Reworked Flexor parts
| 
		 Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB  | 
| 
		 Before Width: | Height: | Size: 27 KiB After Width: | Height: | Size: 27 KiB  | 
| 
		 Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB  | 
| 
		 Before Width: | Height: | Size: 160 KiB After Width: | Height: | Size: 87 KiB  | 
							
								
								
									
										215
									
								
								index.org
									
									
									
									
									
								
							
							
						
						@@ -41,9 +41,9 @@ In this document, Finite Element Models (FEM) of parts of the Nano-Hexapod are d
 | 
			
		||||
- Section [[sec:APA300ML]]:
 | 
			
		||||
  A super-element of the Amplified Piezoelectric Actuator APA300ML used for the NASS is exported using Ansys and imported in Simscape.
 | 
			
		||||
  The static and dynamical properties of the APA300ML are then estimated using the Simscape model.
 | 
			
		||||
- Section [[sec:first_flexible_joint]]:
 | 
			
		||||
- Section [[sec:flexor_ID16]]:
 | 
			
		||||
  A first geometry of a Flexible joint is modelled and its characteristics are identified from the Stiffness matrix as well as from the Simscape model.
 | 
			
		||||
- Section [[sec:optimized_flexible_joint]]:
 | 
			
		||||
- Section [[sec:flexor_025]]:
 | 
			
		||||
  An optimized flexible joint is developed for the Nano-Hexapod and is then imported in a Simscape model.
 | 
			
		||||
- Section [[sec:integral_force_feedback]]:
 | 
			
		||||
- Section [[sec:strut_fem]]:
 | 
			
		||||
@@ -805,7 +805,10 @@ The dynamics of the Simscape simplified model is identified and compared with th
 | 
			
		||||
[[file:figs/apa300ml_comp_simpler_simscape.png]]
 | 
			
		||||
 | 
			
		||||
* First Flexible Joint Geometry
 | 
			
		||||
<<sec:first_flexible_joint>>
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/flexor_ID16.m
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:flexor_ID16>>
 | 
			
		||||
** Introduction                                                      :ignore:
 | 
			
		||||
The studied flexor is shown in Figure [[fig:flexor_id16_screenshot]].
 | 
			
		||||
 | 
			
		||||
@@ -827,11 +830,16 @@ A simplified model of the flexor is then developped.
 | 
			
		||||
  <<matlab-init>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  addpath('./data/flexor_ID16/');
 | 
			
		||||
#+begin_src matlab :tangle no
 | 
			
		||||
  addpath('matlab/');
 | 
			
		||||
  addpath('matlab/flexor_ID16/');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
#+begin_src matlab :eval no
 | 
			
		||||
  addpath('flexor_ID16/');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  open('flexor_ID16.slx');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
@@ -842,41 +850,6 @@ We first extract the stiffness and mass matrices.
 | 
			
		||||
  M = extractMatrix('mat_M_6modes_2MDoF.matrix');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Then, we extract the coordinates of the interface nodes.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('out_nodes_3D.txt');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  save('./mat/flexor_ID16.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Output parameters
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  load('./mat/flexor_ID16.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| Total number of Nodes     |  2 |
 | 
			
		||||
| Number of interface Nodes |  2 |
 | 
			
		||||
| Number of Modes           |  6 |
 | 
			
		||||
| Size of M and K matrices  | 18 |
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
 | 
			
		||||
  data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+caption: Coordinates of the interface nodes
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| Node i | Node Number | x [m] | y [m] | z [m] |
 | 
			
		||||
|--------+-------------+-------+-------+-------|
 | 
			
		||||
|    1.0 |    181278.0 |   0.0 |   0.0 |   0.0 |
 | 
			
		||||
|    2.0 |    181279.0 |   0.0 |   0.0 |  -0.0 |
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable(K(1:10, 1:10), {}, {}, ' %.2e ');
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -894,7 +867,6 @@ Then, we extract the coordinates of the interface nodes.
 | 
			
		||||
|     -2220.0 |     -1290.0 | -119000000.0 |     -1.31 |    -1.49 |     -1.79 |      1640.0 |      1290.0 |  119000000.0 |     1.32 |
 | 
			
		||||
|       0.147 |       148.0 |        -1.31 |     -33.0 |  0.00026 |  0.000379 |       120.0 |       -72.0 |         1.32 |     34.7 |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable(M(1:10, 1:10), {}, {}, ' %.1g ');
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -912,25 +884,35 @@ Then, we extract the coordinates of the interface nodes.
 | 
			
		||||
|  7e-08 |   3e-07 |  0.003 |  -8e-10 |  2e-09 | -1e-09 | -3e-07 | -4e-08 |   0.02 | -1e-09 |
 | 
			
		||||
|  1e-10 |   1e-05 |  1e-09 |  -1e-09 | -3e-13 |  2e-12 | -2e-10 | 0.0002 | -1e-09 |  2e-06 |
 | 
			
		||||
 | 
			
		||||
Using =K=, =M= and =int_xyz=, we can use the =Reduced Order Flexible Solid= simscape block.
 | 
			
		||||
 | 
			
		||||
** Flexible Joint Characteristics
 | 
			
		||||
The most important parameters of the flexible joint can be directly estimated from the stiffness matrix.
 | 
			
		||||
Then, we extract the coordinates of the interface nodes.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('out_nodes_3D.txt');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
 | 
			
		||||
  data2orgtable([1e-6*K(3,3), 1e-6*K(2,2), K(4,4), K(5,5), K(6,6); 60, 0, 15, 15, 20]', {'Axial Stiffness [N/um]', 'Shear Stiffness [N/um]', 'Bending Stiffness [Nm/rad]', 'Bending Stiffness [Nm/rad]', 'Torsion Stiffness [Nm/rad]'}, {'*Caracteristic*', '*Value*', '*Estimation by Francois*'}, ' %0.f ');
 | 
			
		||||
  data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+caption: Coordinates of the interface nodes
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| Node i | Node Number | x [m] | y [m] | z [m] |
 | 
			
		||||
|--------+-------------+-------+-------+-------|
 | 
			
		||||
|    1.0 |    181278.0 |   0.0 |   0.0 |   0.0 |
 | 
			
		||||
|    2.0 |    181279.0 |   0.0 |   0.0 |  -0.0 |
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| *Caracteristic*            | *Value* | *Estimation by Francois* |
 | 
			
		||||
|----------------------------+---------+--------------------------|
 | 
			
		||||
| Axial Stiffness [N/um]     |     119 |                       60 |
 | 
			
		||||
| Shear Stiffness [N/um]     |      11 |                        0 |
 | 
			
		||||
| Bending Stiffness [Nm/rad] |      33 |                       15 |
 | 
			
		||||
| Bending Stiffness [Nm/rad] |      33 |                       15 |
 | 
			
		||||
| Torsion Stiffness [Nm/rad] |     236 |                       20 |
 | 
			
		||||
| Total number of Nodes     |  2 |
 | 
			
		||||
| Number of interface Nodes |  2 |
 | 
			
		||||
| Number of Modes           |  6 |
 | 
			
		||||
| Size of M and K matrices  | 18 |
 | 
			
		||||
 | 
			
		||||
** Identification of the parameters using Simscape
 | 
			
		||||
Using =K=, =M= and =int_xyz=, we can use the =Reduced Order Flexible Solid= simscape block.
 | 
			
		||||
 | 
			
		||||
** Identification of the parameters using Simscape and looking at the Stiffness Matrix
 | 
			
		||||
The flexor is now imported into Simscape and its parameters are estimated using an identification.
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
@@ -960,9 +942,9 @@ And we find the same parameters as the one estimated from the Stiffness matrix.
 | 
			
		||||
| *Caracteristic*               | *Value* | *Identification* |
 | 
			
		||||
|-------------------------------+---------+------------------|
 | 
			
		||||
| Axial Stiffness Dz [N/um]     |     119 |              119 |
 | 
			
		||||
| Bending Stiffness Rx [Nm/rad] |      33 |               34 |
 | 
			
		||||
| Bending Stiffness Ry [Nm/rad] |      33 |              126 |
 | 
			
		||||
| Torsion Stiffness Rz [Nm/rad] |     236 |              238 |
 | 
			
		||||
| Bending Stiffness Rx [Nm/rad] |      33 |               33 |
 | 
			
		||||
| Bending Stiffness Ry [Nm/rad] |      33 |               33 |
 | 
			
		||||
| Torsion Stiffness Rz [Nm/rad] |     236 |              236 |
 | 
			
		||||
 | 
			
		||||
** Simpler Model
 | 
			
		||||
Let's now model the flexible joint with a "perfect" Bushing joint as shown in Figure [[fig:flexible_joint_simscape]].
 | 
			
		||||
@@ -1000,8 +982,9 @@ The two obtained dynamics are compared in Figure
 | 
			
		||||
  freqs = logspace(0, 5, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
  tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
  ax1 = subplot(1,2,1);
 | 
			
		||||
  ax1 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(1,1), freqs, 'Hz'))), '-', 'DisplayName', '$D_x/F_x$');
 | 
			
		||||
@@ -1019,9 +1002,9 @@ The two obtained dynamics are compared in Figure
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
 | 
			
		||||
  hold off;
 | 
			
		||||
  legend('location', 'northeast');
 | 
			
		||||
  legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
  ax2 = subplot(1,2,2);
 | 
			
		||||
  ax2 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(4,4), freqs, 'Hz'))), '-', 'DisplayName', '$R_x/M_x$');
 | 
			
		||||
@@ -1039,11 +1022,11 @@ The two obtained dynamics are compared in Figure
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  xlabel('Frequency [Hz]'); ylabel('Amplitude [rad/Nm]');
 | 
			
		||||
  hold off;
 | 
			
		||||
  legend('location', 'northeast');
 | 
			
		||||
  legend('location', 'southwest');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/flexor_ID16_compare_bushing_joint.pdf', 'width', 'full', 'height', 'tall');
 | 
			
		||||
  exportFig('figs/flexor_ID16_compare_bushing_joint.pdf', 'width', 'wide', 'height', 'normal');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:flexor_ID16_compare_bushing_joint
 | 
			
		||||
@@ -1052,14 +1035,21 @@ The two obtained dynamics are compared in Figure
 | 
			
		||||
[[file:figs/flexor_ID16_compare_bushing_joint.png]]
 | 
			
		||||
 | 
			
		||||
* Optimized Flexible Joint
 | 
			
		||||
<<sec:optimized_flexible_joint>>
 | 
			
		||||
:PROPERTIES:
 | 
			
		||||
:header-args:matlab+: :tangle matlab/flexor_025.m
 | 
			
		||||
:END:
 | 
			
		||||
<<sec:flexor_025>>
 | 
			
		||||
** Introduction                                                      :ignore:
 | 
			
		||||
 | 
			
		||||
The joint geometry has been optimized using Ansys to have lower bending stiffness while keeping a large axial stiffness.
 | 
			
		||||
 | 
			
		||||
The obtained geometry is shown in Figure [[fig:optimal_flexor]].
 | 
			
		||||
 | 
			
		||||
#+name: fig:optimal_flexor
 | 
			
		||||
#+caption: Flexor studied
 | 
			
		||||
[[file:data/flexor_circ_025/CS.jpg]]
 | 
			
		||||
[[file:figs/flexor_025_MDoF.jpg]]
 | 
			
		||||
 | 
			
		||||
** Matlab Init                                              :noexport:ignore:
 | 
			
		||||
** Matlab Init                                             :noexport:ignore:
 | 
			
		||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
 | 
			
		||||
  <<matlab-dir>>
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -1068,11 +1058,16 @@ The two obtained dynamics are compared in Figure
 | 
			
		||||
  <<matlab-init>>
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  addpath('./data/flexor_circ_025/');
 | 
			
		||||
#+begin_src matlab :tangle no
 | 
			
		||||
  addpath('matlab/');
 | 
			
		||||
  addpath('matlab/flexor_025/');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports none
 | 
			
		||||
#+begin_src matlab :eval no
 | 
			
		||||
  addpath('flexor_025/');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  open('flexor_025.slx');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
@@ -1083,41 +1078,6 @@ We first extract the stiffness and mass matrices.
 | 
			
		||||
  M = readmatrix('mat_M.CSV');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
Then, we extract the coordinates of the interface nodes.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('out_nodes_3D.txt');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  save('./mat/flexor_025.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
** Output parameters
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  load('./mat/flexor_025.mat', 'int_xyz', 'int_i', 'n_xyz', 'n_i', 'nodes', 'M', 'K');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| Total number of Nodes     |  2 |
 | 
			
		||||
| Number of interface Nodes |  2 |
 | 
			
		||||
| Number of Modes           |  6 |
 | 
			
		||||
| Size of M and K matrices  | 18 |
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
 | 
			
		||||
  data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+caption: Coordinates of the interface nodes
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| Node i | Node Number | x [m] | y [m] | z [m] |
 | 
			
		||||
|--------+-------------+-------+-------+-------|
 | 
			
		||||
|    1.0 |    528875.0 |   0.0 |   0.0 |   0.0 |
 | 
			
		||||
|    2.0 |    528876.0 |   0.0 |   0.0 |  -0.0 |
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable(K(1:10, 1:10), {}, {}, ' %.2e ');
 | 
			
		||||
#+end_src
 | 
			
		||||
@@ -1153,23 +1113,34 @@ Then, we extract the coordinates of the interface nodes.
 | 
			
		||||
|  9e-09 | -5e-08 |  0.003 | -1e-08 |  6e-11 | -1e-11 |  1e-07 | -8e-08 |   0.01 | -6e-08 |
 | 
			
		||||
|  2e-12 |  3e-09 | -1e-08 |  3e-10 | -6e-16 |  1e-13 | -4e-12 |  3e-05 | -6e-08 |  2e-07 |
 | 
			
		||||
 | 
			
		||||
Using =K=, =M= and =int_xyz=, we can use the =Reduced Order Flexible Solid= simscape block.
 | 
			
		||||
 | 
			
		||||
** Flexible Joint Characteristics
 | 
			
		||||
The most important parameters of the flexible joint can be directly estimated from the stiffness matrix.
 | 
			
		||||
Then, we extract the coordinates of the interface nodes.
 | 
			
		||||
#+begin_src matlab
 | 
			
		||||
  [int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('out_nodes_3D.txt');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
 | 
			
		||||
  data2orgtable([1e-6*K(3,3), 1e-6*K(2,2), K(4,4), K(5,5), K(6,6)]', {'Axial Stiffness [N/um]', 'Shear Stiffness [N/um]', 'Bending Stiffness [Nm/rad]', 'Bending Stiffness [Nm/rad]', 'Torsion Stiffness [Nm/rad]'}, {'*Caracteristic*', '*Value*'}, ' %.1f ');
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no
 | 
			
		||||
  data2orgtable([length(n_i); length(int_i); size(M,1) - 6*length(int_i); size(M,1)], {'Total number of Nodes', 'Number of interface Nodes', 'Number of Modes', 'Size of M and K matrices'}, {}, ' %.0f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| *Caracteristic*            | *Value* |
 | 
			
		||||
|----------------------------+---------|
 | 
			
		||||
| Axial Stiffness [N/um]     |    94.0 |
 | 
			
		||||
| Shear Stiffness [N/um]     |    12.7 |
 | 
			
		||||
| Bending Stiffness [Nm/rad] |     4.8 |
 | 
			
		||||
| Bending Stiffness [Nm/rad] |     4.8 |
 | 
			
		||||
| Torsion Stiffness [Nm/rad] |   260.2 |
 | 
			
		||||
| Total number of Nodes     |  2 |
 | 
			
		||||
| Number of interface Nodes |  2 |
 | 
			
		||||
| Number of Modes           |  6 |
 | 
			
		||||
| Size of M and K matrices  | 18 |
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
 | 
			
		||||
  data2orgtable([[1:length(int_i)]', int_i, int_xyz], {}, {'Node i', 'Node Number', 'x [m]', 'y [m]', 'z [m]'}, ' %f ');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+caption: Coordinates of the interface nodes
 | 
			
		||||
#+RESULTS:
 | 
			
		||||
| Node i | Node Number | x [m] | y [m] | z [m] |
 | 
			
		||||
|--------+-------------+-------+-------+-------|
 | 
			
		||||
|    1.0 |    528875.0 |   0.0 |   0.0 |   0.0 |
 | 
			
		||||
|    2.0 |    528876.0 |   0.0 |   0.0 |  -0.0 |
 | 
			
		||||
 | 
			
		||||
Using =K=, =M= and =int_xyz=, we can use the =Reduced Order Flexible Solid= simscape block.
 | 
			
		||||
 | 
			
		||||
** Identification of the parameters using Simscape
 | 
			
		||||
The flexor is now imported into Simscape and its parameters are estimated using an identification.
 | 
			
		||||
@@ -1206,7 +1177,6 @@ And we find the same parameters as the one estimated from the Stiffness matrix.
 | 
			
		||||
| Torsion Stiffness Rz [Nm/rad] |   260.2 |            260.2 |
 | 
			
		||||
 | 
			
		||||
** Simpler Model
 | 
			
		||||
 | 
			
		||||
Let's now model the flexible joint with a "perfect" Bushing joint as shown in Figure [[fig:flexible_joint_simscape]].
 | 
			
		||||
 | 
			
		||||
#+name: fig:flexible_joint_simscape
 | 
			
		||||
@@ -1242,8 +1212,9 @@ The two obtained dynamics are compared in Figure
 | 
			
		||||
  freqs = logspace(0, 5, 1000);
 | 
			
		||||
 | 
			
		||||
  figure;
 | 
			
		||||
  tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
  ax1 = subplot(1,2,1);
 | 
			
		||||
  ax1 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(1,1), freqs, 'Hz'))), '-', 'DisplayName', '$D_x/F_x$');
 | 
			
		||||
@@ -1261,9 +1232,9 @@ The two obtained dynamics are compared in Figure
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
 | 
			
		||||
  hold off;
 | 
			
		||||
  legend('location', 'northeast');
 | 
			
		||||
  legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
  ax2 = subplot(1,2,2);
 | 
			
		||||
  ax2 = nexttile;
 | 
			
		||||
  hold on;
 | 
			
		||||
  set(gca,'ColorOrderIndex',1)
 | 
			
		||||
  plot(freqs, abs(squeeze(freqresp(G(4,4), freqs, 'Hz'))), '-', 'DisplayName', '$R_x/M_x$');
 | 
			
		||||
@@ -1281,11 +1252,11 @@ The two obtained dynamics are compared in Figure
 | 
			
		||||
  set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
  xlabel('Frequency [Hz]'); ylabel('Amplitude [rad/Nm]');
 | 
			
		||||
  hold off;
 | 
			
		||||
  legend('location', 'northeast');
 | 
			
		||||
  legend('location', 'southwest');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+begin_src matlab :tangle no :exports results :results file replace
 | 
			
		||||
  exportFig('figs/flexor_ID16_compare_bushing_joint.pdf', 'width', 'full', 'height', 'tall');
 | 
			
		||||
  exportFig('figs/flexor_ID16_compare_bushing_joint.pdf', 'width', 'wide', 'height', 'normal');
 | 
			
		||||
#+end_src
 | 
			
		||||
 | 
			
		||||
#+name: fig:flexor_ID16_compare_bushing_joint
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										135
									
								
								matlab/flexor_025.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						@@ -0,0 +1,135 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
addpath('flexor_025/');
 | 
			
		||||
 | 
			
		||||
open('flexor_025.slx');
 | 
			
		||||
 | 
			
		||||
% Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates
 | 
			
		||||
% We first extract the stiffness and mass matrices.
 | 
			
		||||
 | 
			
		||||
K = readmatrix('mat_K.CSV');
 | 
			
		||||
M = readmatrix('mat_M.CSV');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+caption: First 10x10 elements of the Mass matrix
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% |  0.006 |  8e-09 | -2e-08 | -1e-10 |  3e-05 |  3e-08 |  0.003 | -3e-09 |  9e-09 |  2e-12 |
 | 
			
		||||
% |  8e-09 |   0.02 |  1e-07 | -3e-05 |  1e-11 |  6e-10 |  1e-08 |  0.003 | -5e-08 |  3e-09 |
 | 
			
		||||
% | -2e-08 |  1e-07 |   0.01 | -6e-08 | -6e-11 | -8e-12 | -1e-07 |  1e-08 |  0.003 | -1e-08 |
 | 
			
		||||
% | -1e-10 | -3e-05 | -6e-08 |  1e-06 |  7e-14 |  6e-13 |  1e-10 |  1e-06 | -1e-08 |  3e-10 |
 | 
			
		||||
% |  3e-05 |  1e-11 | -6e-11 |  7e-14 |  2e-07 |  1e-10 |  3e-08 | -7e-12 |  6e-11 | -6e-16 |
 | 
			
		||||
% |  3e-08 |  6e-10 | -8e-12 |  6e-13 |  1e-10 |  5e-07 |  1e-08 | -5e-10 | -1e-11 |  1e-13 |
 | 
			
		||||
% |  0.003 |  1e-08 | -1e-07 |  1e-10 |  3e-08 |  1e-08 |   0.02 | -2e-08 |  1e-07 | -4e-12 |
 | 
			
		||||
% | -3e-09 |  0.003 |  1e-08 |  1e-06 | -7e-12 | -5e-10 | -2e-08 |  0.006 | -8e-08 |  3e-05 |
 | 
			
		||||
% |  9e-09 | -5e-08 |  0.003 | -1e-08 |  6e-11 | -1e-11 |  1e-07 | -8e-08 |   0.01 | -6e-08 |
 | 
			
		||||
% |  2e-12 |  3e-09 | -1e-08 |  3e-10 | -6e-16 |  1e-13 | -4e-12 |  3e-05 | -6e-08 |  2e-07 |
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% Then, we extract the coordinates of the interface nodes.
 | 
			
		||||
 | 
			
		||||
[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('out_nodes_3D.txt');
 | 
			
		||||
 | 
			
		||||
% Identification of the parameters using Simscape
 | 
			
		||||
% The flexor is now imported into Simscape and its parameters are estimated using an identification.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
m = 1;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The dynamics is identified from the applied force/torque to the measured displacement/rotation of the flexor.
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'flexor_025';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/T'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io);
 | 
			
		||||
 | 
			
		||||
% Simpler Model
 | 
			
		||||
% Let's now model the flexible joint with a "perfect" Bushing joint as shown in Figure [[fig:flexible_joint_simscape]].
 | 
			
		||||
 | 
			
		||||
% #+name: fig:flexible_joint_simscape
 | 
			
		||||
% #+caption: Bushing Joint used to model the flexible joint
 | 
			
		||||
% [[file:figs/flexible_joint_simscape.png]]
 | 
			
		||||
 | 
			
		||||
% The parameters of the Bushing joint (stiffnesses) are estimated from the Stiffness matrix that was computed from the FEM.
 | 
			
		||||
 | 
			
		||||
Kx = K(1,1); % [N/m]
 | 
			
		||||
Ky = K(2,2); % [N/m]
 | 
			
		||||
Kz = K(3,3); % [N/m]
 | 
			
		||||
Krx = K(4,4); % [Nm/rad]
 | 
			
		||||
Kry = K(5,5); % [Nm/rad]
 | 
			
		||||
Krz =  K(6,6); % [Nm/rad]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The dynamics from the applied force/torque to the measured displacement/rotation of the flexor is identified again for this simpler model.
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'flexor_025_simplified';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/T'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Gs = linearize(mdl, io);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The two obtained dynamics are compared in Figure
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(0, 5, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
ax1 = nexttile;
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(1,1), freqs, 'Hz'))), '-', 'DisplayName', '$D_x/F_x$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(1,1), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(2,2), freqs, 'Hz'))), '-', 'DisplayName', '$D_y/F_y$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(2,2), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
set(gca,'ColorOrderIndex',3)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(3,3), freqs, 'Hz'))), '-', 'DisplayName', '$D_z/F_z$');
 | 
			
		||||
set(gca,'ColorOrderIndex',3)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(3,3), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
 | 
			
		||||
hold off;
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
ax2 = nexttile;
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(4,4), freqs, 'Hz'))), '-', 'DisplayName', '$R_x/M_x$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(4,4), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(5,5), freqs, 'Hz'))), '-', 'DisplayName', '$R_y/M_y$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(5,5), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
set(gca,'ColorOrderIndex',3)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(6,6), freqs, 'Hz'))), '-', 'DisplayName', '$R_z/M_z$');
 | 
			
		||||
set(gca,'ColorOrderIndex',3)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(6,6), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Amplitude [rad/Nm]');
 | 
			
		||||
hold off;
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								matlab/flexor_025.slx
									
									
									
									
									
										Normal file
									
								
							
							
						
						
							
								
								
									
										134
									
								
								matlab/flexor_ID16.m
									
									
									
									
									
										Normal file
									
								
							
							
						
						@@ -0,0 +1,134 @@
 | 
			
		||||
%% Clear Workspace and Close figures
 | 
			
		||||
clear; close all; clc;
 | 
			
		||||
 | 
			
		||||
%% Intialize Laplace variable
 | 
			
		||||
s = zpk('s');
 | 
			
		||||
 | 
			
		||||
addpath('flexor_ID16/');
 | 
			
		||||
 | 
			
		||||
open('flexor_ID16.slx');
 | 
			
		||||
 | 
			
		||||
% Import Mass Matrix, Stiffness Matrix, and Interface Nodes Coordinates
 | 
			
		||||
% We first extract the stiffness and mass matrices.
 | 
			
		||||
 | 
			
		||||
K = extractMatrix('mat_K_6modes_2MDoF.matrix');
 | 
			
		||||
M = extractMatrix('mat_M_6modes_2MDoF.matrix');
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% #+caption: First 10x10 elements of the Mass matrix
 | 
			
		||||
% #+RESULTS:
 | 
			
		||||
% |   0.02 |   1e-09 | -4e-08 |  -1e-10 | 0.0002 | -3e-11 |  0.004 |  5e-08 |  7e-08 |  1e-10 |
 | 
			
		||||
% |  1e-09 |    0.02 | -3e-07 | -0.0002 | -1e-10 | -2e-09 |  2e-08 |  0.004 |  3e-07 |  1e-05 |
 | 
			
		||||
% | -4e-08 |  -3e-07 |   0.02 |   7e-10 | -2e-09 |  1e-09 |  3e-07 |  7e-08 |  0.003 |  1e-09 |
 | 
			
		||||
% | -1e-10 | -0.0002 |  7e-10 |   4e-06 | -1e-12 | -6e-13 |  2e-10 | -7e-06 | -8e-10 | -1e-09 |
 | 
			
		||||
% | 0.0002 |  -1e-10 | -2e-09 |  -1e-12 |  3e-06 |  2e-13 |  9e-06 |  4e-11 |  2e-09 | -3e-13 |
 | 
			
		||||
% | -3e-11 |  -2e-09 |  1e-09 |  -6e-13 |  2e-13 |  4e-07 |  8e-11 |  9e-10 | -1e-09 |  2e-12 |
 | 
			
		||||
% |  0.004 |   2e-08 |  3e-07 |   2e-10 |  9e-06 |  8e-11 |   0.02 | -7e-08 | -3e-07 | -2e-10 |
 | 
			
		||||
% |  5e-08 |   0.004 |  7e-08 |  -7e-06 |  4e-11 |  9e-10 | -7e-08 |   0.01 | -4e-08 | 0.0002 |
 | 
			
		||||
% |  7e-08 |   3e-07 |  0.003 |  -8e-10 |  2e-09 | -1e-09 | -3e-07 | -4e-08 |   0.02 | -1e-09 |
 | 
			
		||||
% |  1e-10 |   1e-05 |  1e-09 |  -1e-09 | -3e-13 |  2e-12 | -2e-10 | 0.0002 | -1e-09 |  2e-06 |
 | 
			
		||||
 | 
			
		||||
% Then, we extract the coordinates of the interface nodes.
 | 
			
		||||
 | 
			
		||||
[int_xyz, int_i, n_xyz, n_i, nodes] = extractNodes('out_nodes_3D.txt');
 | 
			
		||||
 | 
			
		||||
% Identification of the parameters using Simscape and looking at the Stiffness Matrix
 | 
			
		||||
% The flexor is now imported into Simscape and its parameters are estimated using an identification.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
m = 1;
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The dynamics is identified from the applied force/torque to the measured displacement/rotation of the flexor.
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'flexor_ID16';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/T'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
G = linearize(mdl, io);
 | 
			
		||||
 | 
			
		||||
% Simpler Model
 | 
			
		||||
% Let's now model the flexible joint with a "perfect" Bushing joint as shown in Figure [[fig:flexible_joint_simscape]].
 | 
			
		||||
 | 
			
		||||
% #+name: fig:flexible_joint_simscape
 | 
			
		||||
% #+caption: Bushing Joint used to model the flexible joint
 | 
			
		||||
% [[file:figs/flexible_joint_simscape.png]]
 | 
			
		||||
 | 
			
		||||
% The parameters of the Bushing joint (stiffnesses) are estimated from the Stiffness matrix that was computed from the FEM.
 | 
			
		||||
 | 
			
		||||
Kx = K(1,1); % [N/m]
 | 
			
		||||
Ky = K(2,2); % [N/m]
 | 
			
		||||
Kz = K(3,3); % [N/m]
 | 
			
		||||
Krx = K(4,4); % [Nm/rad]
 | 
			
		||||
Kry = K(5,5); % [Nm/rad]
 | 
			
		||||
Krz =  K(6,6); % [Nm/rad]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The dynamics from the applied force/torque to the measured displacement/rotation of the flexor is identified again for this simpler model.
 | 
			
		||||
 | 
			
		||||
%% Name of the Simulink File
 | 
			
		||||
mdl = 'flexor_ID16_simplified';
 | 
			
		||||
 | 
			
		||||
%% Input/Output definition
 | 
			
		||||
clear io; io_i = 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/T'], 1, 'openinput');  io_i = io_i + 1;
 | 
			
		||||
io(io_i) = linio([mdl, '/D'], 1, 'openoutput'); io_i = io_i + 1;
 | 
			
		||||
 | 
			
		||||
Gs = linearize(mdl, io);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
% The two obtained dynamics are compared in Figure
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
freqs = logspace(0, 5, 1000);
 | 
			
		||||
 | 
			
		||||
figure;
 | 
			
		||||
tiledlayout(1, 2, 'TileSpacing', 'None', 'Padding', 'None');
 | 
			
		||||
 | 
			
		||||
ax1 = nexttile;
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(1,1), freqs, 'Hz'))), '-', 'DisplayName', '$D_x/F_x$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(1,1), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(2,2), freqs, 'Hz'))), '-', 'DisplayName', '$D_y/F_y$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(2,2), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
set(gca,'ColorOrderIndex',3)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(3,3), freqs, 'Hz'))), '-', 'DisplayName', '$D_z/F_z$');
 | 
			
		||||
set(gca,'ColorOrderIndex',3)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(3,3), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Amplitude [m/N]');
 | 
			
		||||
hold off;
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||
 | 
			
		||||
ax2 = nexttile;
 | 
			
		||||
hold on;
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(4,4), freqs, 'Hz'))), '-', 'DisplayName', '$R_x/M_x$');
 | 
			
		||||
set(gca,'ColorOrderIndex',1)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(4,4), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(5,5), freqs, 'Hz'))), '-', 'DisplayName', '$R_y/M_y$');
 | 
			
		||||
set(gca,'ColorOrderIndex',2)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(5,5), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
set(gca,'ColorOrderIndex',3)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(G(6,6), freqs, 'Hz'))), '-', 'DisplayName', '$R_z/M_z$');
 | 
			
		||||
set(gca,'ColorOrderIndex',3)
 | 
			
		||||
plot(freqs, abs(squeeze(freqresp(Gs(6,6), freqs, 'Hz'))), '--', 'HandleVisibility', 'off');
 | 
			
		||||
hold off;
 | 
			
		||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
 | 
			
		||||
xlabel('Frequency [Hz]'); ylabel('Amplitude [rad/Nm]');
 | 
			
		||||
hold off;
 | 
			
		||||
legend('location', 'southwest');
 | 
			
		||||