&j?(b=e.left-g+h.options.leftOffset,h.$originalHeader.css({position:"fixed","margin-top":h.options.marginTop,left:b,"z-index":3}),h.leftOffset=b,h.topOffset=d,h.$clonedHeader.css("display",""),h.isSticky||(h.isSticky=!0,h.updateWidth()),h.setPositionValues()):h.isSticky&&(h.$originalHeader.css("position","static"),h.$clonedHeader.css("display","none"),h.isSticky=!1,h.resetWidth(a("td,th",h.$clonedHeader),a("td,th",h.$originalHeader)))})},h.setPositionValues=function(){var a=h.$window.scrollTop(),b=h.$window.scrollLeft();!h.isSticky||0>a||a+h.$window.height()>h.$document.height()||0>b||b+h.$window.width()>h.$document.width()||h.$originalHeader.css({top:h.topOffset-(h.isWindowScrolling?0:a),left:h.leftOffset-(h.isWindowScrolling?0:b)})},h.updateWidth=function(){if(h.isSticky){h.$originalHeaderCells||(h.$originalHeaderCells=a("th,td",h.$originalHeader)),h.$clonedHeaderCells||(h.$clonedHeaderCells=a("th,td",h.$clonedHeader));var b=h.getWidth(h.$clonedHeaderCells);h.setWidth(b,h.$clonedHeaderCells,h.$originalHeaderCells),h.$originalHeader.css("width",h.$clonedHeader.width())}},h.getWidth=function(c){var d=[];return c.each(function(c){var e,f=a(this);if("border-box"===f.css("box-sizing"))e=f[0].getBoundingClientRect().width;else{var g=a("th",h.$originalHeader);if("collapse"===g.css("border-collapse"))if(b.getComputedStyle)e=parseFloat(b.getComputedStyle(this,null).width);else{var i=parseFloat(f.css("padding-left")),j=parseFloat(f.css("padding-right")),k=parseFloat(f.css("border-width"));e=f.outerWidth()-i-j-k}else e=f.width()}d[c]=e}),d},h.setWidth=function(a,b,c){b.each(function(b){var d=a[b];c.eq(b).css({"min-width":d,"max-width":d})})},h.resetWidth=function(b,c){b.each(function(b){var d=a(this);c.eq(b).css({"min-width":d.css("min-width"),"max-width":d.css("max-width")})})},h.setOptions=function(c){h.options=a.extend({},f,c),h.$scrollableArea=a(h.options.scrollableArea),h.isWindowScrolling=h.$scrollableArea[0]===b},h.updateOptions=function(a){h.setOptions(a),h.unbind(),h.bind(),h.updateWidth(),h.toggleHeaders()},h.init()}var d="stickyTableHeaders",e=0,f={fixedOffset:0,leftOffset:0,marginTop:0,scrollableArea:b};a.fn[d]=function(b){return this.each(function(){var e=a.data(this,"plugin_"+d);e?"string"==typeof b?e[b].apply(e):e.updateOptions(b):"destroy"!==b&&a.data(this,"plugin_"+d,new c(this,b))})}}(jQuery,window);

View File

@ -1,85 +0,0 @@
$(function() {
$('.note').before("<p class='admonition-title note'>Note</p>");
$('.seealso').before("<p class='admonition-title seealso'>See also</p>");
$('.warning').before("<p class='admonition-title warning'>Warning</p>");
$('.caution').before("<p class='admonition-title caution'>Caution</p>");
$('.attention').before("<p class='admonition-title attention'>Attention</p>");
$('.tip').before("<p class='admonition-title tip'>Tip</p>");
$('.important').before("<p class='admonition-title important'>Important</p>");
$('.hint').before("<p class='admonition-title hint'>Hint</p>");
$('.error').before("<p class='admonition-title error'>Error</p>");
$('.danger').before("<p class='admonition-title danger'>Danger</p>");
});
$( document ).ready(function() {
// Shift nav in mobile when clicking the menu.
$(document).on('click', "[data-toggle='wy-nav-top']", function() {
$("[data-toggle='wy-nav-shift']").toggleClass("shift");
$("[data-toggle='rst-versions']").toggleClass("shift");
});
// Close menu when you click a link.
$(document).on('click', ".wy-menu-vertical .current ul li a", function() {
$("[data-toggle='wy-nav-shift']").removeClass("shift");
$("[data-toggle='rst-versions']").toggleClass("shift");
});
$(document).on('click', "[data-toggle='rst-current-version']", function() {
$("[data-toggle='rst-versions']").toggleClass("shift-up");
});
// Make tables responsive
$("table.docutils:not(.field-list)").wrap("<div class='wy-table-responsive'></div>");
});
$( document ).ready(function() {
$('#text-table-of-contents ul').first().addClass('nav');
// ScrollSpy also requires that we use
// a Bootstrap nav component.
$('body').scrollspy({target: '#text-table-of-contents'});
// add sticky table headers
$('table').stickyTableHeaders();
// set the height of tableOfContents
var $postamble = $('#postamble');
var $tableOfContents = $('#table-of-contents');
$tableOfContents.css({paddingBottom: $postamble.outerHeight()});
// add TOC button
var toggleSidebar = $('<div id="toggle-sidebar"><a href="#table-of-contents"><h2>Table of Contents</h2></a></div>');
$('#content').prepend(toggleSidebar);
// add close button when sidebar showed in mobile screen
var closeBtn = $('<a class="close-sidebar" href="#">Close</a>');
var tocTitle = $('#table-of-contents').find('h2');
tocTitle.append(closeBtn);
});
window.SphinxRtdTheme = (function (jquery) {
var stickyNav = (function () {
var navBar,
win,
stickyNavCssClass = 'stickynav',
applyStickNav = function () {
if (navBar.height() <= win.height()) {
navBar.addClass(stickyNavCssClass);
} else {
navBar.removeClass(stickyNavCssClass);
}
},
enable = function () {
applyStickNav();
win.on('resize', applyStickNav);
},
init = function () {
navBar = jquery('nav.wy-nav-side:first');
win = jquery(window);
};
jquery(init);
return {
enable : enable
};
}());
return {
StickyNav : stickyNav
};
}($));