lecture-h-infinity/index.org

775 lines
27 KiB
Org Mode

#+TITLE: Robust Control - $\mathcal{H}_\infty$ Synthesis
:DRAWER:
#+STARTUP: overview
#+LANGUAGE: en
#+EMAIL: dehaeze.thomas@gmail.com
#+AUTHOR: Dehaeze Thomas
#+HTML_LINK_HOME: ../index.html
#+HTML_LINK_UP: ../index.html
#+HTML_HEAD: <link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
#+HTML_HEAD: <script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
#+HTML_MATHJAX: align: center tagside: right font: TeX
#+PROPERTY: header-args:matlab :session *MATLAB*
#+PROPERTY: header-args:matlab+ :comments org
#+PROPERTY: header-args:matlab+ :results none
#+PROPERTY: header-args:matlab+ :exports both
#+PROPERTY: header-args:matlab+ :eval no-export
#+PROPERTY: header-args:matlab+ :output-dir figs
#+PROPERTY: header-args:matlab+ :tangle no
#+PROPERTY: header-args:matlab+ :mkdirp yes
#+PROPERTY: header-args:shell :eval no-export
#+PROPERTY: header-args:latex :headers '("\\usepackage{tikz}" "\\usepackage{import}" "\\import{$HOME/Cloud/tikz/org/}{config.tex}")
#+PROPERTY: header-args:latex+ :imagemagick t :fit yes
#+PROPERTY: header-args:latex+ :iminoptions -scale 100% -density 150
#+PROPERTY: header-args:latex+ :imoutoptions -quality 100
#+PROPERTY: header-args:latex+ :results file raw replace
#+PROPERTY: header-args:latex+ :buffer no
#+PROPERTY: header-args:latex+ :eval no-export
#+PROPERTY: header-args:latex+ :exports results
#+PROPERTY: header-args:latex+ :mkdirp yes
#+PROPERTY: header-args:latex+ :output-dir figs
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
:END:
* Introduction :ignore:
* Matlab Init :noexport:ignore:
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
<<matlab-dir>>
#+end_src
#+begin_src matlab :exports none :results silent :noweb yes
<<matlab-init>>
#+end_src
* Introduction to the Control Methodology - Model Based Control
** Control Methodology
The typical methodology when applying Model Based Control to a plant is schematically shown in Figure [[fig:control-procedure]].
It consists of three steps:
1. *Identification or modeling*: $\Longrightarrow$ mathematical model
2. *Translate the specifications into mathematical criteria*:
- _Specifications_: Response Time, Noise Rejection, Maximum input amplitude, Robustness, ...
- _Mathematical Criteria_: Cost Function, Shape of TF
# - Cost Function, Needed Bandwidth, Roll-off, ...
# - $\Longrightarrow$ We will use the $\mathcal{H}_\infty$ Norm
3. *Synthesis*: research of $K$ that satisfies the specifications for the model of the system
#+begin_src latex :file control-procedure.pdf
\begin{tikzpicture}
\node[addb={+}{}{}{}{-}] (addsub) at (0, 0){};
\node[block, right=1.5 of addsub] (controller) {Controller};
\node[block, right=1.5 of controller] (plant) {Plant};
\node[block, above=1 of controller] (controller_design) {Synthesis};
\node[block, above=1 of plant] (model_plant) {Model};
\draw[<-] (addsub.west) -- ++(-1, 0) node[above right]{$r$};
\draw[->] (addsub) -- (controller.west) node[above left]{$\epsilon$};
\draw[->] (controller) -- (plant.west) node[above left]{$u$};
\draw[->] (plant.east) -- ++(1, 0) node[above left]{$y$};
\draw[] ($(plant.east) + (0.5, 0)$) -- ++(0, -1);
\draw[->] ($(plant.east) + (0.5, -1)$) -| (addsub.south);
\draw[->, dashed] (plant) -- node[midway, right, labelc, solid]{1} (model_plant);
\draw[->, dashed] (controller_design) --node[midway, right, labelc, solid]{3} (controller);
\draw[->, dashed] (model_plant) -- (controller_design);
\draw[<-, dashed] (controller_design.west) -- node[midway, above, labelc, solid]{2} ++(-1, 0) node[left, style={align=center}]{Specifications};
\end{tikzpicture}
#+end_src
#+name: fig:control-procedure
#+caption: Typical Methodoly for Model Based Control
#+RESULTS:
[[file:figs/control-procedure.png]]
In this document, we will mainly focus on steps 2 and 3.
** Some Background: From Classical Control to Robust Control
Classical Control (1930)
- Tools:
- TF (input-output)
- Nyquist, Bode, Black, \ldots
- P-PI-PID, Phase lead-lag, \ldots
- Advantages:
- Stability
- Performances
- Robustness
- Disadvantages:
- Manual Method
- Only SISO
Modern Control (1960)
- Tools:
- State Space
- Optimal Command
- LQR, LQG
- Advantages:
- Automatic Synthesis
- MIMO
- Optimisation problem
- Disadvantages:
- Robustness
- Rejection of Perturbations
Robust Control (1980)
- Tools:
- Disk Margin
- Systems and Signals norms ($\mathcal{H}_\infty$ and $\mathcal{H}_2$ norms)
- Closed Loop Transfer Functions
- Loop Shaping
- Advantages:
- Stability
- Performances
- Robustness
- Automatic Synthesis
- MIMO
- Optimization Problem
- Disadvantages:
- Requires the knowledge of specific tools
- Need a reasonably good model of the system
** Example System
Let's consider the test-system shown in Figure [[fig:mech_sys_1dof_inertial_contr]].
The notations used are listed in Table [[tab:example_notations]].
#+begin_src latex :file mech_sys_1dof_inertial_contr.pdf
\begin{tikzpicture}
% Parameters
\def\massw{3}
\def\massh{1}
\def\spaceh{1.8}
% Ground
\draw[] (-0.5*\massw, 0) -- (0.5*\massw, 0);
% Mass
\draw[fill=white] (-0.5*\massw, \spaceh) rectangle (0.5*\massw, \spaceh+\massh) node[pos=0.5](m){$m$};
% Spring, Damper, and Actuator
\draw[spring] (-0.3*\massw, 0) -- (-0.3*\massw, \spaceh) node[midway, left=0.1]{$k$};
\draw[damper] ( 0, 0) -- ( 0, \spaceh) node[midway, left=0.3]{$c$};
\draw[actuator] ( 0.3*\massw, 0) -- (0.3*\massw, \spaceh) node[midway](F){};
% Displacements
\draw[dashed] (0.5*\massw, 0) -- ++(0.5, 0);
\draw[->] (0.6*\massw, 0) -- ++(0, 0.5) node[below right]{$d$};
% Inertial Sensor
\node[inertialsensor] (inertials) at (0.5*\massw, \spaceh+\massh){};
\node[addb={+}{-}{}{}{}, right=0.8 of inertials] (subf) {};
\node[block, below=0.4 of subf] (K){$K(s)$};
\draw[->] (inertials.east) node[above right]{$y$} -- (subf.west);
\draw[->] (subf.south) -- (K.north) node[above right]{$\epsilon$};
\draw[<-] (subf.north) -- ++(0, 0.6) node[below right]{$r$};
\draw[->] (K.south) |- (F.east) node[above right]{$u$};
\end{tikzpicture}
#+end_src
#+name: fig:mech_sys_1dof_inertial_contr
#+caption: Test System consisting of a payload with a mass $m$ on top of an active system with a stiffness $k$, damping $c$ and an actuator. A feedback controller $K(s)$ is added to position / isolate the payload.
#+RESULTS:
[[file:figs/mech_sys_1dof_inertial_contr.png]]
#+name: tab:example_notations
#+caption: Example system variables
| *Notation* | *Description* | *Value* | *Unit* |
|--------------------+----------------------------------------------------------------+----------------+-----------|
| $m$ | Payload's mass to position / isolate | | [kg] |
| $k$ | Stiffness of the suspension system | | [N/m] |
| $c$ | Damping coefficient of the suspension system | | [N/(m/s)] |
| $y$ | Payload absolute displacement (measured by an inertial sensor) | | [m] |
| $d$ | Ground displacement, it acts as a disturbance | | [m] |
| $u$ | Actuator force | | [N] |
| $r$ | Wanted position of the mass (the reference) | | [m] |
| $\epsilon = r - y$ | Position error | | [m] |
| $K$ | Feedback controller | to be designed | [N/m] |
#+begin_exercice
Derive the following open-loop transfer functions:
\begin{align}
G(s) &= \frac{y}{u} \\
G_d(s) &= \frac{y}{d}
\end{align}
*Hint:* You can follow this generic procedure:
1. List all applied forces ot the mass: Actuator force, Stiffness force (Hooke's law), ...
2. Apply the Newton's Second Law on the payload
\[ m \ddot{y} = \Sigma F \]
3. Transform the differential equations into the Laplace domain:
\[ \frac{d\ \cdot}{dt} \Leftrightarrow \cdot \times s \]
4. Write $y(s)$ as a function of $u(s)$ and $w(s)$
#+end_exercice
Having obtained $G(s)$ and $G_d(s)$, we can transform the system shown in Figure [[fig:mech_sys_1dof_inertial_contr]] into a classical feedback form as shown in Figure [[fig:open_loop_shaping]].
#+begin_src latex :file classical_feedback_test_system.pdf
\begin{tikzpicture}
\node[addb={+}{}{}{}{-}] (addfb) at (0, 0){};
\node[block, right=0.8 of addfb] (K){$K(s)$};
\node[block, right=0.8 of K] (G){$G(s)$};
\node[addb={+}{}{}{}{}, right=0.8 of G] (addd){};
\node[block, above=0.5 of addd] (Gd){$G_d(s)$};
\draw[<-] (addfb.west) -- ++(-0.8, 0) node[above right]{$r$};
\draw[->] (addfb.east) -- (K.west) node[above left]{$\epsilon$};
\draw[->] (K.east) -- (G.west) node[above left]{$u$};
\draw[->] (G.east) -- (addd.west);
\draw[<-] (Gd.north) -- ++(0, 0.8) node[below right]{$d$};
\draw[->] (Gd.south) -- (addd.north);
\draw[->] (addd.east) -- ++(1.2, 0);
\draw[->] ($(addd.east) + (0.6, 0)$) node[branch]{} node[above]{$y$} -- ++(0, -1.0) -| (addfb.south);
\end{tikzpicture}
#+end_src
#+name: fig:classical_feedback_test_system
#+caption: Block diagram corresponding to the example system
#+RESULTS:
[[file:figs/classical_feedback_test_system.png]]
#+begin_src matlab
k = 1e6; % Stiffness [N/m]
c = 4e2; % Damping [N/(m/s)]
m = 16; % Mass [kg]
#+end_src
#+begin_src matlab
G = 1/(m*s^2 + c*s + k);
Gd = (c*s + k)/(m*s^2 + c*s + k);
#+end_src
* Classical Open Loop Shaping
** Introduction ot Open Loop Shaping
Usually, the controller $K(s)$ is designed such that the loop gain $L(s)$ has desirable shape.
This technique is called *Open Loop Shaping*.
*************** TODO Explain why the Loop gain si an important "value"
For instance example all the specifications can usually be explained in terms of the open loop gain.
*************** END
#+begin_src latex :file open_loop_shaping.pdf
\begin{tikzpicture}
\node[addb={+}{}{}{}{-}] (addsub) at (0, 0){};
\node[block, right=0.8 of addsub] (K) {$K(s)$};
\node[below] at (K.south) {Controller};
\node[block, right=0.8 of K] (G) {$G(s)$};
\node[below] at (G.south) {Plant};
\draw[<-] (addsub.west) -- ++(-0.8, 0) node[above right]{$r$};
\draw[->] (addsub) -- (K.west) node[above left]{$\epsilon$};
\draw[->] (K.east) -- (G.west) node[above left]{$u$};
\draw[->] (G.east) -- ++(0.8, 0) node[above left]{$y$};
\draw[] ($(G.east) + (0.5, 0)$) -- ++(0, -1.4);
\draw[->] ($(G.east) + (0.5, -1.4)$) -| (addsub.south);
\draw [decoration={brace, raise=5pt}, decorate] (K.north west) -- node[above=6pt]{$L(s)$} (G.north east);
\end{tikzpicture}
#+end_src
#+name: fig:open_loop_shaping
#+caption: Classical Feedback Architecture
#+RESULTS:
[[file:figs/open_loop_shaping.png]]
This is usually done manually has the loop gain $L(s)$ depends linearly of $K(s)$:
\begin{equation}
L(s) = G(s) K(s)
\end{equation}
- where $L(s)$ is called the *Loop Gain Transfer Function*
$K(s)$ then consists of a combination of leads, lags, notches, etc. such that its product with $G(s)$ has wanted shape.
** Example of Open Loop Shaping
#+begin_src matlab
k = 1e-6;
m = 10;
c = 10;
G =
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 4, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
hold off;
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz')))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
yticks(-360:90:360); ylim([-270, 90]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/bode_plot_example_afm.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:bode_plot_example_afm
#+caption: Bode plot of the plant $G(s)$
#+RESULTS:
[[file:figs/bode_plot_example_afm.png]]
Specifications:
- *Performance*: Bandwidth of approximately 50Hz
- *Noise Attenuation*: Roll-off of -40dB/decade past 250Hz
- *Robustness*: Gain margin > 5dB and Phase margin > 40 deg
#+begin_exercice
Using =SISOTOOL=, design a controller that fulfill the specifications.
#+begin_src matlab :eval no
sisotool(G)
#+end_src
#+end_exercice
In order to have the wanted Roll-off, two integrators are used, a lead is also added to have sufficient phase margin.
The obtained controller is shown below, and the bode plot of the Loop Gain is shown in Figure [[fig:loop_gain_manual_afm]].
#+begin_src matlab
K = 6e4 * ... % Gain
1/(s^2) * ... % Double Integrator
(1 + s/111)/(1 + s/888); % Lead
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 4, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G*K, freqs, 'Hz'))));
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-5, 1e1])
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*K, freqs, 'Hz')))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
yticks(-360:90:360); ylim([-360, 0]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/loop_gain_manual_afm.pdf', 'width', 'wide', 'height', 'tall');
#+end_src
#+name: fig:loop_gain_manual_afm
#+caption: Bode Plot of the obtained Loop Gain $L(s) = G(s) K(s)$
#+RESULTS:
[[file:figs/loop_gain_manual_afm.png]]
And we can verify that we have the wanted stability margins:
#+begin_src matlab :results output replace
[Gm, Pm, ~, Wc] = margin(G*K)
#+end_src
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
data2orgtable([Gm; Pm; Wc/2/pi], {'Gain Margin [dB]', 'Phase Margin [deg]', 'Crossover [Hz]'}, {'Value'}, ' %.1f ');
#+end_src
#+RESULTS:
| | Value |
|--------------------+-------|
| Gain Margin [dB] | 7.2 |
| Phase Margin [deg] | 48.1 |
| Crossover [Hz] | 50.7 |
** $\mathcal{H}_\infty$ Loop Shaping Synthesis
The Open Loop Shaping synthesis can be performed using the $\mathcal{H}_\infty$ Synthesis.
Even though we will not go into details, we will provide one example.
Using Matlab, the $\mathcal{H}_\infty$ synthesis of a controller based on the wanted open loop shape can be performed using the =loopsyn= command:
#+begin_src matlab :eval no
K = loopsyn(G, Gd);
#+end_src
where:
- =G= is the (LTI) plant
- =Gd= is the wanted loop shape
- =K= is the synthesize controller
#+begin_seealso
Matlab documentation of =loopsyn= ([[https://www.mathworks.com/help/robust/ref/loopsyn.html][link]]).
#+end_seealso
** Example of the $\mathcal{H}_\infty$ Loop Shaping Synthesis
Let's re-use the previous plant.
Translate the specification into the wanted shape of the open loop gain.
#+begin_src matlab
G = tf(16,[1 0.16 16]);
Gd = 3.7e4*1/s*(1 + s/2/pi/20)/(1 + s/2/pi/220)*1/(s + s/2/pi/500);
#+end_src
#+begin_src matlab :exports none
bodeFig({Gd}, struct('phase', true))
#+end_src
#+begin_src matlab
[K,CL,GAM,INFO] = loopsyn(G, Gd);
#+end_src
#+begin_src matlab
bodeFig({K})
#+end_src
#+begin_src matlab :exports none
freqs = logspace(1, 4, 1000);
figure;
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
ax1 = nexttile([2,1]);
hold on;
plot(freqs, abs(squeeze(freqresp(G*K, freqs, 'Hz'))));
plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz'))), 'k--');
plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz')))*GAM, 'k-.');
plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz')))/GAM, 'k-.');
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
hold off;
ylim([1e-5, 1e1])
ax2 = nexttile;
hold on;
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*K, freqs, 'Hz')))));
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
yticks(-360:90:360); ylim([-360, 0]);
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
hold off;
linkaxes([ax1,ax2],'x');
xlim([freqs(1), freqs(end)]);
#+end_src
* The $\mathcal{H}_\infty$ Norm
#+begin_definition
The $\mathcal{H}_\infty$ norm is defined as the peak of the maximum singular value of the frequency response
\begin{equation}
\|G(s)\|_\infty = \max_\omega \bar{\sigma}\big( G(j\omega) \big)
\end{equation}
For a SISO system $G(s)$, it is simply the peak value of $|G(j\omega)|$ as a function of frequency:
\begin{equation}
\|G(s)\|_\infty = \max_{\omega} |G(j\omega)| \label{eq:hinf_norm_siso}
\end{equation}
#+end_definition
#+begin_exampl
Let's define a plant dynamics:
#+begin_src matlab
w0 = 2*pi; k = 1e6; xi = 0.04;
G = 1/k/(s^2/w0^2 + 2*xi*s/w0 + 1);
#+end_src
And compute its $\mathcal{H}_\infty$ norm using the =hinfnorm= function:
#+begin_src matlab :results value replace
hinfnorm(G)
#+end_src
#+RESULTS:
: 1.0013e-05
The magnitude $|G(j\omega)|$ of the plant $G(s)$ as a function of frequency is shown in Figure [[fig:hinfinity_norm_siso_bode]].
The maximum value of the magnitude over all frequencies does correspond to the $\mathcal{H}_\infty$ norm of $G(s)$ as Equation eqref:eq:hinf_norm_siso implies.
#+begin_src matlab :exports none
freqs = logspace(-1, 1, 1000);
figure;
hold on;
plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))), 'k-');
plot([0.5, 2], [hinfnorm(G) hinfnorm(G)], 'k--');
text(2, hinfnorm(G), '$\quad \|G\|_\infty$')
hold off;
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
xlabel('Frequency [Hz]'); ylabel('Magnitude $|G(j\omega)|$');
ylim([1e-8, 2e-5]);
#+end_src
#+begin_src matlab :tangle no :exports results :results file replace
exportFig('figs/hinfinity_norm_siso_bode.pdf', 'width', 'wide', 'height', 'normal');
#+end_src
#+name: fig:hinfinity_norm_siso_bode
#+caption: Example of the $\mathcal{H}_\infty$ norm of a SISO system
#+RESULTS:
[[file:figs/hinfinity_norm_siso_bode.png]]
#+end_exampl
* $\mathcal{H}_\infty$ Synthesis
*Optimization problem*:
$\mathcal{H}_\infty$ synthesis is a method that uses an *algorithm* (LMI optimization, Riccati equation) to find a controller of the same order as the system so that the $\mathcal{H}_\infty$ norms of defined transfer functions are minimized.
*Engineer work*:
1. Write the problem as standard $\mathcal{H}_\infty$ problem
2. Translate the specifications as $\mathcal{H}_\infty$ norms
3. Make the synthesis and analyze the obtain controller
4. Reduce the order of the controller for implementation
*Many ways to use the $\mathcal{H}_\infty$ Synthesis*:
- Traditional $\mathcal{H}_\infty$ Synthesis
- Mixed Sensitivity Loop Shaping
- Fixed-Structure $\mathcal{H}_\infty$ Synthesis
- Signal Based $\mathcal{H}_\infty$ Synthesis
* The Generalized Plant
#+begin_src latex :file general_plant.pdf
\begin{tikzpicture}
\node[block={2.0cm}{2.0cm}] (P) {$P$};
\node[above] at (P.north) {Generalized Plant};
% Input and outputs coordinates
\coordinate[] (inputw) at ($(P.south west)!0.75!(P.north west)$);
\coordinate[] (inputu) at ($(P.south west)!0.25!(P.north west)$);
\coordinate[] (outputz) at ($(P.south east)!0.75!(P.north east)$);
\coordinate[] (outputv) at ($(P.south east)!0.25!(P.north east)$);
% Connections and labels
\draw[<-] (inputw) -- ++(-0.8, 0) node[above right]{$w$};
\draw[<-] (inputu) -- ++(-0.8, 0) node[above right]{$u$};
\draw[->] (outputz) -- ++(0.8, 0) node[above left]{$z$};
\draw[->] (outputv) -- ++(0.8, 0) node[above left]{$v$};
\end{tikzpicture}
#+end_src
#+RESULTS:
[[file:figs/general_plant.png]]
#+name: tab:notation_general
#+caption: Notations for the general configuration
| Notation | Meaning |
|----------+-------------------------------------------------|
| $P$ | Generalized plant model |
| $w$ | Exogenous inputs: commands, disturbances, noise |
| $z$ | Exogenous outputs: signals to be minimized |
| $v$ | Controller inputs: measurements |
| $u$ | Control signals |
\begin{equation}
\begin{bmatrix} z \\ v \end{bmatrix} = P \begin{bmatrix} w \\ u \end{bmatrix} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} w \\ u \end{bmatrix}
\end{equation}
* Problem Formulation
#+begin_important
The $\mathcal{H}_\infty$ Synthesis objective is to find all stabilizing controllers $K$ which minimize
\begin{equation}
\| F_l(P, K) \|_\infty = \max_{\omega} \overline{\sigma} \big( F_l(P, K)(j\omega) \big)
\end{equation}
#+end_important
#+begin_src latex :file general_control_names.pdf
\begin{tikzpicture}
% Blocs
\node[block={2.0cm}{2.0cm}] (P) {$P$};
\node[block={1.5cm}{1.5cm}, below=0.7 of P] (K) {$K$};
% Input and outputs coordinates
\coordinate[] (inputw) at ($(P.south west)!0.75!(P.north west)$);
\coordinate[] (inputu) at ($(P.south west)!0.25!(P.north west)$);
\coordinate[] (outputz) at ($(P.south east)!0.75!(P.north east)$);
\coordinate[] (outputv) at ($(P.south east)!0.25!(P.north east)$);
% Connections and labels
\draw[<-] (inputw) node[above left, align=right]{(weighted)\\exogenous inputs\\$w$} -- ++(-1.5, 0);
\draw[<-] (inputu) -- ++(-0.8, 0) |- node[left, near start, align=right]{control signals\\$u$} (K.west);
\draw[->] (outputz) node[above right, align=left]{(weighted)\\exogenous outputs\\$z$} -- ++(1.5, 0);
\draw[->] (outputv) -- ++(0.8, 0) |- node[right, near start, align=left]{sensed output\\$v$} (K.east);
\end{tikzpicture}
#+end_src
#+name: fig:general_control_names
#+caption: General Control Configuration
#+RESULTS:
[[file:figs/general_control_names.png]]
* Classical feedback control and closed loop transfer functions
#+begin_src latex :file classical_feedback.pdf
\begin{tikzpicture}
\node[addb={+}{}{}{}{-}] (addfb) at (0, 0){};
\node[block, right=0.8 of addfb] (K){$K(s)$};
\node[addb={+}{}{}{}{}, right=0.8 of K] (addu){};
\node[block, right=0.8 of addu] (G){$G(s)$};
\draw[<-] (addfb.west) -- ++(-0.8, 0) node[above right]{$r$};
\draw[->] (addfb.east) -- (K.west) node[above left]{$\epsilon$};
\draw[->] (K.east) -- (addu.west) node[above left]{$u$};
\draw[->] (addu.east) -- (G.west);
\draw[<-] (addu.north) -- ++(0, 0.8) node[below right]{$d$};
\draw[->] (G.east) -- ++(1.2, 0);
\draw[->] ($(G.east) + (0.6, 0)$) node[branch]{} node[above]{$y$} -- ++(0, -0.8) -| (addfb.south);
\end{tikzpicture}
#+end_src
#+name: fig:classical_feedback
#+caption: Classical Feedback Architecture
#+RESULTS:
[[file:figs/classical_feedback.png]]
#+name: table:notation_conventional
#+caption: Notations for the Classical Feedback Architecture
| Notation | Meaning |
|------------+-------------------|
| $G$ | Plant model |
| $K$ | Controller |
| $r$ | Reference inputs |
| $y$ | Plant outputs |
| $u$ | Control signals |
| $d$ | Input Disturbance |
| $\epsilon$ | Tracking Error |
* From a Classical Feedback Architecture to a Generalized Plant
The procedure is:
1. define signals of the generalized plant
2. Remove $K$ and rearrange the inputs and outputs
#+begin_src latex :file classical_feedback_tracking.pdf
\begin{tikzpicture}
\node[addb={+}{}{}{}{-}] (addfb) at (0, 0){};
\node[block, right=0.8 of addfb] (K){$K(s)$};
\node[block, right=0.8 of K] (G){$G(s)$};
\draw[<-] (addfb.west) -- ++(-0.8, 0) node[above right]{$r$};
\draw[->] (addfb.east) -- (K.west) node[above left]{$\epsilon$};
\draw[->] (K.east) -- (G.west) node[above left]{$u$};
\draw[->] (G.east) -- ++(1.2, 0);
\draw[->] ($(G.east) + (0.6, 0)$) node[branch]{} node[above]{$y$} -- ++(0, -0.8) -| (addfb.south);
\end{tikzpicture}
#+end_src
#+begin_src latex :file mixed_sensitivity_ref_tracking.pdf
\begin{tikzpicture}
\node[block] (G) {$G(s)$};
\node[addb={+}{-}{}{}{}, right=0.6 of G] (addw) {};
\coordinate[above right=0.6 and 1.4 of addw] (u);
\coordinate[above=0.6 of u] (epsilon);
\coordinate[] (w) at ($(epsilon-|G.west)+(-1.4, 0)$);
\node[block, below left=0.8 and 0 of addw] (K) {$K(s)$};
% Connections
\draw[->] (G.east) -- (addw.west);
\draw[->] ($(addw.east)+(0.4, 0)$)node[branch]{} |- (epsilon) node[above left](z1){$\epsilon$};
\draw[->] ($(G.west)+(-0.4, 0)$)node[branch](start){} |- (u) node[above left](z2){$u$};
\draw[->] (addw.east) -- (addw-|z1) |- node[near start, right]{$v$} (K.east);
\draw[->] (K.west) -| node[near end, left]{$u$} ($(G-|w)+(0.4, 0)$) -- (G.west);
\draw[->] (w) node[above]{$w = r$} -| (addw.north);
\draw [decoration={brace, raise=5pt}, decorate] (z1.north east) -- node[right=6pt]{$z$} (z2.south east);
\begin{scope}[on background layer]
\node[fit={(G.south-|start.west) ($(z1.north west)+(-0.4, 0)$)}, inner sep=6pt, draw, dashed, fill=black!20!white] (P) {};
\node[below right] at (P.north west) {Generalized Plant $P(s)$};
\end{scope}
\end{tikzpicture}
#+end_src
#+begin_exampl
Let's find the Generalized plant of corresponding to the tracking control architecture shown in Figure [[fig:classical_feedback_tracking]]
#+name: fig:classical_feedback_tracking
#+caption: Classical Feedback Control Architecture (Tracking)
[[file:figs/classical_feedback_tracking.png]]
First, define the signals of the generalized plant:
- Exogenous inputs: $w = r$
- Signals to be minimized: $z_1 = \epsilon$, $z_2 = u$
- Control signals: $v = y$
- Control inputs: $u$
Then, Remove $K$ and rearrange the inputs and outputs.
We obtain the generalized plant shown in Figure [[fig:mixed_sensitivity_ref_tracking]].
#+name: fig:mixed_sensitivity_ref_tracking
#+caption: Generalized plant of the Classical Feedback Control Architecture (Tracking)
[[file:figs/mixed_sensitivity_ref_tracking.png]]
Using Matlab, the generalized plant can be defined as follows:
#+begin_src matlab :tangle no :eval no
P = [1 -G;
0 1;
1 -G]
#+end_src
#+end_exampl
* Modern Interpretation of the Control Specifications
** Introduction
- *Reference tracking* Overshoot, Static error, Setling time
- $S(s) = T_{r \rightarrow \epsilon}$
- *Disturbances rejection*
- $G(s) S(s) = T_{d \rightarrow \epsilon}$
- *Measurement noise filtering*
- $T(s) = T_{n \rightarrow \epsilon}$
- *Small command amplitude*
- $K(s) S(s) = T_{r \rightarrow u}$
- *Stability*
- $S(s)$, $T(s)$, $K(s)S(s)$, $G(s)S(s)$
- *Robustness to plant uncertainty* (stability margins)
- *Controller implementation*
**
* Resources
yt:?listType=playlist&list=PLn8PRpmsu08qFLMfgTEzR8DxOPE7fBiin
yt:?listType=playlist&list=PLsjPUqcL7ZIFHCObUU_9xPUImZ203gB4o