Add example system
BIN
figs/bode_plot_example_afm.pdf
Normal file
BIN
figs/bode_plot_example_afm.png
Normal file
After Width: | Height: | Size: 80 KiB |
BIN
figs/classical_feedback_test_system.pdf
Normal file
BIN
figs/classical_feedback_test_system.png
Normal file
After Width: | Height: | Size: 10 KiB |
165
figs/classical_feedback_test_system.svg
Normal file
@ -0,0 +1,165 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="236.595pt" height="106.498pt" viewBox="0 0 236.595 106.498" version="1.2">
|
||||
<defs>
|
||||
<g>
|
||||
<symbol overflow="visible" id="glyph0-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-1">
|
||||
<path style="stroke:none;" d="M 11.53125 -4.265625 C 11.53125 -4.578125 11.265625 -4.578125 11 -4.578125 L 6.46875 -4.578125 L 6.46875 -9.125 C 6.46875 -9.359375 6.46875 -9.65625 6.171875 -9.65625 C 5.859375 -9.65625 5.859375 -9.375 5.859375 -9.125 L 5.859375 -4.578125 L 1.3125 -4.578125 C 1.078125 -4.578125 0.78125 -4.578125 0.78125 -4.28125 C 0.78125 -3.984375 1.0625 -3.984375 1.3125 -3.984375 L 5.859375 -3.984375 L 5.859375 0.5625 C 5.859375 0.8125 5.859375 1.09375 6.15625 1.09375 C 6.46875 1.09375 6.46875 0.828125 6.46875 0.5625 L 6.46875 -3.984375 L 11 -3.984375 C 11.25 -3.984375 11.53125 -3.984375 11.53125 -4.265625 Z M 11.53125 -4.265625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph1-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph1-1">
|
||||
<path style="stroke:none;" d="M 6.890625 -2.484375 C 6.890625 -2.671875 6.703125 -2.671875 6.5625 -2.671875 L 1.15625 -2.671875 C 1.015625 -2.671875 0.828125 -2.671875 0.828125 -2.484375 C 0.828125 -2.28125 1.015625 -2.28125 1.15625 -2.28125 L 6.5625 -2.28125 C 6.703125 -2.28125 6.890625 -2.28125 6.890625 -2.484375 Z M 6.890625 -2.484375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-1">
|
||||
<path style="stroke:none;" d="M 7.34375 -0.203125 C 7.34375 -0.3125 7.234375 -0.3125 7.140625 -0.3125 C 6.734375 -0.3125 6.609375 -0.40625 6.453125 -0.75 L 5.046875 -4.015625 C 5.046875 -4.03125 5 -4.125 5 -4.140625 C 5 -4.140625 5.171875 -4.296875 5.28125 -4.375 L 7.03125 -5.71875 C 7.953125 -6.40625 8.34375 -6.4375 8.640625 -6.46875 C 8.71875 -6.484375 8.828125 -6.484375 8.828125 -6.671875 C 8.828125 -6.703125 8.796875 -6.78125 8.71875 -6.78125 C 8.5 -6.78125 8.25 -6.75 8 -6.75 C 7.65625 -6.75 7.265625 -6.78125 6.90625 -6.78125 C 6.84375 -6.78125 6.71875 -6.78125 6.71875 -6.578125 C 6.71875 -6.515625 6.765625 -6.484375 6.84375 -6.46875 C 7.046875 -6.453125 7.140625 -6.40625 7.140625 -6.265625 C 7.140625 -6.078125 6.84375 -5.859375 6.78125 -5.796875 L 2.921875 -2.828125 L 3.703125 -6.015625 C 3.796875 -6.375 3.8125 -6.46875 4.546875 -6.46875 C 4.796875 -6.46875 4.875 -6.46875 4.875 -6.671875 C 4.875 -6.75 4.796875 -6.78125 4.75 -6.78125 L 3.46875 -6.75 L 2.1875 -6.78125 C 2.125 -6.78125 2 -6.78125 2 -6.59375 C 2 -6.46875 2.078125 -6.46875 2.28125 -6.46875 C 2.40625 -6.46875 2.59375 -6.453125 2.703125 -6.453125 C 2.875 -6.421875 2.921875 -6.40625 2.921875 -6.296875 C 2.921875 -6.25 2.921875 -6.21875 2.890625 -6.109375 L 1.5625 -0.78125 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.484375 -0.3125 0.375 -0.3125 0.375 -0.125 C 0.375 0 0.5 0 0.53125 0 L 1.78125 -0.03125 L 2.421875 -0.015625 C 2.640625 -0.015625 2.859375 0 3.0625 0 C 3.140625 0 3.265625 0 3.265625 -0.203125 C 3.265625 -0.3125 3.171875 -0.3125 2.984375 -0.3125 C 2.625 -0.3125 2.34375 -0.3125 2.34375 -0.484375 C 2.34375 -0.5625 2.40625 -0.78125 2.4375 -0.921875 L 2.828125 -2.484375 L 4.3125 -3.625 L 5.453125 -0.96875 C 5.578125 -0.6875 5.578125 -0.671875 5.578125 -0.609375 C 5.578125 -0.3125 5.15625 -0.3125 5.0625 -0.3125 C 4.953125 -0.3125 4.84375 -0.3125 4.84375 -0.109375 C 4.84375 0 4.984375 0 4.984375 0 C 5.375 0 5.796875 -0.03125 6.1875 -0.03125 C 6.40625 -0.03125 6.9375 0 7.15625 0 C 7.21875 0 7.34375 0 7.34375 -0.203125 Z M 7.34375 -0.203125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-2">
|
||||
<path style="stroke:none;" d="M 3.921875 -1.53125 C 3.921875 -1.890625 3.734375 -2.140625 3.625 -2.265625 C 3.359375 -2.546875 3.0625 -2.59375 2.625 -2.671875 C 2.265625 -2.765625 1.875 -2.828125 1.875 -3.28125 C 1.875 -3.5625 2.109375 -4.171875 2.984375 -4.171875 C 3.234375 -4.171875 3.734375 -4.09375 3.875 -3.703125 C 3.609375 -3.703125 3.40625 -3.484375 3.40625 -3.265625 C 3.40625 -3.125 3.5 -2.96875 3.703125 -2.96875 C 3.921875 -2.96875 4.171875 -3.140625 4.171875 -3.53125 C 4.171875 -3.984375 3.734375 -4.390625 2.984375 -4.390625 C 1.671875 -4.390625 1.3125 -3.375 1.3125 -2.9375 C 1.3125 -2.15625 2.046875 -2.015625 2.328125 -1.953125 C 2.84375 -1.859375 3.359375 -1.75 3.359375 -1.203125 C 3.359375 -0.9375 3.140625 -0.109375 1.9375 -0.109375 C 1.8125 -0.109375 1.046875 -0.109375 0.8125 -0.640625 C 1.1875 -0.578125 1.4375 -0.890625 1.4375 -1.15625 C 1.4375 -1.390625 1.28125 -1.515625 1.078125 -1.515625 C 0.8125 -1.515625 0.515625 -1.296875 0.515625 -0.859375 C 0.515625 -0.28125 1.078125 0.109375 1.9375 0.109375 C 3.546875 0.109375 3.921875 -1.09375 3.921875 -1.53125 Z M 3.921875 -1.53125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-3">
|
||||
<path style="stroke:none;" d="M 7.15625 -2.59375 C 7.15625 -2.671875 7.109375 -2.703125 7.03125 -2.703125 C 6.796875 -2.703125 6.21875 -2.671875 5.984375 -2.671875 L 4.59375 -2.703125 C 4.5 -2.703125 4.390625 -2.703125 4.390625 -2.515625 C 4.390625 -2.40625 4.46875 -2.40625 4.6875 -2.40625 C 4.6875 -2.40625 4.984375 -2.40625 5.203125 -2.375 C 5.46875 -2.34375 5.515625 -2.328125 5.515625 -2.1875 C 5.515625 -2.109375 5.40625 -1.65625 5.3125 -1.296875 C 5.03125 -0.203125 3.734375 -0.09375 3.390625 -0.09375 C 2.4375 -0.09375 1.40625 -0.65625 1.40625 -2.171875 C 1.40625 -2.484375 1.5 -4.125 2.546875 -5.40625 C 3.078125 -6.078125 4.03125 -6.6875 5.015625 -6.6875 C 6.03125 -6.6875 6.625 -5.921875 6.625 -4.765625 C 6.625 -4.375 6.59375 -4.359375 6.59375 -4.265625 C 6.59375 -4.171875 6.703125 -4.171875 6.734375 -4.171875 C 6.859375 -4.171875 6.859375 -4.1875 6.921875 -4.359375 L 7.546875 -6.890625 C 7.546875 -6.921875 7.515625 -7 7.4375 -7 C 7.40625 -7 7.390625 -6.984375 7.28125 -6.875 L 6.59375 -6.109375 C 6.5 -6.25 6.046875 -7 4.9375 -7 C 2.734375 -7 0.5 -4.796875 0.5 -2.5 C 0.5 -0.921875 1.59375 0.21875 3.203125 0.21875 C 3.640625 0.21875 4.09375 0.125 4.4375 -0.015625 C 4.9375 -0.21875 5.125 -0.421875 5.3125 -0.625 C 5.390625 -0.375 5.65625 -0.015625 5.75 -0.015625 C 5.796875 -0.015625 5.828125 -0.046875 5.828125 -0.046875 C 5.84375 -0.0625 5.9375 -0.453125 6 -0.65625 L 6.1875 -1.421875 C 6.21875 -1.59375 6.265625 -1.75 6.3125 -1.921875 C 6.421875 -2.375 6.421875 -2.390625 7 -2.40625 C 7.046875 -2.40625 7.15625 -2.40625 7.15625 -2.59375 Z M 7.15625 -2.59375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-4">
|
||||
<path style="stroke:none;" d="M 4.328125 -3.734375 C 4.328125 -4.09375 4.015625 -4.390625 3.5 -4.390625 C 2.859375 -4.390625 2.421875 -3.90625 2.234375 -3.625 C 2.15625 -4.0625 1.796875 -4.390625 1.328125 -4.390625 C 0.875 -4.390625 0.6875 -4 0.59375 -3.8125 C 0.421875 -3.484375 0.28125 -2.890625 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.6875 0.9375 -4.171875 1.296875 -4.171875 C 1.46875 -4.171875 1.609375 -4.09375 1.609375 -3.703125 C 1.609375 -3.5 1.578125 -3.390625 1.453125 -2.875 L 0.875 -0.578125 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.078125 0.109375 C 1.1875 0.109375 1.375 0.03125 1.4375 -0.171875 C 1.453125 -0.203125 1.796875 -1.5625 1.828125 -1.734375 L 2.15625 -3.03125 C 2.1875 -3.15625 2.46875 -3.625 2.703125 -3.84375 C 2.78125 -3.90625 3.078125 -4.171875 3.5 -4.171875 C 3.765625 -4.171875 3.921875 -4.046875 3.921875 -4.046875 C 3.625 -4 3.40625 -3.765625 3.40625 -3.5 C 3.40625 -3.34375 3.515625 -3.15625 3.78125 -3.15625 C 4.046875 -3.15625 4.328125 -3.390625 4.328125 -3.734375 Z M 4.328125 -3.734375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-5">
|
||||
<path style="stroke:none;" d="M 3.546875 -0.390625 C 3.546875 -0.421875 3.546875 -0.53125 3.453125 -0.53125 C 3.453125 -0.53125 3.40625 -0.53125 3.328125 -0.46875 C 3.015625 -0.28125 2.65625 -0.109375 2.28125 -0.109375 C 1.703125 -0.109375 1.203125 -0.53125 1.203125 -1.40625 C 1.203125 -1.75 1.296875 -2.125 1.3125 -2.25 L 2.953125 -2.25 C 3.109375 -2.25 3.296875 -2.25 3.296875 -2.40625 C 3.296875 -2.546875 3.171875 -2.546875 3 -2.546875 L 1.40625 -2.546875 C 1.640625 -3.390625 2.1875 -3.96875 3.09375 -3.96875 L 3.40625 -3.96875 C 3.578125 -3.96875 3.734375 -3.96875 3.734375 -4.140625 C 3.734375 -4.28125 3.609375 -4.28125 3.4375 -4.28125 L 3.078125 -4.28125 C 1.796875 -4.28125 0.46875 -3.28125 0.46875 -1.765625 C 0.46875 -0.671875 1.203125 0.109375 2.265625 0.109375 C 2.90625 0.109375 3.546875 -0.28125 3.546875 -0.390625 Z M 3.546875 -0.390625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-6">
|
||||
<path style="stroke:none;" d="M 5.390625 -1.421875 C 5.390625 -1.515625 5.296875 -1.515625 5.265625 -1.515625 C 5.171875 -1.515625 5.15625 -1.484375 5.125 -1.34375 C 4.984375 -0.78125 4.796875 -0.109375 4.390625 -0.109375 C 4.171875 -0.109375 4.078125 -0.234375 4.078125 -0.5625 C 4.078125 -0.78125 4.203125 -1.25 4.28125 -1.59375 L 4.546875 -2.671875 C 4.578125 -2.8125 4.6875 -3.1875 4.71875 -3.34375 C 4.765625 -3.578125 4.875 -3.953125 4.875 -4.015625 C 4.875 -4.1875 4.734375 -4.28125 4.578125 -4.28125 C 4.53125 -4.28125 4.28125 -4.265625 4.203125 -3.921875 L 3.453125 -0.9375 C 3.4375 -0.90625 3.046875 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.5625 1.703125 -0.921875 C 1.703125 -1.484375 1.984375 -2.265625 2.25 -2.953125 C 2.359375 -3.25 2.40625 -3.390625 2.40625 -3.578125 C 2.40625 -4.015625 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.8125 -3.796875 1.1875 -4.171875 1.5625 -4.171875 C 1.65625 -4.171875 1.8125 -4.15625 1.8125 -3.84375 C 1.8125 -3.609375 1.703125 -3.3125 1.640625 -3.171875 C 1.28125 -2.1875 1.078125 -1.5625 1.078125 -1.078125 C 1.078125 -0.140625 1.75 0.109375 2.296875 0.109375 C 2.953125 0.109375 3.296875 -0.34375 3.46875 -0.5625 C 3.578125 -0.15625 3.921875 0.109375 4.359375 0.109375 C 4.703125 0.109375 4.9375 -0.125 5.09375 -0.4375 C 5.265625 -0.796875 5.390625 -1.421875 5.390625 -1.421875 Z M 5.390625 -1.421875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-7">
|
||||
<path style="stroke:none;" d="M 4.9375 -1.421875 C 4.9375 -1.515625 4.859375 -1.515625 4.828125 -1.515625 C 4.71875 -1.515625 4.71875 -1.484375 4.6875 -1.34375 C 4.515625 -0.6875 4.328125 -0.109375 3.921875 -0.109375 C 3.65625 -0.109375 3.625 -0.359375 3.625 -0.5625 C 3.625 -0.796875 3.65625 -0.875 3.6875 -1.046875 L 5.125 -6.78125 C 5.125 -6.78125 5.125 -6.890625 4.984375 -6.890625 C 4.84375 -6.890625 3.90625 -6.796875 3.734375 -6.78125 C 3.65625 -6.765625 3.59375 -6.71875 3.59375 -6.59375 C 3.59375 -6.46875 3.6875 -6.46875 3.828125 -6.46875 C 4.3125 -6.46875 4.328125 -6.40625 4.328125 -6.296875 L 4.296875 -6.109375 L 3.703125 -3.75 C 3.515625 -4.125 3.234375 -4.390625 2.78125 -4.390625 C 1.625 -4.390625 0.390625 -2.921875 0.390625 -1.484375 C 0.390625 -0.546875 0.9375 0.109375 1.71875 0.109375 C 1.921875 0.109375 2.40625 0.0625 3 -0.640625 C 3.078125 -0.21875 3.4375 0.109375 3.90625 0.109375 C 4.25 0.109375 4.484375 -0.125 4.640625 -0.4375 C 4.8125 -0.796875 4.9375 -1.421875 4.9375 -1.421875 Z M 3.546875 -3.125 L 3.0625 -1.1875 C 3 -1 3 -0.984375 2.859375 -0.8125 C 2.421875 -0.265625 2.015625 -0.109375 1.734375 -0.109375 C 1.234375 -0.109375 1.09375 -0.65625 1.09375 -1.046875 C 1.09375 -1.53125 1.421875 -2.765625 1.640625 -3.21875 C 1.953125 -3.796875 2.40625 -4.171875 2.796875 -4.171875 C 3.4375 -4.171875 3.578125 -3.359375 3.578125 -3.296875 C 3.578125 -3.234375 3.5625 -3.171875 3.546875 -3.125 Z M 3.546875 -3.125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-8">
|
||||
<path style="stroke:none;" d="M 4.828125 -3.78125 C 4.859375 -3.921875 4.859375 -3.9375 4.859375 -4.015625 C 4.859375 -4.1875 4.71875 -4.28125 4.578125 -4.28125 C 4.46875 -4.28125 4.3125 -4.21875 4.234375 -4.0625 C 4.203125 -4.015625 4.125 -3.703125 4.09375 -3.53125 L 3.890625 -2.734375 L 3.4375 -0.953125 C 3.40625 -0.796875 2.96875 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.546875 1.703125 -0.90625 C 1.703125 -1.375 1.875 -1.984375 2.21875 -2.859375 C 2.375 -3.265625 2.40625 -3.375 2.40625 -3.578125 C 2.40625 -4.015625 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.828125 -3.875 1.234375 -4.171875 1.5625 -4.171875 C 1.640625 -4.171875 1.8125 -4.171875 1.8125 -3.84375 C 1.8125 -3.609375 1.71875 -3.34375 1.640625 -3.15625 C 1.25 -2.109375 1.078125 -1.53125 1.078125 -1.078125 C 1.078125 -0.1875 1.703125 0.109375 2.28125 0.109375 C 2.671875 0.109375 3 -0.0625 3.28125 -0.34375 C 3.15625 0.171875 3.03125 0.671875 2.640625 1.1875 C 2.375 1.53125 2 1.8125 1.546875 1.8125 C 1.40625 1.8125 0.96875 1.78125 0.796875 1.40625 C 0.953125 1.40625 1.078125 1.40625 1.21875 1.28125 C 1.3125 1.1875 1.421875 1.0625 1.421875 0.875 C 1.421875 0.5625 1.15625 0.53125 1.046875 0.53125 C 0.828125 0.53125 0.5 0.6875 0.5 1.171875 C 0.5 1.671875 0.9375 2.03125 1.546875 2.03125 C 2.5625 2.03125 3.59375 1.125 3.875 0.015625 Z M 4.828125 -3.78125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-1">
|
||||
<path style="stroke:none;" d="M 3.28125 2.375 C 3.28125 2.34375 3.28125 2.328125 3.109375 2.15625 C 1.875 0.90625 1.5625 -0.96875 1.5625 -2.484375 C 1.5625 -4.203125 1.9375 -5.9375 3.15625 -7.171875 C 3.28125 -7.296875 3.28125 -7.3125 3.28125 -7.34375 C 3.28125 -7.40625 3.25 -7.4375 3.1875 -7.4375 C 3.078125 -7.4375 2.1875 -6.765625 1.609375 -5.5 C 1.09375 -4.421875 0.984375 -3.3125 0.984375 -2.484375 C 0.984375 -1.703125 1.09375 -0.5 1.640625 0.609375 C 2.234375 1.828125 3.078125 2.484375 3.1875 2.484375 C 3.25 2.484375 3.28125 2.453125 3.28125 2.375 Z M 3.28125 2.375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-2">
|
||||
<path style="stroke:none;" d="M 2.875 -2.484375 C 2.875 -3.25 2.765625 -4.453125 2.21875 -5.578125 C 1.625 -6.796875 0.765625 -7.4375 0.671875 -7.4375 C 0.609375 -7.4375 0.5625 -7.40625 0.5625 -7.34375 C 0.5625 -7.3125 0.5625 -7.296875 0.75 -7.109375 C 1.71875 -6.125 2.296875 -4.546875 2.296875 -2.484375 C 2.296875 -0.78125 1.921875 0.96875 0.6875 2.21875 C 0.5625 2.328125 0.5625 2.34375 0.5625 2.375 C 0.5625 2.4375 0.609375 2.484375 0.671875 2.484375 C 0.765625 2.484375 1.65625 1.8125 2.25 0.546875 C 2.75 -0.546875 2.875 -1.640625 2.875 -2.484375 Z M 2.875 -2.484375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph4-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph4-1">
|
||||
<path style="stroke:none;" d="M 3.96875 -0.984375 C 3.96875 -1.078125 3.875 -1.078125 3.84375 -1.078125 C 3.75 -1.078125 3.75 -1.046875 3.703125 -0.875 C 3.609375 -0.53125 3.484375 -0.125 3.1875 -0.125 C 3.015625 -0.125 2.96875 -0.28125 2.96875 -0.46875 C 2.96875 -0.59375 2.96875 -0.65625 3 -0.75 L 3.96875 -4.609375 C 3.96875 -4.625 3.984375 -4.71875 3.984375 -4.71875 C 3.984375 -4.75 3.96875 -4.8125 3.875 -4.8125 C 3.734375 -4.8125 3.15625 -4.765625 2.984375 -4.75 C 2.9375 -4.734375 2.84375 -4.734375 2.84375 -4.578125 C 2.84375 -4.484375 2.9375 -4.484375 3.015625 -4.484375 C 3.34375 -4.484375 3.34375 -4.4375 3.34375 -4.390625 C 3.34375 -4.34375 3.34375 -4.296875 3.328125 -4.234375 L 2.921875 -2.65625 C 2.78125 -2.875 2.546875 -3.0625 2.21875 -3.0625 C 1.328125 -3.0625 0.421875 -2.078125 0.421875 -1.078125 C 0.421875 -0.40625 0.875 0.0625 1.46875 0.0625 C 1.84375 0.0625 2.171875 -0.140625 2.453125 -0.421875 C 2.59375 0 2.984375 0.0625 3.171875 0.0625 C 3.421875 0.0625 3.59375 -0.078125 3.71875 -0.296875 C 3.875 -0.5625 3.96875 -0.96875 3.96875 -0.984375 Z M 2.8125 -2.171875 L 2.484375 -0.875 C 2.4375 -0.671875 2.28125 -0.53125 2.125 -0.40625 C 2.0625 -0.34375 1.796875 -0.125 1.484375 -0.125 C 1.234375 -0.125 0.984375 -0.3125 0.984375 -0.796875 C 0.984375 -1.171875 1.1875 -1.921875 1.34375 -2.203125 C 1.671875 -2.765625 2.015625 -2.859375 2.21875 -2.859375 C 2.703125 -2.859375 2.828125 -2.34375 2.828125 -2.265625 C 2.828125 -2.234375 2.8125 -2.1875 2.8125 -2.171875 Z M 2.8125 -2.171875 "/>
|
||||
</symbol>
|
||||
</g>
|
||||
<clipPath id="clip1">
|
||||
<path d="M 0.351562 76 L 20 76 L 20 78 L 0.351562 78 Z M 0.351562 76 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip2">
|
||||
<path d="M 214 61 L 235.839844 61 L 235.839844 93 L 214 93 Z M 214 61 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip3">
|
||||
<path d="M 18 74 L 50 74 L 50 106 L 18 106 Z M 18 74 "/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
<g id="surface1">
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 9.963105 -0.00194804 C 9.963105 5.500429 5.500763 9.962771 -0.00161393 9.962771 C -5.503991 9.962771 -9.962408 5.500429 -9.962408 -0.00194804 C -9.962408 -5.500401 -5.503991 -9.962742 -0.00161393 -9.962742 C 5.500763 -9.962742 9.963105 -5.500401 9.963105 -0.00194804 Z M 9.963105 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-1" x="27.666707" y="80.93848"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph1-1" x="24.138338" y="94.474674"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 33.13824 -14.173906 L 67.153293 -14.173906 L 67.153293 14.173934 L 33.13824 14.173934 Z M 33.13824 -14.173906 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-1" x="72.998028" y="79.270343"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="82.128988" y="79.270343"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="85.985808" y="79.270343"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="90.633898" y="79.270343"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 90.82686 -14.173906 L 124.845838 -14.173906 L 124.845838 14.173934 L 90.82686 14.173934 Z M 90.82686 -14.173906 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="131.084227" y="79.270343"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="138.880478" y="79.270343"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="142.737298" y="79.270343"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="147.385388" y="79.270343"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 167.946486 -0.00194804 C 167.946486 5.500429 163.484144 9.962771 157.981767 9.962771 C 152.479389 9.962771 148.020972 5.500429 148.020972 -0.00194804 C 148.020972 -5.500401 152.479389 -9.962742 157.981767 -9.962742 C 163.484144 -9.962742 167.946486 -5.500401 167.946486 -0.00194804 Z M 167.946486 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-1" x="184.906525" y="80.93848"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 140.976202 24.633161 L 174.991256 24.633161 L 174.991256 52.981001 L 140.976202 52.981001 Z M 140.976202 24.633161 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="178.682861" y="40.64541"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph4-1" x="186.479112" y="42.1324"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="191.103315" y="40.64541"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="194.95914" y="40.64541"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="199.60723" y="40.64541"/>
|
||||
</g>
|
||||
<g clip-path="url(#clip1)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -14.597435 -0.00194804 L -32.639111 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.051704 -0.00194804 L 1.608985 1.681732 L 3.088583 -0.00194804 L 1.608985 -1.681704 Z M 6.051704 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,16.480595,76.79103)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-4" x="5.147854" y="72.990942"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 9.963105 -0.00194804 L 28.004781 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.054794 -0.00194804 L 1.608151 1.681732 L 3.087749 -0.00194804 L 1.608151 -1.681704 Z M 6.054794 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,58.883769,76.79103)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-5" x="58.494394" y="72.990942"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 67.651725 -0.00194804 L 85.697325 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053514 -0.00194804 L 1.606871 1.681732 L 3.086469 -0.00194804 L 1.606871 -1.681704 Z M 6.053514 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,116.303011,76.79103)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-6" x="114.261524" y="72.990942"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 125.34427 -0.00194804 L 143.385945 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.052244 -0.00194804 L 1.609526 1.681732 L 3.089124 -0.00194804 L 1.609526 -1.681704 Z M 6.052244 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,173.722244,76.79103)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 157.981767 58.11446 L 157.981767 76.156136 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.055073 -0.00108337 L 1.60843 1.682597 L 3.088028 -0.00108337 L 1.60843 -1.684764 Z M 6.055073 -0.00108337 " transform="matrix(0,0.995308,0.995308,0,191.075297,16.125678)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-7" x="194.873543" y="11.679944"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 157.981767 24.134729 L 157.981767 14.597798 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.055266 -0.00108337 L 1.608623 1.682597 L 3.08822 -0.00108337 L 1.608623 -1.684764 Z M 6.055266 -0.00108337 " transform="matrix(0,0.995308,0.995308,0,191.075297,59.437987)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 167.946486 -0.00194804 L 197.326512 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 233.4375 76.792969 L 229.011719 75.117188 L 230.484375 76.792969 L 229.011719 78.464844 Z M 233.4375 76.792969 "/>
|
||||
<g clip-path="url(#clip2)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.055116 -0.00194804 L 1.608473 1.681732 L 3.088071 -0.00194804 L 1.608473 -1.681704 Z M 6.055116 -0.00194804 " transform="matrix(0.995308,0,0,-0.995308,227.410792,76.79103)"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 184.95205 -0.00194804 L 184.95205 -28.345864 L -0.00161393 -28.345864 L -0.00161393 -14.597769 " transform="matrix(0.995308,0,0,-0.995308,33.833638,76.79103)"/>
|
||||
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 33.832031 88.117188 L 32.160156 92.542969 L 33.832031 91.070312 L 35.507812 92.542969 Z M 33.832031 88.117188 "/>
|
||||
<g clip-path="url(#clip3)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.055294 0.00161393 L 1.608651 1.68137 L 3.088249 0.00161393 L 1.608651 -1.682066 Z M 6.055294 0.00161393 " transform="matrix(0,-0.995308,-0.995308,0,33.833638,94.144073)"/>
|
||||
</g>
|
||||
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 219.902344 76.792969 C 219.902344 75.695312 219.015625 74.808594 217.917969 74.808594 C 216.824219 74.808594 215.9375 75.695312 215.9375 76.792969 C 215.9375 77.886719 216.824219 78.773438 217.917969 78.773438 C 219.015625 78.773438 219.902344 77.886719 219.902344 76.792969 Z M 219.902344 76.792969 "/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-8" x="215.309216" y="71.06303"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 27 KiB |
BIN
figs/loop_gain_manual_afm.pdf
Normal file
BIN
figs/loop_gain_manual_afm.png
Normal file
After Width: | Height: | Size: 114 KiB |
BIN
figs/mech_sys_1dof_inertial_contr.pdf
Normal file
BIN
figs/mech_sys_1dof_inertial_contr.png
Normal file
After Width: | Height: | Size: 8.7 KiB |
166
figs/mech_sys_1dof_inertial_contr.svg
Normal file
@ -0,0 +1,166 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="136.683pt" height="112.589pt" viewBox="0 0 136.683 112.589" version="1.2">
|
||||
<defs>
|
||||
<g>
|
||||
<symbol overflow="visible" id="glyph0-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-1">
|
||||
<path style="stroke:none;" d="M 8.40625 -1.421875 C 8.40625 -1.515625 8.328125 -1.515625 8.296875 -1.515625 C 8.203125 -1.515625 8.203125 -1.484375 8.140625 -1.34375 C 8 -0.8125 7.671875 -0.109375 7.140625 -0.109375 C 6.96875 -0.109375 6.890625 -0.203125 6.890625 -0.4375 C 6.890625 -0.6875 6.984375 -0.921875 7.078125 -1.140625 C 7.265625 -1.65625 7.671875 -2.765625 7.671875 -3.328125 C 7.671875 -3.96875 7.28125 -4.390625 6.53125 -4.390625 C 5.796875 -4.390625 5.28125 -3.953125 4.921875 -3.421875 C 4.90625 -3.546875 4.875 -3.890625 4.609375 -4.125 C 4.359375 -4.328125 4.03125 -4.390625 3.796875 -4.390625 C 2.890625 -4.390625 2.40625 -3.75 2.25 -3.515625 C 2.1875 -4.09375 1.78125 -4.390625 1.328125 -4.390625 C 0.875 -4.390625 0.6875 -4 0.59375 -3.8125 C 0.421875 -3.46875 0.28125 -2.890625 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.6875 0.9375 -4.171875 1.296875 -4.171875 C 1.453125 -4.171875 1.609375 -4.09375 1.609375 -3.703125 C 1.609375 -3.5 1.578125 -3.390625 1.453125 -2.875 L 0.875 -0.578125 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.078125 0.109375 C 1.1875 0.109375 1.375 0.03125 1.4375 -0.171875 C 1.453125 -0.1875 1.5625 -0.65625 1.625 -0.90625 L 1.84375 -1.796875 C 1.90625 -2.015625 1.96875 -2.234375 2.015625 -2.453125 L 2.140625 -2.953125 C 2.296875 -3.265625 2.8125 -4.171875 3.765625 -4.171875 C 4.203125 -4.171875 4.296875 -3.796875 4.296875 -3.46875 C 4.296875 -3.21875 4.234375 -2.953125 4.140625 -2.65625 L 3.875 -1.5 C 3.765625 -1.125 3.765625 -1.078125 3.671875 -0.75 C 3.625 -0.546875 3.546875 -0.203125 3.546875 -0.15625 C 3.546875 0.015625 3.6875 0.109375 3.828125 0.109375 C 4.140625 0.109375 4.203125 -0.140625 4.28125 -0.453125 L 4.875 -2.84375 C 4.90625 -2.96875 5.421875 -4.171875 6.515625 -4.171875 C 6.9375 -4.171875 7.046875 -3.828125 7.046875 -3.46875 C 7.046875 -2.90625 6.625 -1.78125 6.421875 -1.25 C 6.34375 -1.015625 6.296875 -0.90625 6.296875 -0.703125 C 6.296875 -0.234375 6.640625 0.109375 7.109375 0.109375 C 8.046875 0.109375 8.40625 -1.34375 8.40625 -1.421875 Z M 8.40625 -1.421875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-2">
|
||||
<path style="stroke:none;" d="M 4.859375 -1.421875 C 4.859375 -1.515625 4.765625 -1.515625 4.75 -1.515625 C 4.640625 -1.515625 4.640625 -1.484375 4.609375 -1.34375 C 4.40625 -0.609375 4.171875 -0.109375 3.734375 -0.109375 C 3.546875 -0.109375 3.421875 -0.21875 3.421875 -0.578125 C 3.421875 -0.75 3.46875 -0.96875 3.5 -1.125 C 3.546875 -1.296875 3.546875 -1.34375 3.546875 -1.4375 C 3.546875 -2.078125 2.921875 -2.375 2.078125 -2.484375 C 2.375 -2.65625 2.703125 -2.96875 2.921875 -3.21875 C 3.40625 -3.734375 3.859375 -4.171875 4.34375 -4.171875 C 4.40625 -4.171875 4.421875 -4.171875 4.4375 -4.15625 C 4.546875 -4.140625 4.5625 -4.140625 4.640625 -4.078125 C 4.65625 -4.0625 4.65625 -4.0625 4.6875 -4.03125 C 4.203125 -4.015625 4.125 -3.625 4.125 -3.5 C 4.125 -3.34375 4.234375 -3.15625 4.5 -3.15625 C 4.75 -3.15625 5.046875 -3.375 5.046875 -3.765625 C 5.046875 -4.0625 4.8125 -4.390625 4.359375 -4.390625 C 4.09375 -4.390625 3.625 -4.3125 2.921875 -3.515625 C 2.578125 -3.140625 2.1875 -2.734375 1.8125 -2.59375 L 2.84375 -6.78125 C 2.84375 -6.78125 2.84375 -6.890625 2.71875 -6.890625 C 2.484375 -6.890625 1.765625 -6.8125 1.515625 -6.78125 C 1.421875 -6.78125 1.3125 -6.765625 1.3125 -6.59375 C 1.3125 -6.46875 1.40625 -6.46875 1.5625 -6.46875 C 2.03125 -6.46875 2.046875 -6.40625 2.046875 -6.296875 L 2.03125 -6.109375 L 0.578125 -0.390625 C 0.546875 -0.25 0.546875 -0.234375 0.546875 -0.171875 C 0.546875 0.0625 0.75 0.109375 0.828125 0.109375 C 0.96875 0.109375 1.109375 0.015625 1.171875 -0.09375 C 1.21875 -0.1875 1.671875 -2.03125 1.71875 -2.265625 C 2.0625 -2.25 2.875 -2.078125 2.875 -1.421875 C 2.875 -1.359375 2.875 -1.3125 2.84375 -1.21875 C 2.828125 -1.09375 2.8125 -0.984375 2.8125 -0.875 C 2.8125 -0.28125 3.203125 0.109375 3.71875 0.109375 C 4.015625 0.109375 4.28125 -0.046875 4.5 -0.421875 C 4.75 -0.859375 4.859375 -1.421875 4.859375 -1.421875 Z M 4.859375 -1.421875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-3">
|
||||
<path style="stroke:none;" d="M 4.265625 -1.0625 C 4.265625 -1.125 4.203125 -1.1875 4.140625 -1.1875 C 4.09375 -1.1875 4.078125 -1.171875 4.015625 -1.09375 C 3.234375 -0.109375 2.15625 -0.109375 2.03125 -0.109375 C 1.40625 -0.109375 1.140625 -0.59375 1.140625 -1.1875 C 1.140625 -1.59375 1.34375 -2.5625 1.671875 -3.171875 C 1.984375 -3.734375 2.53125 -4.171875 3.078125 -4.171875 C 3.40625 -4.171875 3.796875 -4.03125 3.921875 -3.765625 C 3.765625 -3.765625 3.625 -3.765625 3.5 -3.625 C 3.328125 -3.484375 3.3125 -3.3125 3.3125 -3.25 C 3.3125 -3 3.5 -2.890625 3.6875 -2.890625 C 3.96875 -2.890625 4.234375 -3.140625 4.234375 -3.53125 C 4.234375 -4.015625 3.765625 -4.390625 3.0625 -4.390625 C 1.71875 -4.390625 0.40625 -2.96875 0.40625 -1.5625 C 0.40625 -0.671875 0.984375 0.109375 2.015625 0.109375 C 3.4375 0.109375 4.265625 -0.9375 4.265625 -1.0625 Z M 4.265625 -1.0625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-4">
|
||||
<path style="stroke:none;" d="M 4.9375 -1.421875 C 4.9375 -1.515625 4.859375 -1.515625 4.828125 -1.515625 C 4.71875 -1.515625 4.71875 -1.484375 4.6875 -1.34375 C 4.515625 -0.6875 4.328125 -0.109375 3.921875 -0.109375 C 3.65625 -0.109375 3.625 -0.359375 3.625 -0.5625 C 3.625 -0.796875 3.65625 -0.875 3.6875 -1.046875 L 5.125 -6.78125 C 5.125 -6.78125 5.125 -6.890625 4.984375 -6.890625 C 4.84375 -6.890625 3.90625 -6.796875 3.734375 -6.78125 C 3.65625 -6.765625 3.59375 -6.71875 3.59375 -6.59375 C 3.59375 -6.46875 3.6875 -6.46875 3.828125 -6.46875 C 4.3125 -6.46875 4.328125 -6.40625 4.328125 -6.296875 L 4.296875 -6.109375 L 3.703125 -3.75 C 3.515625 -4.125 3.234375 -4.390625 2.78125 -4.390625 C 1.625 -4.390625 0.390625 -2.921875 0.390625 -1.484375 C 0.390625 -0.546875 0.9375 0.109375 1.71875 0.109375 C 1.921875 0.109375 2.40625 0.0625 3 -0.640625 C 3.078125 -0.21875 3.4375 0.109375 3.90625 0.109375 C 4.25 0.109375 4.484375 -0.125 4.640625 -0.4375 C 4.8125 -0.796875 4.9375 -1.421875 4.9375 -1.421875 Z M 3.546875 -3.125 L 3.0625 -1.1875 C 3 -1 3 -0.984375 2.859375 -0.8125 C 2.421875 -0.265625 2.015625 -0.109375 1.734375 -0.109375 C 1.234375 -0.109375 1.09375 -0.65625 1.09375 -1.046875 C 1.09375 -1.53125 1.421875 -2.765625 1.640625 -3.21875 C 1.953125 -3.796875 2.40625 -4.171875 2.796875 -4.171875 C 3.4375 -4.171875 3.578125 -3.359375 3.578125 -3.296875 C 3.578125 -3.234375 3.5625 -3.171875 3.546875 -3.125 Z M 3.546875 -3.125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-5">
|
||||
<path style="stroke:none;" d="M 7.34375 -0.203125 C 7.34375 -0.3125 7.234375 -0.3125 7.140625 -0.3125 C 6.734375 -0.3125 6.609375 -0.40625 6.453125 -0.75 L 5.046875 -4.015625 C 5.046875 -4.03125 5 -4.125 5 -4.140625 C 5 -4.140625 5.171875 -4.296875 5.28125 -4.375 L 7.03125 -5.71875 C 7.953125 -6.40625 8.34375 -6.4375 8.640625 -6.46875 C 8.71875 -6.484375 8.828125 -6.484375 8.828125 -6.671875 C 8.828125 -6.703125 8.796875 -6.78125 8.71875 -6.78125 C 8.5 -6.78125 8.25 -6.75 8 -6.75 C 7.65625 -6.75 7.265625 -6.78125 6.90625 -6.78125 C 6.84375 -6.78125 6.71875 -6.78125 6.71875 -6.578125 C 6.71875 -6.515625 6.765625 -6.484375 6.84375 -6.46875 C 7.046875 -6.453125 7.140625 -6.40625 7.140625 -6.265625 C 7.140625 -6.078125 6.84375 -5.859375 6.78125 -5.796875 L 2.921875 -2.828125 L 3.703125 -6.015625 C 3.796875 -6.375 3.8125 -6.46875 4.546875 -6.46875 C 4.796875 -6.46875 4.875 -6.46875 4.875 -6.671875 C 4.875 -6.75 4.796875 -6.78125 4.75 -6.78125 L 3.46875 -6.75 L 2.1875 -6.78125 C 2.125 -6.78125 2 -6.78125 2 -6.59375 C 2 -6.46875 2.078125 -6.46875 2.28125 -6.46875 C 2.40625 -6.46875 2.59375 -6.453125 2.703125 -6.453125 C 2.875 -6.421875 2.921875 -6.40625 2.921875 -6.296875 C 2.921875 -6.25 2.921875 -6.21875 2.890625 -6.109375 L 1.5625 -0.78125 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.484375 -0.3125 0.375 -0.3125 0.375 -0.125 C 0.375 0 0.5 0 0.53125 0 L 1.78125 -0.03125 L 2.421875 -0.015625 C 2.640625 -0.015625 2.859375 0 3.0625 0 C 3.140625 0 3.265625 0 3.265625 -0.203125 C 3.265625 -0.3125 3.171875 -0.3125 2.984375 -0.3125 C 2.625 -0.3125 2.34375 -0.3125 2.34375 -0.484375 C 2.34375 -0.5625 2.40625 -0.78125 2.4375 -0.921875 L 2.828125 -2.484375 L 4.3125 -3.625 L 5.453125 -0.96875 C 5.578125 -0.6875 5.578125 -0.671875 5.578125 -0.609375 C 5.578125 -0.3125 5.15625 -0.3125 5.0625 -0.3125 C 4.953125 -0.3125 4.84375 -0.3125 4.84375 -0.109375 C 4.84375 0 4.984375 0 4.984375 0 C 5.375 0 5.796875 -0.03125 6.1875 -0.03125 C 6.40625 -0.03125 6.9375 0 7.15625 0 C 7.21875 0 7.34375 0 7.34375 -0.203125 Z M 7.34375 -0.203125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-6">
|
||||
<path style="stroke:none;" d="M 3.921875 -1.53125 C 3.921875 -1.890625 3.734375 -2.140625 3.625 -2.265625 C 3.359375 -2.546875 3.0625 -2.59375 2.625 -2.671875 C 2.265625 -2.765625 1.875 -2.828125 1.875 -3.28125 C 1.875 -3.5625 2.109375 -4.171875 2.984375 -4.171875 C 3.234375 -4.171875 3.734375 -4.09375 3.875 -3.703125 C 3.609375 -3.703125 3.40625 -3.484375 3.40625 -3.265625 C 3.40625 -3.125 3.5 -2.96875 3.703125 -2.96875 C 3.921875 -2.96875 4.171875 -3.140625 4.171875 -3.53125 C 4.171875 -3.984375 3.734375 -4.390625 2.984375 -4.390625 C 1.671875 -4.390625 1.3125 -3.375 1.3125 -2.9375 C 1.3125 -2.15625 2.046875 -2.015625 2.328125 -1.953125 C 2.84375 -1.859375 3.359375 -1.75 3.359375 -1.203125 C 3.359375 -0.9375 3.140625 -0.109375 1.9375 -0.109375 C 1.8125 -0.109375 1.046875 -0.109375 0.8125 -0.640625 C 1.1875 -0.578125 1.4375 -0.890625 1.4375 -1.15625 C 1.4375 -1.390625 1.28125 -1.515625 1.078125 -1.515625 C 0.8125 -1.515625 0.515625 -1.296875 0.515625 -0.859375 C 0.515625 -0.28125 1.078125 0.109375 1.9375 0.109375 C 3.546875 0.109375 3.921875 -1.09375 3.921875 -1.53125 Z M 3.921875 -1.53125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-7">
|
||||
<path style="stroke:none;" d="M 4.828125 -3.78125 C 4.859375 -3.921875 4.859375 -3.9375 4.859375 -4.015625 C 4.859375 -4.1875 4.71875 -4.28125 4.578125 -4.28125 C 4.46875 -4.28125 4.3125 -4.21875 4.234375 -4.0625 C 4.203125 -4.015625 4.125 -3.703125 4.09375 -3.53125 L 3.890625 -2.734375 L 3.4375 -0.953125 C 3.40625 -0.796875 2.96875 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.546875 1.703125 -0.90625 C 1.703125 -1.375 1.875 -1.984375 2.21875 -2.859375 C 2.375 -3.265625 2.40625 -3.375 2.40625 -3.578125 C 2.40625 -4.015625 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.828125 -3.875 1.234375 -4.171875 1.5625 -4.171875 C 1.640625 -4.171875 1.8125 -4.171875 1.8125 -3.84375 C 1.8125 -3.609375 1.71875 -3.34375 1.640625 -3.15625 C 1.25 -2.109375 1.078125 -1.53125 1.078125 -1.078125 C 1.078125 -0.1875 1.703125 0.109375 2.28125 0.109375 C 2.671875 0.109375 3 -0.0625 3.28125 -0.34375 C 3.15625 0.171875 3.03125 0.671875 2.640625 1.1875 C 2.375 1.53125 2 1.8125 1.546875 1.8125 C 1.40625 1.8125 0.96875 1.78125 0.796875 1.40625 C 0.953125 1.40625 1.078125 1.40625 1.21875 1.28125 C 1.3125 1.1875 1.421875 1.0625 1.421875 0.875 C 1.421875 0.5625 1.15625 0.53125 1.046875 0.53125 C 0.828125 0.53125 0.5 0.6875 0.5 1.171875 C 0.5 1.671875 0.9375 2.03125 1.546875 2.03125 C 2.5625 2.03125 3.59375 1.125 3.875 0.015625 Z M 4.828125 -3.78125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-8">
|
||||
<path style="stroke:none;" d="M 3.546875 -0.390625 C 3.546875 -0.421875 3.546875 -0.53125 3.453125 -0.53125 C 3.453125 -0.53125 3.40625 -0.53125 3.328125 -0.46875 C 3.015625 -0.28125 2.65625 -0.109375 2.28125 -0.109375 C 1.703125 -0.109375 1.203125 -0.53125 1.203125 -1.40625 C 1.203125 -1.75 1.296875 -2.125 1.3125 -2.25 L 2.953125 -2.25 C 3.109375 -2.25 3.296875 -2.25 3.296875 -2.40625 C 3.296875 -2.546875 3.171875 -2.546875 3 -2.546875 L 1.40625 -2.546875 C 1.640625 -3.390625 2.1875 -3.96875 3.09375 -3.96875 L 3.40625 -3.96875 C 3.578125 -3.96875 3.734375 -3.96875 3.734375 -4.140625 C 3.734375 -4.28125 3.609375 -4.28125 3.4375 -4.28125 L 3.078125 -4.28125 C 1.796875 -4.28125 0.46875 -3.28125 0.46875 -1.765625 C 0.46875 -0.671875 1.203125 0.109375 2.265625 0.109375 C 2.90625 0.109375 3.546875 -0.28125 3.546875 -0.390625 Z M 3.546875 -0.390625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-9">
|
||||
<path style="stroke:none;" d="M 4.328125 -3.734375 C 4.328125 -4.09375 4.015625 -4.390625 3.5 -4.390625 C 2.859375 -4.390625 2.421875 -3.90625 2.234375 -3.625 C 2.15625 -4.0625 1.796875 -4.390625 1.328125 -4.390625 C 0.875 -4.390625 0.6875 -4 0.59375 -3.8125 C 0.421875 -3.484375 0.28125 -2.890625 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.6875 0.9375 -4.171875 1.296875 -4.171875 C 1.46875 -4.171875 1.609375 -4.09375 1.609375 -3.703125 C 1.609375 -3.5 1.578125 -3.390625 1.453125 -2.875 L 0.875 -0.578125 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.078125 0.109375 C 1.1875 0.109375 1.375 0.03125 1.4375 -0.171875 C 1.453125 -0.203125 1.796875 -1.5625 1.828125 -1.734375 L 2.15625 -3.03125 C 2.1875 -3.15625 2.46875 -3.625 2.703125 -3.84375 C 2.78125 -3.90625 3.078125 -4.171875 3.5 -4.171875 C 3.765625 -4.171875 3.921875 -4.046875 3.921875 -4.046875 C 3.625 -4 3.40625 -3.765625 3.40625 -3.5 C 3.40625 -3.34375 3.515625 -3.15625 3.78125 -3.15625 C 4.046875 -3.15625 4.328125 -3.390625 4.328125 -3.734375 Z M 4.328125 -3.734375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-10">
|
||||
<path style="stroke:none;" d="M 5.390625 -1.421875 C 5.390625 -1.515625 5.296875 -1.515625 5.265625 -1.515625 C 5.171875 -1.515625 5.15625 -1.484375 5.125 -1.34375 C 4.984375 -0.78125 4.796875 -0.109375 4.390625 -0.109375 C 4.171875 -0.109375 4.078125 -0.234375 4.078125 -0.5625 C 4.078125 -0.78125 4.203125 -1.25 4.28125 -1.59375 L 4.546875 -2.671875 C 4.578125 -2.8125 4.6875 -3.1875 4.71875 -3.34375 C 4.765625 -3.578125 4.875 -3.953125 4.875 -4.015625 C 4.875 -4.1875 4.734375 -4.28125 4.578125 -4.28125 C 4.53125 -4.28125 4.28125 -4.265625 4.203125 -3.921875 L 3.453125 -0.9375 C 3.4375 -0.90625 3.046875 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.5625 1.703125 -0.921875 C 1.703125 -1.484375 1.984375 -2.265625 2.25 -2.953125 C 2.359375 -3.25 2.40625 -3.390625 2.40625 -3.578125 C 2.40625 -4.015625 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.8125 -3.796875 1.1875 -4.171875 1.5625 -4.171875 C 1.65625 -4.171875 1.8125 -4.15625 1.8125 -3.84375 C 1.8125 -3.609375 1.703125 -3.3125 1.640625 -3.171875 C 1.28125 -2.1875 1.078125 -1.5625 1.078125 -1.078125 C 1.078125 -0.140625 1.75 0.109375 2.296875 0.109375 C 2.953125 0.109375 3.296875 -0.34375 3.46875 -0.5625 C 3.578125 -0.15625 3.921875 0.109375 4.359375 0.109375 C 4.703125 0.109375 4.9375 -0.125 5.09375 -0.4375 C 5.265625 -0.796875 5.390625 -1.421875 5.390625 -1.421875 Z M 5.390625 -1.421875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph1-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph1-1">
|
||||
<path style="stroke:none;" d="M 11.546875 -4.265625 C 11.546875 -4.578125 11.265625 -4.578125 11.015625 -4.578125 L 6.46875 -4.578125 L 6.46875 -9.125 C 6.46875 -9.375 6.46875 -9.65625 6.171875 -9.65625 C 5.875 -9.65625 5.875 -9.390625 5.875 -9.125 L 5.875 -4.578125 L 1.328125 -4.578125 C 1.078125 -4.578125 0.796875 -4.578125 0.796875 -4.296875 C 0.796875 -3.984375 1.0625 -3.984375 1.328125 -3.984375 L 5.875 -3.984375 L 5.875 0.5625 C 5.875 0.8125 5.875 1.09375 6.15625 1.09375 C 6.46875 1.09375 6.46875 0.828125 6.46875 0.5625 L 6.46875 -3.984375 L 11.015625 -3.984375 C 11.25 -3.984375 11.546875 -3.984375 11.546875 -4.265625 Z M 11.546875 -4.265625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-1">
|
||||
<path style="stroke:none;" d="M 6.890625 -2.484375 C 6.890625 -2.671875 6.703125 -2.671875 6.5625 -2.671875 L 1.15625 -2.671875 C 1.015625 -2.671875 0.828125 -2.671875 0.828125 -2.484375 C 0.828125 -2.28125 1.015625 -2.28125 1.15625 -2.28125 L 6.5625 -2.28125 C 6.703125 -2.28125 6.890625 -2.28125 6.890625 -2.484375 Z M 6.890625 -2.484375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-1">
|
||||
<path style="stroke:none;" d="M 3.28125 2.375 C 3.28125 2.34375 3.28125 2.328125 3.109375 2.15625 C 1.875 0.90625 1.5625 -0.96875 1.5625 -2.484375 C 1.5625 -4.203125 1.9375 -5.9375 3.15625 -7.171875 C 3.28125 -7.296875 3.28125 -7.3125 3.28125 -7.34375 C 3.28125 -7.40625 3.25 -7.4375 3.1875 -7.4375 C 3.078125 -7.4375 2.1875 -6.765625 1.609375 -5.5 C 1.09375 -4.421875 0.984375 -3.3125 0.984375 -2.484375 C 0.984375 -1.703125 1.09375 -0.5 1.640625 0.609375 C 2.234375 1.828125 3.078125 2.484375 3.1875 2.484375 C 3.25 2.484375 3.28125 2.453125 3.28125 2.375 Z M 3.28125 2.375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-2">
|
||||
<path style="stroke:none;" d="M 2.875 -2.484375 C 2.875 -3.25 2.765625 -4.453125 2.21875 -5.578125 C 1.625 -6.796875 0.765625 -7.4375 0.671875 -7.4375 C 0.609375 -7.4375 0.5625 -7.40625 0.5625 -7.34375 C 0.5625 -7.3125 0.5625 -7.296875 0.75 -7.109375 C 1.71875 -6.125 2.296875 -4.546875 2.296875 -2.484375 C 2.296875 -0.78125 1.921875 0.96875 0.6875 2.21875 C 0.5625 2.328125 0.5625 2.34375 0.5625 2.375 C 0.5625 2.4375 0.609375 2.484375 0.671875 2.484375 C 0.765625 2.484375 1.65625 1.8125 2.25 0.546875 C 2.75 -0.546875 2.875 -1.640625 2.875 -2.484375 Z M 2.875 -2.484375 "/>
|
||||
</symbol>
|
||||
</g>
|
||||
<clipPath id="clip1">
|
||||
<path d="M 0.0898438 110 L 87 110 L 87 112 L 0.0898438 112 Z M 0.0898438 110 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip2">
|
||||
<path d="M 0.0898438 31 L 87 31 L 87 61 L 0.0898438 61 Z M 0.0898438 31 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip3">
|
||||
<path d="M 4 49 L 32 49 L 32 112.179688 L 4 112.179688 Z M 4 49 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip4">
|
||||
<path d="M 53 91 L 85 91 L 85 112.179688 L 53 112.179688 Z M 53 91 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip5">
|
||||
<path d="M 78 84 L 111 84 L 111 112.179688 L 78 112.179688 Z M 78 84 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip6">
|
||||
<path d="M 94 3 L 136.277344 3 L 136.277344 52 L 94 52 Z M 94 3 "/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
<g id="surface1">
|
||||
<g clip-path="url(#clip1)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -42.519075 0.00153661 L 42.520697 0.00153661 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
</g>
|
||||
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 1.085938 60.347656 L 1.085938 32.101562 L 85.816406 32.101562 L 85.816406 60.347656 Z M 1.085938 60.347656 "/>
|
||||
<g clip-path="url(#clip2)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -42.519075 51.023048 L -42.519075 79.372252 L 42.520697 79.372252 L 42.520697 51.023048 Z M -42.519075 51.023048 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-1" x="39.092273" y="48.362455"/>
|
||||
</g>
|
||||
<g clip-path="url(#clip3)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -25.511905 0.00153661 L -25.511905 5.670593 L -28.001428 7.164308 L -23.022381 10.151736 L -28.001428 13.143085 L -23.022381 16.130513 L -28.001428 19.117941 L -23.022381 22.10929 L -28.001428 25.096718 L -23.022381 28.084147 L -28.001428 31.075495 L -23.022381 34.062924 L -28.001428 37.050352 L -23.022381 40.041701 L -28.001428 43.029129 L -25.511905 44.522843 L -25.511905 51.023048 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-2" x="6.020998" y="89.212335"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.37752 29.197571 L 6.37752 23.618686 L -6.375898 23.618686 L -6.375898 29.197571 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 3.586117 27.405898 L -3.588415 27.405898 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -0.00114916 0.00153661 L -0.00114916 23.618686 M -0.00114916 27.405898 L -0.00114916 51.023048 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-3" x="26.975504" y="87.903114"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 22.678999 32.600574 L 22.678999 18.424011 L 28.348055 18.424011 L 28.348055 32.600574 Z M 22.678999 32.600574 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 25.513527 4.631658 L 25.513527 17.926106 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 68.871094 109.773438 L 70.546875 105.34375 L 68.871094 106.816406 L 67.191406 105.34375 Z M 68.871094 109.773438 "/>
|
||||
<g clip-path="url(#clip4)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.055219 0.001157 L 1.609362 1.683056 L 3.087394 0.001157 L 1.609362 -1.684662 Z M 6.055219 0.001157 " transform="matrix(0,0.996363,0.996363,0,68.869941,103.740242)"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 25.513527 46.389006 L 25.513527 33.098478 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.051593 -0.001157 L 1.609656 1.684662 L 3.087688 -0.001157 L 1.609656 -1.683056 Z M 6.051593 -0.001157 " transform="matrix(0,-0.996363,-0.996363,0,68.869941,67.791302)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-dasharray:2.98883,2.98883;stroke-miterlimit:10;" d="M 42.520697 0.00153661 L 56.693339 0.00153661 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 51.024283 0.00153661 L 51.024283 9.540136 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 94.289062 98.476562 L 92.613281 102.90625 L 94.289062 101.433594 L 95.964844 102.90625 Z M 94.289062 98.476562 "/>
|
||||
<g clip-path="url(#clip5)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053644 0.000487339 L 1.607786 1.682386 L 3.085818 0.000487339 L 1.607786 -1.681411 Z M 6.053644 0.000487339 " transform="matrix(0,-0.996363,-0.996363,0,94.289548,104.508189)"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-4" x="98.093891" y="107.761622"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(59.999084%,59.999084%,59.999084%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 34.017112 79.372252 L 42.520697 79.372252 L 42.520697 87.875838 L 34.017112 87.875838 Z M 34.017112 79.372252 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 34.017112 87.875838 L 42.520697 79.372252 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill:none;stroke-width:0.79701;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 42.520697 87.875838 L 34.017112 79.372252 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 128.265625 27.867188 C 128.265625 22.382812 123.820312 17.941406 118.335938 17.941406 C 112.855469 17.941406 108.410156 22.382812 108.410156 27.867188 C 108.410156 33.347656 112.855469 37.792969 118.335938 37.792969 C 123.820312 37.792969 128.265625 33.347656 128.265625 27.867188 Z M 128.265625 27.867188 "/>
|
||||
<g clip-path="url(#clip6)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 85.124875 83.622085 C 85.124875 89.12648 80.663335 93.5841 75.158939 93.5841 C 69.658465 93.5841 65.196925 89.12648 65.196925 83.622085 C 65.196925 78.12161 69.658465 73.66007 75.158939 73.66007 C 80.663335 73.66007 85.124875 78.12161 85.124875 83.622085 Z M 85.124875 83.622085 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph1-1" x="112.162534" y="32.01812"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-1" x="98.703665" y="25.05454"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 58.151769 33.478768 L 92.17003 33.478768 L 92.17003 61.824052 L 58.151769 61.824052 Z M 58.151769 33.478768 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-5" x="107.579265" y="66.190376"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="116.719897" y="66.190376"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-6" x="120.579807" y="66.190376"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="125.232821" y="66.190376"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 42.520697 83.622085 L 60.562882 83.622085 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.05205 -0.00109515 L 1.610113 1.684724 L 3.088145 -0.00109515 L 1.610113 -1.682994 Z M 6.05205 -0.00109515 " transform="matrix(0.996363,0,0,-0.996363,100.966056,27.866096)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-7" x="89.619825" y="22.132208"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 75.158939 73.66007 L 75.158939 66.955999 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.052769 -0.00155053 L 1.606911 1.684269 L 3.088864 -0.00155053 L 1.606911 -1.683449 Z M 6.052769 -0.00155053 " transform="matrix(0,0.996363,0.996363,0,118.337482,41.645027)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-8" x="122.141107" y="45.285687"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 75.158939 98.218142 L 75.158939 110.595191 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.054706 -0.00155053 L 1.608848 1.684269 L 3.08688 -0.00155053 L 1.608848 -1.683449 Z M 6.054706 -0.00155053 " transform="matrix(0,0.996363,0.996363,0,118.337482,10.49466)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-9" x="122.141107" y="9.07288"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 75.158939 32.976942 L 75.158939 25.512292 L 33.864212 25.512292 " transform="matrix(0.996363,0,0,-0.996363,43.450364,111.185125)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.054125 -0.000142267 L 1.608268 1.681756 L 3.0863 -0.000142267 L 1.608268 -1.682041 Z M 6.054125 -0.000142267 " transform="matrix(-0.996363,0,0,0.996363,80.020387,85.765767)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-10" x="76.380155" y="81.960807"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 30 KiB |
BIN
figs/open_loop_shaping.pdf
Normal file
BIN
figs/open_loop_shaping.png
Normal file
After Width: | Height: | Size: 8.8 KiB |
192
figs/open_loop_shaping.svg
Normal file
@ -0,0 +1,192 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="182.654pt" height="78.934pt" viewBox="0 0 182.654 78.934" version="1.2">
|
||||
<defs>
|
||||
<g>
|
||||
<symbol overflow="visible" id="glyph0-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph0-1">
|
||||
<path style="stroke:none;" d="M 11.5625 -4.28125 C 11.5625 -4.59375 11.296875 -4.59375 11.03125 -4.59375 L 6.484375 -4.59375 L 6.484375 -9.140625 C 6.484375 -9.390625 6.484375 -9.671875 6.1875 -9.671875 C 5.875 -9.671875 5.875 -9.40625 5.875 -9.140625 L 5.875 -4.59375 L 1.328125 -4.59375 C 1.078125 -4.59375 0.796875 -4.59375 0.796875 -4.296875 C 0.796875 -3.984375 1.0625 -3.984375 1.328125 -3.984375 L 5.875 -3.984375 L 5.875 0.5625 C 5.875 0.8125 5.875 1.09375 6.171875 1.09375 C 6.484375 1.09375 6.484375 0.828125 6.484375 0.5625 L 6.484375 -3.984375 L 11.03125 -3.984375 C 11.28125 -3.984375 11.5625 -3.984375 11.5625 -4.28125 Z M 11.5625 -4.28125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph1-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph1-1">
|
||||
<path style="stroke:none;" d="M 6.890625 -2.484375 C 6.890625 -2.6875 6.703125 -2.6875 6.5625 -2.6875 L 1.15625 -2.6875 C 1.015625 -2.6875 0.828125 -2.6875 0.828125 -2.484375 C 0.828125 -2.28125 1.015625 -2.28125 1.15625 -2.28125 L 6.5625 -2.28125 C 6.703125 -2.28125 6.890625 -2.28125 6.890625 -2.484375 Z M 6.890625 -2.484375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-1">
|
||||
<path style="stroke:none;" d="M 7.359375 -0.203125 C 7.359375 -0.3125 7.25 -0.3125 7.15625 -0.3125 C 6.75 -0.3125 6.625 -0.40625 6.46875 -0.75 L 5.0625 -4.015625 C 5.046875 -4.046875 5.015625 -4.125 5.015625 -4.15625 C 5.015625 -4.15625 5.1875 -4.296875 5.296875 -4.375 L 7.03125 -5.71875 C 7.96875 -6.40625 8.359375 -6.453125 8.65625 -6.484375 C 8.734375 -6.484375 8.828125 -6.5 8.828125 -6.671875 C 8.828125 -6.71875 8.796875 -6.78125 8.71875 -6.78125 C 8.5 -6.78125 8.265625 -6.75 8.015625 -6.75 C 7.65625 -6.75 7.28125 -6.78125 6.921875 -6.78125 C 6.84375 -6.78125 6.734375 -6.78125 6.734375 -6.59375 C 6.734375 -6.515625 6.78125 -6.484375 6.84375 -6.484375 C 7.0625 -6.453125 7.15625 -6.40625 7.15625 -6.265625 C 7.15625 -6.09375 6.859375 -5.859375 6.796875 -5.8125 L 2.921875 -2.828125 L 3.71875 -6.015625 C 3.8125 -6.375 3.828125 -6.484375 4.546875 -6.484375 C 4.796875 -6.484375 4.890625 -6.484375 4.890625 -6.671875 C 4.890625 -6.765625 4.8125 -6.78125 4.75 -6.78125 L 3.484375 -6.75 L 2.203125 -6.78125 C 2.125 -6.78125 2 -6.78125 2 -6.59375 C 2 -6.484375 2.09375 -6.484375 2.28125 -6.484375 C 2.421875 -6.484375 2.59375 -6.46875 2.71875 -6.453125 C 2.875 -6.4375 2.9375 -6.40625 2.9375 -6.296875 C 2.9375 -6.265625 2.921875 -6.234375 2.890625 -6.109375 L 1.5625 -0.78125 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.484375 -0.3125 0.375 -0.3125 0.375 -0.125 C 0.375 0 0.5 0 0.53125 0 L 1.78125 -0.03125 L 2.421875 -0.015625 C 2.640625 -0.015625 2.859375 0 3.078125 0 C 3.140625 0 3.265625 0 3.265625 -0.203125 C 3.265625 -0.3125 3.1875 -0.3125 2.984375 -0.3125 C 2.625 -0.3125 2.34375 -0.3125 2.34375 -0.484375 C 2.34375 -0.5625 2.40625 -0.78125 2.4375 -0.921875 L 2.828125 -2.484375 L 4.3125 -3.640625 L 5.46875 -0.96875 C 5.578125 -0.703125 5.578125 -0.671875 5.578125 -0.609375 C 5.578125 -0.3125 5.15625 -0.3125 5.0625 -0.3125 C 4.953125 -0.3125 4.84375 -0.3125 4.84375 -0.109375 C 4.84375 0 4.984375 0 4.984375 0 C 5.390625 0 5.796875 -0.03125 6.203125 -0.03125 C 6.421875 -0.03125 6.953125 0 7.171875 0 C 7.21875 0 7.359375 0 7.359375 -0.203125 Z M 7.359375 -0.203125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-2">
|
||||
<path style="stroke:none;" d="M 3.9375 -1.546875 C 3.9375 -1.890625 3.75 -2.140625 3.625 -2.265625 C 3.359375 -2.546875 3.078125 -2.59375 2.640625 -2.6875 C 2.28125 -2.765625 1.875 -2.828125 1.875 -3.28125 C 1.875 -3.5625 2.109375 -4.171875 2.984375 -4.171875 C 3.234375 -4.171875 3.734375 -4.109375 3.890625 -3.71875 C 3.609375 -3.703125 3.40625 -3.484375 3.40625 -3.265625 C 3.40625 -3.125 3.5 -2.984375 3.71875 -2.984375 C 3.9375 -2.984375 4.171875 -3.15625 4.171875 -3.53125 C 4.171875 -3.984375 3.75 -4.390625 2.984375 -4.390625 C 1.671875 -4.390625 1.3125 -3.375 1.3125 -2.9375 C 1.3125 -2.171875 2.046875 -2.015625 2.328125 -1.953125 C 2.859375 -1.859375 3.375 -1.75 3.375 -1.203125 C 3.375 -0.9375 3.140625 -0.109375 1.953125 -0.109375 C 1.8125 -0.109375 1.046875 -0.109375 0.8125 -0.640625 C 1.1875 -0.59375 1.4375 -0.890625 1.4375 -1.15625 C 1.4375 -1.390625 1.28125 -1.515625 1.078125 -1.515625 C 0.8125 -1.515625 0.515625 -1.296875 0.515625 -0.859375 C 0.515625 -0.28125 1.078125 0.109375 1.9375 0.109375 C 3.546875 0.109375 3.9375 -1.09375 3.9375 -1.546875 Z M 3.9375 -1.546875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-3">
|
||||
<path style="stroke:none;" d="M 7.171875 -2.609375 C 7.171875 -2.671875 7.109375 -2.71875 7.03125 -2.71875 C 6.8125 -2.71875 6.21875 -2.6875 6 -2.6875 L 4.59375 -2.71875 C 4.515625 -2.71875 4.390625 -2.71875 4.390625 -2.515625 C 4.390625 -2.40625 4.46875 -2.40625 4.6875 -2.40625 C 4.6875 -2.40625 4.984375 -2.40625 5.21875 -2.390625 C 5.46875 -2.359375 5.53125 -2.328125 5.53125 -2.203125 C 5.53125 -2.109375 5.421875 -1.65625 5.3125 -1.296875 C 5.03125 -0.203125 3.75 -0.09375 3.40625 -0.09375 C 2.4375 -0.09375 1.40625 -0.65625 1.40625 -2.171875 C 1.40625 -2.484375 1.5 -4.125 2.546875 -5.421875 C 3.078125 -6.09375 4.046875 -6.703125 5.03125 -6.703125 C 6.046875 -6.703125 6.625 -5.9375 6.625 -4.78125 C 6.625 -4.375 6.59375 -4.375 6.59375 -4.265625 C 6.59375 -4.171875 6.703125 -4.171875 6.75 -4.171875 C 6.875 -4.171875 6.875 -4.1875 6.921875 -4.375 L 7.546875 -6.90625 C 7.546875 -6.9375 7.53125 -7 7.4375 -7 C 7.40625 -7 7.40625 -7 7.296875 -6.890625 L 6.59375 -6.125 C 6.515625 -6.265625 6.046875 -7 4.953125 -7 C 2.734375 -7 0.5 -4.8125 0.5 -2.5 C 0.5 -0.921875 1.59375 0.21875 3.203125 0.21875 C 3.640625 0.21875 4.09375 0.125 4.453125 -0.015625 C 4.953125 -0.21875 5.140625 -0.421875 5.3125 -0.625 C 5.40625 -0.375 5.671875 -0.015625 5.765625 -0.015625 C 5.8125 -0.015625 5.828125 -0.046875 5.828125 -0.046875 C 5.859375 -0.0625 5.953125 -0.453125 6 -0.65625 L 6.1875 -1.421875 C 6.234375 -1.59375 6.28125 -1.765625 6.3125 -1.921875 C 6.421875 -2.375 6.4375 -2.390625 7 -2.40625 C 7.0625 -2.40625 7.171875 -2.421875 7.171875 -2.609375 Z M 7.171875 -2.609375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-4">
|
||||
<path style="stroke:none;" d="M 4.328125 -3.75 C 4.328125 -4.09375 4.015625 -4.390625 3.515625 -4.390625 C 2.859375 -4.390625 2.421875 -3.90625 2.234375 -3.625 C 2.15625 -4.078125 1.796875 -4.390625 1.328125 -4.390625 C 0.875 -4.390625 0.6875 -4 0.59375 -3.828125 C 0.421875 -3.484375 0.28125 -2.890625 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.765625 0.578125 -2.984375 C 0.75 -3.703125 0.9375 -4.171875 1.296875 -4.171875 C 1.46875 -4.171875 1.609375 -4.09375 1.609375 -3.71875 C 1.609375 -3.515625 1.578125 -3.40625 1.453125 -2.875 L 0.875 -0.59375 C 0.84375 -0.4375 0.78125 -0.203125 0.78125 -0.15625 C 0.78125 0.015625 0.921875 0.109375 1.078125 0.109375 C 1.1875 0.109375 1.375 0.03125 1.4375 -0.171875 C 1.453125 -0.203125 1.796875 -1.5625 1.84375 -1.734375 L 2.15625 -3.03125 C 2.203125 -3.15625 2.46875 -3.625 2.71875 -3.84375 C 2.796875 -3.921875 3.078125 -4.171875 3.515625 -4.171875 C 3.765625 -4.171875 3.921875 -4.046875 3.921875 -4.046875 C 3.625 -4 3.40625 -3.765625 3.40625 -3.515625 C 3.40625 -3.34375 3.515625 -3.15625 3.78125 -3.15625 C 4.046875 -3.15625 4.328125 -3.390625 4.328125 -3.75 Z M 4.328125 -3.75 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-5">
|
||||
<path style="stroke:none;" d="M 3.5625 -0.390625 C 3.5625 -0.421875 3.546875 -0.53125 3.453125 -0.53125 C 3.453125 -0.53125 3.421875 -0.53125 3.328125 -0.484375 C 3.015625 -0.28125 2.65625 -0.109375 2.28125 -0.109375 C 1.703125 -0.109375 1.21875 -0.53125 1.21875 -1.40625 C 1.21875 -1.75 1.296875 -2.125 1.328125 -2.25 L 2.96875 -2.25 C 3.125 -2.25 3.296875 -2.25 3.296875 -2.421875 C 3.296875 -2.546875 3.1875 -2.546875 3.015625 -2.546875 L 1.40625 -2.546875 C 1.640625 -3.40625 2.203125 -3.96875 3.09375 -3.96875 L 3.40625 -3.96875 C 3.578125 -3.96875 3.734375 -3.96875 3.734375 -4.140625 C 3.734375 -4.28125 3.609375 -4.28125 3.4375 -4.28125 L 3.09375 -4.28125 C 1.796875 -4.28125 0.46875 -3.296875 0.46875 -1.765625 C 0.46875 -0.671875 1.21875 0.109375 2.265625 0.109375 C 2.90625 0.109375 3.5625 -0.28125 3.5625 -0.390625 Z M 3.5625 -0.390625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-6">
|
||||
<path style="stroke:none;" d="M 5.390625 -1.421875 C 5.390625 -1.515625 5.3125 -1.515625 5.28125 -1.515625 C 5.171875 -1.515625 5.171875 -1.484375 5.140625 -1.34375 C 5 -0.78125 4.8125 -0.109375 4.390625 -0.109375 C 4.1875 -0.109375 4.078125 -0.234375 4.078125 -0.5625 C 4.078125 -0.78125 4.203125 -1.25 4.28125 -1.59375 L 4.5625 -2.671875 C 4.59375 -2.828125 4.6875 -3.203125 4.734375 -3.34375 C 4.78125 -3.578125 4.875 -3.953125 4.875 -4.015625 C 4.875 -4.1875 4.734375 -4.28125 4.59375 -4.28125 C 4.546875 -4.28125 4.28125 -4.265625 4.203125 -3.9375 L 3.453125 -0.9375 C 3.453125 -0.90625 3.046875 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.5625 1.703125 -0.921875 C 1.703125 -1.484375 1.984375 -2.265625 2.25 -2.953125 C 2.359375 -3.25 2.421875 -3.390625 2.421875 -3.578125 C 2.421875 -4.03125 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.8125 -3.8125 1.1875 -4.171875 1.5625 -4.171875 C 1.65625 -4.171875 1.8125 -4.15625 1.8125 -3.84375 C 1.8125 -3.609375 1.703125 -3.3125 1.65625 -3.171875 C 1.28125 -2.1875 1.078125 -1.5625 1.078125 -1.078125 C 1.078125 -0.140625 1.765625 0.109375 2.296875 0.109375 C 2.953125 0.109375 3.3125 -0.34375 3.484375 -0.5625 C 3.59375 -0.15625 3.9375 0.109375 4.359375 0.109375 C 4.703125 0.109375 4.9375 -0.125 5.09375 -0.4375 C 5.265625 -0.796875 5.390625 -1.421875 5.390625 -1.421875 Z M 5.390625 -1.421875 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-7">
|
||||
<path style="stroke:none;" d="M 4.828125 -3.78125 C 4.875 -3.921875 4.875 -3.9375 4.875 -4.015625 C 4.875 -4.1875 4.734375 -4.28125 4.578125 -4.28125 C 4.484375 -4.28125 4.328125 -4.21875 4.234375 -4.078125 C 4.21875 -4.03125 4.140625 -3.71875 4.09375 -3.53125 L 3.890625 -2.75 L 3.453125 -0.953125 C 3.40625 -0.8125 2.984375 -0.109375 2.328125 -0.109375 C 1.8125 -0.109375 1.703125 -0.546875 1.703125 -0.921875 C 1.703125 -1.375 1.875 -1.984375 2.21875 -2.859375 C 2.375 -3.265625 2.421875 -3.375 2.421875 -3.578125 C 2.421875 -4.03125 2.09375 -4.390625 1.59375 -4.390625 C 0.65625 -4.390625 0.28125 -2.953125 0.28125 -2.859375 C 0.28125 -2.765625 0.40625 -2.765625 0.40625 -2.765625 C 0.5 -2.765625 0.515625 -2.78125 0.5625 -2.9375 C 0.828125 -3.875 1.234375 -4.171875 1.5625 -4.171875 C 1.65625 -4.171875 1.8125 -4.171875 1.8125 -3.859375 C 1.8125 -3.609375 1.71875 -3.34375 1.65625 -3.15625 C 1.25 -2.109375 1.078125 -1.546875 1.078125 -1.078125 C 1.078125 -0.1875 1.703125 0.109375 2.28125 0.109375 C 2.671875 0.109375 3.015625 -0.0625 3.296875 -0.34375 C 3.15625 0.171875 3.046875 0.671875 2.640625 1.1875 C 2.390625 1.53125 2 1.8125 1.546875 1.8125 C 1.40625 1.8125 0.96875 1.78125 0.796875 1.40625 C 0.953125 1.40625 1.078125 1.40625 1.21875 1.28125 C 1.328125 1.1875 1.421875 1.0625 1.421875 0.875 C 1.421875 0.5625 1.15625 0.53125 1.046875 0.53125 C 0.828125 0.53125 0.5 0.6875 0.5 1.171875 C 0.5 1.671875 0.9375 2.03125 1.546875 2.03125 C 2.578125 2.03125 3.59375 1.140625 3.875 0.015625 Z M 4.828125 -3.78125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph2-8">
|
||||
<path style="stroke:none;" d="M 6.390625 -2.453125 C 6.390625 -2.5 6.359375 -2.5625 6.265625 -2.5625 C 6.1875 -2.5625 6.171875 -2.515625 6.109375 -2.359375 C 5.765625 -1.4375 5.328125 -0.3125 3.609375 -0.3125 L 2.671875 -0.3125 C 2.53125 -0.3125 2.515625 -0.3125 2.453125 -0.3125 C 2.359375 -0.328125 2.328125 -0.34375 2.328125 -0.421875 C 2.328125 -0.453125 2.328125 -0.46875 2.375 -0.640625 L 3.71875 -6.015625 C 3.8125 -6.375 3.828125 -6.484375 4.765625 -6.484375 C 5.0625 -6.484375 5.140625 -6.484375 5.140625 -6.671875 C 5.140625 -6.78125 5.03125 -6.78125 4.984375 -6.78125 L 3.515625 -6.75 L 2.203125 -6.78125 C 2.125 -6.78125 2 -6.78125 2 -6.59375 C 2 -6.484375 2.09375 -6.484375 2.28125 -6.484375 C 2.28125 -6.484375 2.5 -6.484375 2.65625 -6.453125 C 2.84375 -6.4375 2.9375 -6.421875 2.9375 -6.296875 C 2.9375 -6.265625 2.921875 -6.234375 2.890625 -6.109375 L 1.5625 -0.78125 C 1.453125 -0.390625 1.4375 -0.3125 0.65625 -0.3125 C 0.484375 -0.3125 0.390625 -0.3125 0.390625 -0.109375 C 0.390625 0 0.484375 0 0.65625 0 L 5.25 0 C 5.5 0 5.5 0 5.5625 -0.171875 L 6.34375 -2.3125 C 6.390625 -2.421875 6.390625 -2.453125 6.390625 -2.453125 Z M 6.390625 -2.453125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-0">
|
||||
<path style="stroke:none;" d=""/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-1">
|
||||
<path style="stroke:none;" d="M 3.296875 2.390625 C 3.296875 2.359375 3.296875 2.328125 3.125 2.171875 C 1.875 0.921875 1.5625 -0.96875 1.5625 -2.484375 C 1.5625 -4.21875 1.9375 -5.9375 3.15625 -7.1875 C 3.296875 -7.296875 3.296875 -7.328125 3.296875 -7.359375 C 3.296875 -7.421875 3.25 -7.453125 3.1875 -7.453125 C 3.09375 -7.453125 2.203125 -6.78125 1.609375 -5.515625 C 1.109375 -4.421875 0.984375 -3.3125 0.984375 -2.484375 C 0.984375 -1.703125 1.09375 -0.5 1.640625 0.609375 C 2.234375 1.84375 3.09375 2.484375 3.1875 2.484375 C 3.25 2.484375 3.296875 2.453125 3.296875 2.390625 Z M 3.296875 2.390625 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-2">
|
||||
<path style="stroke:none;" d="M 2.875 -2.484375 C 2.875 -3.265625 2.765625 -4.46875 2.21875 -5.578125 C 1.625 -6.8125 0.765625 -7.453125 0.671875 -7.453125 C 0.609375 -7.453125 0.5625 -7.40625 0.5625 -7.359375 C 0.5625 -7.328125 0.5625 -7.296875 0.75 -7.125 C 1.734375 -6.140625 2.296875 -4.5625 2.296875 -2.484375 C 2.296875 -0.78125 1.921875 0.96875 0.703125 2.21875 C 0.5625 2.328125 0.5625 2.359375 0.5625 2.390625 C 0.5625 2.4375 0.609375 2.484375 0.671875 2.484375 C 0.765625 2.484375 1.65625 1.8125 2.25 0.546875 C 2.75 -0.546875 2.875 -1.65625 2.875 -2.484375 Z M 2.875 -2.484375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-3">
|
||||
<path style="stroke:none;" d="M 6.609375 -2.3125 C 6.609375 -2.421875 6.609375 -2.484375 6.484375 -2.484375 C 6.375 -2.484375 6.375 -2.421875 6.359375 -2.328125 C 6.28125 -0.90625 5.21875 -0.09375 4.140625 -0.09375 C 3.53125 -0.09375 1.578125 -0.421875 1.578125 -3.390625 C 1.578125 -6.359375 3.515625 -6.703125 4.125 -6.703125 C 5.203125 -6.703125 6.09375 -5.796875 6.296875 -4.34375 C 6.3125 -4.203125 6.3125 -4.171875 6.453125 -4.171875 C 6.609375 -4.171875 6.609375 -4.203125 6.609375 -4.40625 L 6.609375 -6.765625 C 6.609375 -6.9375 6.609375 -7 6.5 -7 C 6.453125 -7 6.421875 -7 6.34375 -6.890625 L 5.84375 -6.15625 C 5.46875 -6.515625 4.96875 -7 4.015625 -7 C 2.15625 -7 0.5625 -5.421875 0.5625 -3.40625 C 0.5625 -1.34375 2.171875 0.21875 4.015625 0.21875 C 5.640625 0.21875 6.609375 -1.15625 6.609375 -2.3125 Z M 6.609375 -2.3125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-4">
|
||||
<path style="stroke:none;" d="M 4.6875 -2.125 C 4.6875 -3.40625 3.6875 -4.453125 2.484375 -4.453125 C 1.25 -4.453125 0.28125 -3.375 0.28125 -2.125 C 0.28125 -0.84375 1.3125 0.109375 2.46875 0.109375 C 3.671875 0.109375 4.6875 -0.859375 4.6875 -2.125 Z M 3.859375 -2.203125 C 3.859375 -1.84375 3.859375 -1.3125 3.640625 -0.875 C 3.421875 -0.421875 2.984375 -0.140625 2.484375 -0.140625 C 2.0625 -0.140625 1.625 -0.34375 1.34375 -0.8125 C 1.109375 -1.25 1.109375 -1.84375 1.109375 -2.203125 C 1.109375 -2.59375 1.109375 -3.125 1.34375 -3.5625 C 1.609375 -4.03125 2.078125 -4.234375 2.46875 -4.234375 C 2.90625 -4.234375 3.34375 -4.015625 3.59375 -3.59375 C 3.859375 -3.15625 3.859375 -2.578125 3.859375 -2.203125 Z M 3.859375 -2.203125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-5">
|
||||
<path style="stroke:none;" d="M 5.3125 0 L 5.3125 -0.3125 C 4.796875 -0.3125 4.546875 -0.3125 4.546875 -0.609375 L 4.546875 -2.5 C 4.546875 -3.359375 4.546875 -3.671875 4.234375 -4.03125 C 4.09375 -4.1875 3.765625 -4.390625 3.1875 -4.390625 C 2.46875 -4.390625 2 -3.96875 1.71875 -3.34375 L 1.71875 -4.390625 L 0.3125 -4.28125 L 0.3125 -3.96875 C 1.015625 -3.96875 1.09375 -3.90625 1.09375 -3.421875 L 1.09375 -0.75 C 1.09375 -0.3125 0.984375 -0.3125 0.3125 -0.3125 L 0.3125 0 L 1.4375 -0.03125 L 2.546875 0 L 2.546875 -0.3125 C 1.890625 -0.3125 1.78125 -0.3125 1.78125 -0.75 L 1.78125 -2.578125 C 1.78125 -3.625 2.484375 -4.171875 3.125 -4.171875 C 3.75 -4.171875 3.859375 -3.640625 3.859375 -3.078125 L 3.859375 -0.75 C 3.859375 -0.3125 3.75 -0.3125 3.078125 -0.3125 L 3.078125 0 L 4.203125 -0.03125 Z M 5.3125 0 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-6">
|
||||
<path style="stroke:none;" d="M 3.296875 -1.234375 L 3.296875 -1.796875 L 3.046875 -1.796875 L 3.046875 -1.25 C 3.046875 -0.515625 2.75 -0.140625 2.390625 -0.140625 C 1.71875 -0.140625 1.71875 -1.046875 1.71875 -1.21875 L 1.71875 -3.96875 L 3.140625 -3.96875 L 3.140625 -4.28125 L 1.71875 -4.28125 L 1.71875 -6.109375 L 1.46875 -6.109375 C 1.453125 -5.296875 1.15625 -4.234375 0.1875 -4.1875 L 0.1875 -3.96875 L 1.03125 -3.96875 L 1.03125 -1.234375 C 1.03125 -0.015625 1.953125 0.109375 2.3125 0.109375 C 3.015625 0.109375 3.296875 -0.59375 3.296875 -1.234375 Z M 3.296875 -1.234375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-7">
|
||||
<path style="stroke:none;" d="M 3.625 -3.78125 C 3.625 -4.109375 3.3125 -4.390625 2.875 -4.390625 C 2.15625 -4.390625 1.796875 -3.734375 1.65625 -3.296875 L 1.65625 -4.390625 L 0.28125 -4.28125 L 0.28125 -3.96875 C 0.96875 -3.96875 1.046875 -3.90625 1.046875 -3.421875 L 1.046875 -0.75 C 1.046875 -0.3125 0.9375 -0.3125 0.28125 -0.3125 L 0.28125 0 L 1.40625 -0.03125 C 1.8125 -0.03125 2.28125 -0.03125 2.671875 0 L 2.671875 -0.3125 L 2.46875 -0.3125 C 1.734375 -0.3125 1.703125 -0.421875 1.703125 -0.78125 L 1.703125 -2.3125 C 1.703125 -3.296875 2.125 -4.171875 2.875 -4.171875 C 2.953125 -4.171875 2.96875 -4.171875 2.984375 -4.15625 C 2.96875 -4.15625 2.765625 -4.03125 2.765625 -3.78125 C 2.765625 -3.5 2.96875 -3.34375 3.1875 -3.34375 C 3.375 -3.34375 3.625 -3.46875 3.625 -3.78125 Z M 3.625 -3.78125 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-8">
|
||||
<path style="stroke:none;" d="M 2.53125 0 L 2.53125 -0.3125 C 1.875 -0.3125 1.765625 -0.3125 1.765625 -0.75 L 1.765625 -6.890625 L 0.328125 -6.78125 L 0.328125 -6.484375 C 1.03125 -6.484375 1.109375 -6.40625 1.109375 -5.921875 L 1.109375 -0.75 C 1.109375 -0.3125 1 -0.3125 0.328125 -0.3125 L 0.328125 0 L 1.4375 -0.03125 Z M 2.53125 0 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-9">
|
||||
<path style="stroke:none;" d="M 4.125 -1.1875 C 4.125 -1.28125 4.046875 -1.296875 4 -1.296875 C 3.90625 -1.296875 3.890625 -1.25 3.859375 -1.15625 C 3.515625 -0.140625 2.625 -0.140625 2.53125 -0.140625 C 2.03125 -0.140625 1.625 -0.4375 1.40625 -0.8125 C 1.109375 -1.28125 1.109375 -1.9375 1.109375 -2.296875 L 3.875 -2.296875 C 4.09375 -2.296875 4.125 -2.296875 4.125 -2.5 C 4.125 -3.484375 3.59375 -4.453125 2.34375 -4.453125 C 1.1875 -4.453125 0.28125 -3.421875 0.28125 -2.1875 C 0.28125 -0.859375 1.328125 0.109375 2.46875 0.109375 C 3.671875 0.109375 4.125 -1 4.125 -1.1875 Z M 3.46875 -2.5 L 1.109375 -2.5 C 1.171875 -3.984375 2 -4.234375 2.34375 -4.234375 C 3.375 -4.234375 3.46875 -2.890625 3.46875 -2.5 Z M 3.46875 -2.5 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-10">
|
||||
<path style="stroke:none;" d="M 6.203125 -4.9375 C 6.203125 -5.90625 5.21875 -6.78125 3.859375 -6.78125 L 0.34375 -6.78125 L 0.34375 -6.484375 L 0.59375 -6.484375 C 1.34375 -6.484375 1.375 -6.375 1.375 -6.015625 L 1.375 -0.78125 C 1.375 -0.421875 1.34375 -0.3125 0.59375 -0.3125 L 0.34375 -0.3125 L 0.34375 0 C 0.703125 -0.03125 1.4375 -0.03125 1.8125 -0.03125 C 2.1875 -0.03125 2.9375 -0.03125 3.28125 0 L 3.28125 -0.3125 L 3.046875 -0.3125 C 2.28125 -0.3125 2.25 -0.421875 2.25 -0.78125 L 2.25 -3.140625 L 3.9375 -3.140625 C 5.125 -3.140625 6.203125 -3.9375 6.203125 -4.9375 Z M 5.171875 -4.9375 C 5.171875 -4.46875 5.171875 -3.40625 3.59375 -3.40625 L 2.21875 -3.40625 L 2.21875 -6.078125 C 2.21875 -6.40625 2.25 -6.484375 2.71875 -6.484375 L 3.59375 -6.484375 C 5.171875 -6.484375 5.171875 -5.421875 5.171875 -4.9375 Z M 5.171875 -4.9375 "/>
|
||||
</symbol>
|
||||
<symbol overflow="visible" id="glyph3-11">
|
||||
<path style="stroke:none;" d="M 4.796875 -0.890625 L 4.796875 -1.4375 L 4.546875 -1.4375 L 4.546875 -0.890625 C 4.546875 -0.3125 4.296875 -0.25 4.1875 -0.25 C 3.859375 -0.25 3.828125 -0.703125 3.828125 -0.75 L 3.828125 -2.734375 C 3.828125 -3.15625 3.828125 -3.53125 3.46875 -3.90625 C 3.078125 -4.296875 2.578125 -4.453125 2.109375 -4.453125 C 1.296875 -4.453125 0.609375 -3.984375 0.609375 -3.328125 C 0.609375 -3.03125 0.8125 -2.859375 1.0625 -2.859375 C 1.34375 -2.859375 1.515625 -3.0625 1.515625 -3.3125 C 1.515625 -3.4375 1.46875 -3.765625 1.015625 -3.78125 C 1.28125 -4.125 1.765625 -4.234375 2.09375 -4.234375 C 2.578125 -4.234375 3.140625 -3.84375 3.140625 -2.96875 L 3.140625 -2.59375 C 2.640625 -2.5625 1.9375 -2.53125 1.3125 -2.234375 C 0.5625 -1.890625 0.3125 -1.375 0.3125 -0.9375 C 0.3125 -0.140625 1.28125 0.109375 1.90625 0.109375 C 2.5625 0.109375 3.015625 -0.28125 3.203125 -0.75 C 3.25 -0.359375 3.515625 0.0625 3.984375 0.0625 C 4.1875 0.0625 4.796875 -0.078125 4.796875 -0.890625 Z M 3.140625 -1.390625 C 3.140625 -0.453125 2.421875 -0.109375 1.984375 -0.109375 C 1.484375 -0.109375 1.078125 -0.453125 1.078125 -0.953125 C 1.078125 -1.5 1.5 -2.328125 3.140625 -2.390625 Z M 3.140625 -1.390625 "/>
|
||||
</symbol>
|
||||
</g>
|
||||
<clipPath id="clip1">
|
||||
<path d="M 161 22 L 182.308594 22 L 182.308594 54 L 161 54 Z M 161 22 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip2">
|
||||
<path d="M 172 37 L 174 37 L 174 78.828125 L 172 78.828125 Z M 172 37 "/>
|
||||
</clipPath>
|
||||
<clipPath id="clip3">
|
||||
<path d="M 33 52 L 174 52 L 174 78.828125 L 33 78.828125 Z M 33 52 "/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
<g id="surface1">
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 9.96397 0.00161455 C 9.96397 5.504206 5.502409 9.961853 -0.000181878 9.961853 C -5.502773 9.961853 -9.964334 5.504206 -9.964334 0.00161455 C -9.964334 -5.500977 -5.502773 -9.962537 -0.000181878 -9.962537 C 5.502409 -9.962537 9.96397 -5.500977 9.96397 0.00161455 Z M 9.96397 0.00161455 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph0-1" x="27.390115" y="42.378485"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph1-1" x="23.851818" y="55.953769"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 33.136689 -14.173624 L 67.154131 -14.173624 L 67.154131 14.17294 L 33.136689 14.17294 Z M 33.136689 -14.173624 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-1" x="72.849003" y="40.706652"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="82.005657" y="40.706652"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="85.873331" y="40.706652"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="90.534501" y="40.706652"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-3" x="61.638239" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-4" x="68.819625" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-5" x="73.791507" y="63.525426"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-6" x="79.037837" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-7" x="82.904966" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-4" x="86.799939" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-8" x="91.77182" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-8" x="94.534198" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-9" x="97.296575" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-7" x="101.716578" y="63.525426"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 90.827798 -14.173624 L 124.84524 -14.173624 L 124.84524 14.17294 L 90.827798 14.17294 Z M 90.827798 -14.173624 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-3" x="131.098661" y="40.706652"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="138.916851" y="40.706652"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="142.784524" y="40.706652"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="147.445695" y="40.706652"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-10" x="129.396885" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-8" x="136.16461" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-11" x="138.926988" y="63.525426"/>
|
||||
<use xlink:href="#glyph3-5" x="143.898869" y="63.525426"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-6" x="149.145199" y="63.525426"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -14.598095 0.00161455 L -32.640019 0.00161455 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053765 0.00161455 L 1.607859 1.684484 L 3.087219 0.00161455 L 1.607859 -1.681255 Z M 6.053765 0.00161455 " transform="matrix(0.998109,0,0,-0.998109,16.172525,38.220361)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-4" x="4.807892" y="34.408582"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 9.96397 0.00161455 L 28.005895 0.00161455 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.054704 0.00161455 L 1.608799 1.684484 L 3.088158 0.00161455 L 1.608799 -1.681255 Z M 6.054704 0.00161455 " transform="matrix(0.998109,0,0,-0.998109,58.695024,38.220361)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-5" x="58.304554" y="34.408582"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 67.651165 0.00161455 L 85.697003 0.00161455 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.051999 0.00161455 L 1.610007 1.684484 L 3.089367 0.00161455 L 1.610007 -1.681255 Z M 6.051999 0.00161455 " transform="matrix(0.998109,0,0,-0.998109,116.27585,38.220361)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-6" x="114.228618" y="34.408582"/>
|
||||
</g>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 125.342273 0.00161455 L 143.388111 0.00161455 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
<path style=" stroke:none;fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;" d="M 179.898438 38.21875 L 175.460938 36.539062 L 176.9375 38.21875 L 175.460938 39.898438 Z M 179.898438 38.21875 "/>
|
||||
<g clip-path="url(#clip1)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.053218 0.00161455 L 1.607312 1.684484 L 3.086671 0.00161455 L 1.607312 -1.681255 Z M 6.053218 0.00161455 " transform="matrix(0.998109,0,0,-0.998109,173.856665,38.220361)"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-7" x="172.269671" y="32.475244"/>
|
||||
</g>
|
||||
<g clip-path="url(#clip2)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 139.517512 0.00161455 L 139.517512 -39.686706 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
</g>
|
||||
<g clip-path="url(#clip3)" clip-rule="nonzero">
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 139.517512 -39.686706 L -0.000181878 -39.686706 L -0.000181878 -14.596298 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
</g>
|
||||
<path style="fill-rule:nonzero;fill:rgb(0%,0%,0%);fill-opacity:1;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 6.051648 0.000181878 L 1.609656 1.683051 L 3.089015 0.000181878 L 1.609656 -1.682687 Z M 6.051648 0.000181878 " transform="matrix(0,-0.998109,-0.998109,0,33.5744,55.622237)"/>
|
||||
<path style="fill:none;stroke-width:0.99628;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 32.639656 19.652049 C 33.015366 20.399556 33.884196 20.89659 35.13265 20.89659 L 76.499926 20.89659 C 77.744467 20.89659 78.617211 21.397537 78.992921 22.145044 C 79.364718 21.397537 80.237462 20.89659 81.482002 20.89659 L 122.853192 20.89659 C 124.097733 20.89659 124.970476 20.399556 125.342273 19.652049 " transform="matrix(0.998109,0,0,-0.998109,33.5744,38.220361)"/>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-8" x="102.834202" y="11.313331"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-1" x="109.601383" y="11.313331"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph2-2" x="113.468058" y="11.313331"/>
|
||||
</g>
|
||||
<g style="fill:rgb(0%,0%,0%);fill-opacity:1;">
|
||||
<use xlink:href="#glyph3-2" x="118.129229" y="11.313331"/>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 30 KiB |
494
index.html
@ -3,7 +3,7 @@
|
||||
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<!-- 2020-11-25 mer. 19:38 -->
|
||||
<!-- 2020-11-27 ven. 18:20 -->
|
||||
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
||||
<title>Robust Control - \(\mathcal{H}_\infty\) Synthesis</title>
|
||||
<meta name="generator" content="Org mode" />
|
||||
@ -30,29 +30,46 @@
|
||||
<h2>Table of Contents</h2>
|
||||
<div id="text-table-of-contents">
|
||||
<ul>
|
||||
<li><a href="#org983c7b8">1. Introduction to the Control Methodology - Model Based Control</a></li>
|
||||
<li><a href="#org56e9b1e">2. Some Background: From Classical Control to Robust Control</a></li>
|
||||
<li><a href="#org26e4f77">3. The \(\mathcal{H}_\infty\) Norm</a></li>
|
||||
<li><a href="#org7fece23">4. \(\mathcal{H}_\infty\) Synthesis</a></li>
|
||||
<li><a href="#orga8463c6">5. The Generalized Plant</a></li>
|
||||
<li><a href="#org8f2f474">6. Problem Formulation</a></li>
|
||||
<li><a href="#org6e6fa08">7. Classical feedback control and closed loop transfer functions</a></li>
|
||||
<li><a href="#org61c8d78">8. From a Classical Feedback Architecture to a Generalized Plant</a></li>
|
||||
<li><a href="#orgf0b775f">9. Modern Interpretation of the Control Specifications</a>
|
||||
<li><a href="#org482cee2">1. Introduction to the Control Methodology - Model Based Control</a>
|
||||
<ul>
|
||||
<li><a href="#org0691a02">9.1. Introduction</a></li>
|
||||
<li><a href="#org279a16f">1.1. Control Methodology</a></li>
|
||||
<li><a href="#orgca6e3d9">1.2. Some Background: From Classical Control to Robust Control</a></li>
|
||||
<li><a href="#orgc1a54dd">1.3. Example System</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org2d9c766">10. Resources</a></li>
|
||||
<li><a href="#org1336132">2. Classical Open Loop Shaping</a>
|
||||
<ul>
|
||||
<li><a href="#org1c9ddc9">2.1. Introduction ot Open Loop Shaping</a></li>
|
||||
<li><a href="#org3cd2ec2">2.2. Example of Open Loop Shaping</a></li>
|
||||
<li><a href="#orgafc190d">2.3. \(\mathcal{H}_\infty\) Loop Shaping Synthesis</a></li>
|
||||
<li><a href="#org386c720">2.4. Example of the \(\mathcal{H}_\infty\) Loop Shaping Synthesis</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#orgcf6b2a6">3. The \(\mathcal{H}_\infty\) Norm</a></li>
|
||||
<li><a href="#org5bc80a8">4. \(\mathcal{H}_\infty\) Synthesis</a></li>
|
||||
<li><a href="#org3a241a5">5. The Generalized Plant</a></li>
|
||||
<li><a href="#org49fe7df">6. Problem Formulation</a></li>
|
||||
<li><a href="#orgf671631">7. Classical feedback control and closed loop transfer functions</a></li>
|
||||
<li><a href="#orgd118710">8. From a Classical Feedback Architecture to a Generalized Plant</a></li>
|
||||
<li><a href="#orgdd1c5fa">9. Modern Interpretation of the Control Specifications</a>
|
||||
<ul>
|
||||
<li><a href="#org00cad5d">9.1. Introduction</a></li>
|
||||
</ul>
|
||||
</li>
|
||||
<li><a href="#org0e07a10">10. Resources</a></li>
|
||||
</ul>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org983c7b8" class="outline-2">
|
||||
<h2 id="org983c7b8"><span class="section-number-2">1</span> Introduction to the Control Methodology - Model Based Control</h2>
|
||||
<div id="outline-container-org482cee2" class="outline-2">
|
||||
<h2 id="org482cee2"><span class="section-number-2">1</span> Introduction to the Control Methodology - Model Based Control</h2>
|
||||
<div class="outline-text-2" id="text-1">
|
||||
</div>
|
||||
<div id="outline-container-org279a16f" class="outline-3">
|
||||
<h3 id="org279a16f"><span class="section-number-3">1.1</span> Control Methodology</h3>
|
||||
<div class="outline-text-3" id="text-1-1">
|
||||
<p>
|
||||
The typical methodology when applying Model Based Control to a plant is schematically shown in Figure <a href="#org893c4a9">1</a>.
|
||||
The typical methodology when applying Model Based Control to a plant is schematically shown in Figure <a href="#org3328399">1</a>.
|
||||
It consists of three steps:
|
||||
</p>
|
||||
<ol class="org-ol">
|
||||
@ -66,7 +83,7 @@ It consists of three steps:
|
||||
</ol>
|
||||
|
||||
|
||||
<div id="org893c4a9" class="figure">
|
||||
<div id="org3328399" class="figure">
|
||||
<p><img src="figs/control-procedure.png" alt="control-procedure.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 1: </span>Typical Methodoly for Model Based Control</p>
|
||||
@ -78,9 +95,9 @@ In this document, we will mainly focus on steps 2 and 3.
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org56e9b1e" class="outline-2">
|
||||
<h2 id="org56e9b1e"><span class="section-number-2">2</span> Some Background: From Classical Control to Robust Control</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
<div id="outline-container-orgca6e3d9" class="outline-3">
|
||||
<h3 id="orgca6e3d9"><span class="section-number-3">1.2</span> Some Background: From Classical Control to Robust Control</h3>
|
||||
<div class="outline-text-3" id="text-1-2">
|
||||
<p>
|
||||
Classical Control (1930)
|
||||
</p>
|
||||
@ -156,10 +173,363 @@ Robust Control (1980)
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org26e4f77" class="outline-2">
|
||||
<h2 id="org26e4f77"><span class="section-number-2">3</span> The \(\mathcal{H}_\infty\) Norm</h2>
|
||||
|
||||
<div id="outline-container-orgc1a54dd" class="outline-3">
|
||||
<h3 id="orgc1a54dd"><span class="section-number-3">1.3</span> Example System</h3>
|
||||
<div class="outline-text-3" id="text-1-3">
|
||||
<p>
|
||||
Let’s consider the test-system shown in Figure <a href="#orgbec3f57">2</a>.
|
||||
The notations used are listed in Table <a href="#orgf10115b">1</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgbec3f57" class="figure">
|
||||
<p><img src="figs/mech_sys_1dof_inertial_contr.png" alt="mech_sys_1dof_inertial_contr.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 2: </span>Test System consisting of a payload with a mass \(m\) on top of an active system with a stiffness \(k\), damping \(c\) and an actuator.</p>
|
||||
</div>
|
||||
|
||||
<table id="orgf10115b" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 1:</span> Example system variables</caption>
|
||||
|
||||
<colgroup>
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-left" />
|
||||
</colgroup>
|
||||
<thead>
|
||||
<tr>
|
||||
<th scope="col" class="org-left"><b>Notation</b></th>
|
||||
<th scope="col" class="org-left"><b>Description</b></th>
|
||||
<th scope="col" class="org-left"><b>Value</b></th>
|
||||
<th scope="col" class="org-left"><b>Unit</b></th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="org-left">\(m\)</td>
|
||||
<td class="org-left">Payload’s mass to position / isolate</td>
|
||||
<td class="org-left"> </td>
|
||||
<td class="org-left">[kg]</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">\(k\)</td>
|
||||
<td class="org-left">Stiffness of the suspension system</td>
|
||||
<td class="org-left"> </td>
|
||||
<td class="org-left">[N/m]</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">\(c\)</td>
|
||||
<td class="org-left">Damping coefficient of the suspension system</td>
|
||||
<td class="org-left"> </td>
|
||||
<td class="org-left">[N/(m/s)]</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">\(y\)</td>
|
||||
<td class="org-left">Payload absolute displacement (measured by an inertial sensor)</td>
|
||||
<td class="org-left"> </td>
|
||||
<td class="org-left">[m]</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">\(d\)</td>
|
||||
<td class="org-left">Ground displacement, it acts as a disturbance</td>
|
||||
<td class="org-left"> </td>
|
||||
<td class="org-left">[m]</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">\(u\)</td>
|
||||
<td class="org-left">Actuator force</td>
|
||||
<td class="org-left"> </td>
|
||||
<td class="org-left">[N]</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">\(r\)</td>
|
||||
<td class="org-left">Wanted position of the mass (the reference)</td>
|
||||
<td class="org-left"> </td>
|
||||
<td class="org-left">[m]</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">\(\epsilon = r - y\)</td>
|
||||
<td class="org-left">Position error</td>
|
||||
<td class="org-left"> </td>
|
||||
<td class="org-left">[m]</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">\(K\)</td>
|
||||
<td class="org-left">Feedback controller</td>
|
||||
<td class="org-left">to be designed</td>
|
||||
<td class="org-left">[N/m]</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
|
||||
<div class="exercice" id="org09b2f15">
|
||||
<p>
|
||||
Derive the following open-loop transfer functions:
|
||||
</p>
|
||||
\begin{align}
|
||||
G(s) &= \frac{y}{u} \\
|
||||
G_d(s) &= \frac{y}{d}
|
||||
\end{align}
|
||||
|
||||
<p>
|
||||
<b>Hint:</b> You can follow this generic procedure:
|
||||
</p>
|
||||
<ol class="org-ol">
|
||||
<li>List all applied forces ot the mass: Actuator force, Stiffness force (Hooke’s law), …</li>
|
||||
<li>Apply the Newton’s Second Law on the payload
|
||||
\[ m \ddot{y} = \Sigma F \]</li>
|
||||
<li>Transform the differential equations into the Laplace domain:
|
||||
\[ \frac{d\ \cdot}{dt} \Leftrightarrow \cdot \times s \]</li>
|
||||
<li>Write \(y(s)\) as a function of \(u(s)\) and \(w(s)\)</li>
|
||||
</ol>
|
||||
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Having obtained \(G(s)\) and \(G_d(s)\), we can transform the system shown in Figure <a href="#orgbec3f57">2</a> into a classical feedback form as shown in Figure <a href="#orge09e85e">4</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orge1cf983" class="figure">
|
||||
<p><img src="figs/classical_feedback_test_system.png" alt="classical_feedback_test_system.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 3: </span>Block diagram corresponding to the example system</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org1336132" class="outline-2">
|
||||
<h2 id="org1336132"><span class="section-number-2">2</span> Classical Open Loop Shaping</h2>
|
||||
<div class="outline-text-2" id="text-2">
|
||||
</div>
|
||||
<div id="outline-container-org1c9ddc9" class="outline-3">
|
||||
<h3 id="org1c9ddc9"><span class="section-number-3">2.1</span> Introduction ot Open Loop Shaping</h3>
|
||||
<div class="outline-text-3" id="text-2-1">
|
||||
<p>
|
||||
Usually, the controller \(K(s)\) is designed such that the loop gain \(L(s)\) has desirable shape.
|
||||
This technique is called <b>Open Loop Shaping</b>.
|
||||
</p>
|
||||
|
||||
<div class="inlinetask">
|
||||
<b>Explain why the Loop gain si an important “value”</b><br />
|
||||
<p>
|
||||
For instance example all the specifications can usually be explained in terms of the open loop gain.
|
||||
</p>
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
<div id="orge09e85e" class="figure">
|
||||
<p><img src="figs/open_loop_shaping.png" alt="open_loop_shaping.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 4: </span>Classical Feedback Architecture</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
This is usually done manually has the loop gain \(L(s)\) depends linearly of \(K(s)\):
|
||||
</p>
|
||||
\begin{equation}
|
||||
L(s) = G(s) K(s)
|
||||
\end{equation}
|
||||
<ul class="org-ul">
|
||||
<li>where \(L(s)\) is called the <b>Loop Gain Transfer Function</b></li>
|
||||
</ul>
|
||||
|
||||
<p>
|
||||
\(K(s)\) then consists of a combination of leads, lags, notches, etc. such that its product with \(G(s)\) has wanted shape.
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org3cd2ec2" class="outline-3">
|
||||
<h3 id="org3cd2ec2"><span class="section-number-3">2.2</span> Example of Open Loop Shaping</h3>
|
||||
<div class="outline-text-3" id="text-2-2">
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">k = 1e<span class="org-type">-</span>6;
|
||||
m = 10;
|
||||
c = 10;
|
||||
|
||||
G =
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
|
||||
<div id="org846352b" class="figure">
|
||||
<p><img src="figs/bode_plot_example_afm.png" alt="bode_plot_example_afm.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 5: </span>Bode plot of the plant \(G(s)\)</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
Specifications:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li><b>Performance</b>: Bandwidth of approximately 50Hz</li>
|
||||
<li><b>Noise Attenuation</b>: Roll-off of -40dB/decade past 250Hz</li>
|
||||
<li><b>Robustness</b>: Gain margin > 5dB and Phase margin > 40 deg</li>
|
||||
</ul>
|
||||
|
||||
<div class="exercice" id="orge257cef">
|
||||
<p>
|
||||
Using <code>SISOTOOL</code>, design a controller that fulfill the specifications.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">sisotool(G)
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
|
||||
<p>
|
||||
In order to have the wanted Roll-off, two integrators are used, a lead is also added to have sufficient phase margin.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The obtained controller is shown below, and the bode plot of the Loop Gain is shown in Figure <a href="#orgd8a3cda">6</a>.
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">K = 6e4 <span class="org-type">*</span> ...<span class="org-comment"> % Gain</span>
|
||||
1<span class="org-type">/</span>(s<span class="org-type">^</span>2) <span class="org-type">*</span> ...<span class="org-comment"> % Double Integrator</span>
|
||||
(1 <span class="org-type">+</span> s<span class="org-type">/</span>111)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>888); <span class="org-comment">% Lead</span>
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="orgd8a3cda" class="figure">
|
||||
<p><img src="figs/loop_gain_manual_afm.png" alt="loop_gain_manual_afm.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 6: </span>Bode Plot of the obtained Loop Gain \(L(s) = G(s) K(s)\)</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
And we can verify that we have the wanted stability margins:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">[Gm, Pm, <span class="org-type">~</span>, Wc] = margin(G<span class="org-type">*</span>K)
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
|
||||
|
||||
<colgroup>
|
||||
<col class="org-left" />
|
||||
|
||||
<col class="org-right" />
|
||||
</colgroup>
|
||||
<thead>
|
||||
<tr>
|
||||
<th scope="col" class="org-left"> </th>
|
||||
<th scope="col" class="org-right">Value</th>
|
||||
</tr>
|
||||
</thead>
|
||||
<tbody>
|
||||
<tr>
|
||||
<td class="org-left">Gain Margin [dB]</td>
|
||||
<td class="org-right">7.2</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">Phase Margin [deg]</td>
|
||||
<td class="org-right">48.1</td>
|
||||
</tr>
|
||||
|
||||
<tr>
|
||||
<td class="org-left">Crossover [Hz]</td>
|
||||
<td class="org-right">50.7</td>
|
||||
</tr>
|
||||
</tbody>
|
||||
</table>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgafc190d" class="outline-3">
|
||||
<h3 id="orgafc190d"><span class="section-number-3">2.3</span> \(\mathcal{H}_\infty\) Loop Shaping Synthesis</h3>
|
||||
<div class="outline-text-3" id="text-2-3">
|
||||
<p>
|
||||
The Open Loop Shaping synthesis can be performed using the \(\mathcal{H}_\infty\) Synthesis.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Even though we will not go into details, we will provide one example.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Using Matlab, the \(\mathcal{H}_\infty\) synthesis of a controller based on the wanted open loop shape can be performed using the <code>loopsyn</code> command:
|
||||
</p>
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">K = loopsyn(G, Gd);
|
||||
</pre>
|
||||
</div>
|
||||
<p>
|
||||
where:
|
||||
</p>
|
||||
<ul class="org-ul">
|
||||
<li><code>G</code> is the (LTI) plant</li>
|
||||
<li><code>Gd</code> is the wanted loop shape</li>
|
||||
<li><code>K</code> is the synthesize controller</li>
|
||||
</ul>
|
||||
|
||||
<div class="seealso" id="org3c008e3">
|
||||
<p>
|
||||
Matlab documentation of <code>loopsyn</code> (<a href="https://www.mathworks.com/help/robust/ref/loopsyn.html">link</a>).
|
||||
</p>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org386c720" class="outline-3">
|
||||
<h3 id="org386c720"><span class="section-number-3">2.4</span> Example of the \(\mathcal{H}_\infty\) Loop Shaping Synthesis</h3>
|
||||
<div class="outline-text-3" id="text-2-4">
|
||||
<p>
|
||||
Let’s re-use the previous plant.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Translate the specification into the wanted shape of the open loop gain.
|
||||
</p>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">G = tf(16,[1 0.16 16]);
|
||||
|
||||
Gd = 3.7e4<span class="org-type">*</span>1<span class="org-type">/</span>s<span class="org-type">*</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>20)<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>220)<span class="org-type">*</span>1<span class="org-type">/</span>(s <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>500);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">[K,CL,GAM,INFO] = loopsyn(G, Gd);
|
||||
</pre>
|
||||
</div>
|
||||
|
||||
<div class="org-src-container">
|
||||
<pre class="src src-matlab">bodeFig({K})
|
||||
</pre>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgcf6b2a6" class="outline-2">
|
||||
<h2 id="orgcf6b2a6"><span class="section-number-2">3</span> The \(\mathcal{H}_\infty\) Norm</h2>
|
||||
<div class="outline-text-2" id="text-3">
|
||||
<div class="definition" id="org2a3b6b9">
|
||||
<div class="definition" id="org86c267f">
|
||||
<p>
|
||||
The \(\mathcal{H}_\infty\) norm is defined as the peak of the maximum singular value of the frequency response
|
||||
</p>
|
||||
@ -176,7 +546,7 @@ For a SISO system \(G(s)\), it is simply the peak value of \(|G(j\omega)|\) as a
|
||||
|
||||
</div>
|
||||
|
||||
<div class="exampl" id="org2014425">
|
||||
<div class="exampl" id="org9ae7fd2">
|
||||
<p>
|
||||
Let’s define a plant dynamics:
|
||||
</p>
|
||||
@ -201,23 +571,23 @@ And compute its \(\mathcal{H}_\infty\) norm using the <code>hinfnorm</code> func
|
||||
|
||||
|
||||
<p>
|
||||
The magnitude \(|G(j\omega)|\) of the plant \(G(s)\) as a function of frequency is shown in Figure <a href="#org614e629">2</a>.
|
||||
The magnitude \(|G(j\omega)|\) of the plant \(G(s)\) as a function of frequency is shown in Figure <a href="#org220c414">7</a>.
|
||||
The maximum value of the magnitude over all frequencies does correspond to the \(\mathcal{H}_\infty\) norm of \(G(s)\) as Equation \eqref{eq:hinf_norm_siso} implies.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org614e629" class="figure">
|
||||
<div id="org220c414" class="figure">
|
||||
<p><img src="figs/hinfinity_norm_siso_bode.png" alt="hinfinity_norm_siso_bode.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 2: </span>Example of the \(\mathcal{H}_\infty\) norm of a SISO system</p>
|
||||
<p><span class="figure-number">Figure 7: </span>Example of the \(\mathcal{H}_\infty\) norm of a SISO system</p>
|
||||
</div>
|
||||
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org7fece23" class="outline-2">
|
||||
<h2 id="org7fece23"><span class="section-number-2">4</span> \(\mathcal{H}_\infty\) Synthesis</h2>
|
||||
<div id="outline-container-org5bc80a8" class="outline-2">
|
||||
<h2 id="org5bc80a8"><span class="section-number-2">4</span> \(\mathcal{H}_\infty\) Synthesis</h2>
|
||||
<div class="outline-text-2" id="text-4">
|
||||
<p>
|
||||
<b>Optimization problem</b>:
|
||||
@ -246,17 +616,17 @@ The maximum value of the magnitude over all frequencies does correspond to the \
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orga8463c6" class="outline-2">
|
||||
<h2 id="orga8463c6"><span class="section-number-2">5</span> The Generalized Plant</h2>
|
||||
<div id="outline-container-org3a241a5" class="outline-2">
|
||||
<h2 id="org3a241a5"><span class="section-number-2">5</span> The Generalized Plant</h2>
|
||||
<div class="outline-text-2" id="text-5">
|
||||
|
||||
<div id="org501fafe" class="figure">
|
||||
<div id="orgf05141d" class="figure">
|
||||
<p><img src="figs/general_plant.png" alt="general_plant.png" />
|
||||
</p>
|
||||
</div>
|
||||
|
||||
<table id="org56ab58c" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 1:</span> Notations for the general configuration</caption>
|
||||
<table id="orgfb53780" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 2:</span> Notations for the general configuration</caption>
|
||||
|
||||
<colgroup>
|
||||
<col class="org-left" />
|
||||
@ -303,10 +673,10 @@ The maximum value of the magnitude over all frequencies does correspond to the \
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org8f2f474" class="outline-2">
|
||||
<h2 id="org8f2f474"><span class="section-number-2">6</span> Problem Formulation</h2>
|
||||
<div id="outline-container-org49fe7df" class="outline-2">
|
||||
<h2 id="org49fe7df"><span class="section-number-2">6</span> Problem Formulation</h2>
|
||||
<div class="outline-text-2" id="text-6">
|
||||
<div class="important" id="org3c999ad">
|
||||
<div class="important" id="orgcec66b9">
|
||||
<p>
|
||||
The \(\mathcal{H}_\infty\) Synthesis objective is to find all stabilizing controllers \(K\) which minimize
|
||||
</p>
|
||||
@ -317,27 +687,27 @@ The \(\mathcal{H}_\infty\) Synthesis objective is to find all stabilizing contro
|
||||
</div>
|
||||
|
||||
|
||||
<div id="orgbf7a5b3" class="figure">
|
||||
<div id="org1e975ee" class="figure">
|
||||
<p><img src="figs/general_control_names.png" alt="general_control_names.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 4: </span>General Control Configuration</p>
|
||||
<p><span class="figure-number">Figure 9: </span>General Control Configuration</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
|
||||
<div id="outline-container-org6e6fa08" class="outline-2">
|
||||
<h2 id="org6e6fa08"><span class="section-number-2">7</span> Classical feedback control and closed loop transfer functions</h2>
|
||||
<div id="outline-container-orgf671631" class="outline-2">
|
||||
<h2 id="orgf671631"><span class="section-number-2">7</span> Classical feedback control and closed loop transfer functions</h2>
|
||||
<div class="outline-text-2" id="text-7">
|
||||
|
||||
<div id="orgbdf8949" class="figure">
|
||||
<div id="orgd59dc12" class="figure">
|
||||
<p><img src="figs/classical_feedback.png" alt="classical_feedback.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 5: </span>Classical Feedback Architecture</p>
|
||||
<p><span class="figure-number">Figure 10: </span>Classical Feedback Architecture</p>
|
||||
</div>
|
||||
|
||||
<table id="org0716237" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 2:</span> Notations for the Classical Feedback Architecture</caption>
|
||||
<table id="org111f2c5" border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
||||
<caption class="t-above"><span class="table-number">Table 3:</span> Notations for the Classical Feedback Architecture</caption>
|
||||
|
||||
<colgroup>
|
||||
<col class="org-left" />
|
||||
@ -390,8 +760,8 @@ The \(\mathcal{H}_\infty\) Synthesis objective is to find all stabilizing contro
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org61c8d78" class="outline-2">
|
||||
<h2 id="org61c8d78"><span class="section-number-2">8</span> From a Classical Feedback Architecture to a Generalized Plant</h2>
|
||||
<div id="outline-container-orgd118710" class="outline-2">
|
||||
<h2 id="orgd118710"><span class="section-number-2">8</span> From a Classical Feedback Architecture to a Generalized Plant</h2>
|
||||
<div class="outline-text-2" id="text-8">
|
||||
<p>
|
||||
The procedure is:
|
||||
@ -401,16 +771,16 @@ The procedure is:
|
||||
<li>Remove \(K\) and rearrange the inputs and outputs</li>
|
||||
</ol>
|
||||
|
||||
<div class="exampl" id="orgf472923">
|
||||
<div class="exampl" id="org211c0bc">
|
||||
<p>
|
||||
Let’s find the Generalized plant of corresponding to the tracking control architecture shown in Figure <a href="#orgdcc8e73">6</a>
|
||||
Let’s find the Generalized plant of corresponding to the tracking control architecture shown in Figure <a href="#orgbec59d7">11</a>
|
||||
</p>
|
||||
|
||||
|
||||
<div id="orgdcc8e73" class="figure">
|
||||
<div id="orgbec59d7" class="figure">
|
||||
<p><img src="figs/classical_feedback_tracking.png" alt="classical_feedback_tracking.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 6: </span>Classical Feedback Control Architecture (Tracking)</p>
|
||||
<p><span class="figure-number">Figure 11: </span>Classical Feedback Control Architecture (Tracking)</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@ -425,14 +795,14 @@ First, define the signals of the generalized plant:
|
||||
|
||||
<p>
|
||||
Then, Remove \(K\) and rearrange the inputs and outputs.
|
||||
We obtain the generalized plant shown in Figure <a href="#org6782ec2">7</a>.
|
||||
We obtain the generalized plant shown in Figure <a href="#org64eccd4">12</a>.
|
||||
</p>
|
||||
|
||||
|
||||
<div id="org6782ec2" class="figure">
|
||||
<div id="org64eccd4" class="figure">
|
||||
<p><img src="figs/mixed_sensitivity_ref_tracking.png" alt="mixed_sensitivity_ref_tracking.png" />
|
||||
</p>
|
||||
<p><span class="figure-number">Figure 7: </span>Generalized plant of the Classical Feedback Control Architecture (Tracking)</p>
|
||||
<p><span class="figure-number">Figure 12: </span>Generalized plant of the Classical Feedback Control Architecture (Tracking)</p>
|
||||
</div>
|
||||
|
||||
<p>
|
||||
@ -449,12 +819,12 @@ Using Matlab, the generalized plant can be defined as follows:
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-orgf0b775f" class="outline-2">
|
||||
<h2 id="orgf0b775f"><span class="section-number-2">9</span> Modern Interpretation of the Control Specifications</h2>
|
||||
<div id="outline-container-orgdd1c5fa" class="outline-2">
|
||||
<h2 id="orgdd1c5fa"><span class="section-number-2">9</span> Modern Interpretation of the Control Specifications</h2>
|
||||
<div class="outline-text-2" id="text-9">
|
||||
</div>
|
||||
<div id="outline-container-org0691a02" class="outline-3">
|
||||
<h3 id="org0691a02"><span class="section-number-3">9.1</span> Introduction</h3>
|
||||
<div id="outline-container-org00cad5d" class="outline-3">
|
||||
<h3 id="org00cad5d"><span class="section-number-3">9.1</span> Introduction</h3>
|
||||
<div class="outline-text-3" id="text-9-1">
|
||||
<ul class="org-ul">
|
||||
<li><b>Reference tracking</b> Overshoot, Static error, Setling time
|
||||
@ -488,22 +858,22 @@ Using Matlab, the generalized plant can be defined as follows:
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div id="outline-container-org2d9c766" class="outline-2">
|
||||
<h2 id="org2d9c766"><span class="section-number-2">10</span> Resources</h2>
|
||||
<div id="outline-container-org0e07a10" class="outline-2">
|
||||
<h2 id="org0e07a10"><span class="section-number-2">10</span> Resources</h2>
|
||||
<div class="outline-text-2" id="text-10">
|
||||
<p>
|
||||
<iframe width="1280" height="720" src="https://www.youtube.com/embed/?listType=playlist&list=PLn8PRpmsu08qFLMfgTEzR8DxOPE7fBiin" frameborder="0" allowfullscreen></iframe>
|
||||
<div class="yt"><iframe width="100%" height="100%" src="https://www.youtube.com/embed/?listType=playlist&list=PLn8PRpmsu08qFLMfgTEzR8DxOPE7fBiin" frameborder="0" allowfullscreen></iframe></div>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<iframe width="1280" height="720" src="https://www.youtube.com/embed/?listType=playlist&list=PLsjPUqcL7ZIFHCObUU_9xPUImZ203gB4o" frameborder="0" allowfullscreen></iframe>
|
||||
<div class="yt"><iframe width="100%" height="100%" src="https://www.youtube.com/embed/?listType=playlist&list=PLsjPUqcL7ZIFHCObUU_9xPUImZ203gB4o" frameborder="0" allowfullscreen></iframe></div>
|
||||
</p>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
<div id="postamble" class="status">
|
||||
<p class="author">Author: Dehaeze Thomas</p>
|
||||
<p class="date">Created: 2020-11-25 mer. 19:38</p>
|
||||
<p class="date">Created: 2020-11-27 ven. 18:20</p>
|
||||
</div>
|
||||
</body>
|
||||
</html>
|
||||
|
353
index.org
@ -38,6 +38,7 @@
|
||||
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
||||
:END:
|
||||
|
||||
* Introduction :ignore:
|
||||
* Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
@ -48,6 +49,7 @@
|
||||
#+end_src
|
||||
|
||||
* Introduction to the Control Methodology - Model Based Control
|
||||
** Control Methodology
|
||||
|
||||
The typical methodology when applying Model Based Control to a plant is schematically shown in Figure [[fig:control-procedure]].
|
||||
It consists of three steps:
|
||||
@ -91,7 +93,7 @@ It consists of three steps:
|
||||
|
||||
In this document, we will mainly focus on steps 2 and 3.
|
||||
|
||||
* Some Background: From Classical Control to Robust Control
|
||||
** Some Background: From Classical Control to Robust Control
|
||||
|
||||
Classical Control (1930)
|
||||
- Tools:
|
||||
@ -136,6 +138,355 @@ Robust Control (1980)
|
||||
- Requires the knowledge of specific tools
|
||||
- Need a reasonably good model of the system
|
||||
|
||||
|
||||
** Example System
|
||||
|
||||
Let's consider the test-system shown in Figure [[fig:mech_sys_1dof_inertial_contr]].
|
||||
The notations used are listed in Table [[tab:example_notations]].
|
||||
|
||||
#+begin_src latex :file mech_sys_1dof_inertial_contr.pdf
|
||||
\begin{tikzpicture}
|
||||
% Parameters
|
||||
\def\massw{3}
|
||||
\def\massh{1}
|
||||
\def\spaceh{1.8}
|
||||
|
||||
% Ground
|
||||
\draw[] (-0.5*\massw, 0) -- (0.5*\massw, 0);
|
||||
% Mass
|
||||
\draw[fill=white] (-0.5*\massw, \spaceh) rectangle (0.5*\massw, \spaceh+\massh) node[pos=0.5](m){$m$};
|
||||
|
||||
% Spring, Damper, and Actuator
|
||||
\draw[spring] (-0.3*\massw, 0) -- (-0.3*\massw, \spaceh) node[midway, left=0.1]{$k$};
|
||||
\draw[damper] ( 0, 0) -- ( 0, \spaceh) node[midway, left=0.3]{$c$};
|
||||
\draw[actuator] ( 0.3*\massw, 0) -- (0.3*\massw, \spaceh) node[midway](F){};
|
||||
|
||||
% Displacements
|
||||
\draw[dashed] (0.5*\massw, 0) -- ++(0.5, 0);
|
||||
\draw[->] (0.6*\massw, 0) -- ++(0, 0.5) node[below right]{$d$};
|
||||
|
||||
% Inertial Sensor
|
||||
\node[inertialsensor] (inertials) at (0.5*\massw, \spaceh+\massh){};
|
||||
\node[addb={+}{-}{}{}{}, right=0.8 of inertials] (subf) {};
|
||||
|
||||
\node[block, below=0.4 of subf] (K){$K(s)$};
|
||||
|
||||
\draw[->] (inertials.east) node[above right]{$y$} -- (subf.west);
|
||||
\draw[->] (subf.south) -- (K.north) node[above right]{$\epsilon$};
|
||||
\draw[<-] (subf.north) -- ++(0, 0.6) node[below right]{$r$};
|
||||
\draw[->] (K.south) |- (F.east) node[above right]{$u$};
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:mech_sys_1dof_inertial_contr
|
||||
#+caption: Test System consisting of a payload with a mass $m$ on top of an active system with a stiffness $k$, damping $c$ and an actuator. A feedback controller $K(s)$ is added to position / isolate the payload.
|
||||
#+RESULTS:
|
||||
[[file:figs/mech_sys_1dof_inertial_contr.png]]
|
||||
|
||||
#+name: tab:example_notations
|
||||
#+caption: Example system variables
|
||||
| *Notation* | *Description* | *Value* | *Unit* |
|
||||
|--------------------+----------------------------------------------------------------+----------------+-----------|
|
||||
| $m$ | Payload's mass to position / isolate | | [kg] |
|
||||
| $k$ | Stiffness of the suspension system | | [N/m] |
|
||||
| $c$ | Damping coefficient of the suspension system | | [N/(m/s)] |
|
||||
| $y$ | Payload absolute displacement (measured by an inertial sensor) | | [m] |
|
||||
| $d$ | Ground displacement, it acts as a disturbance | | [m] |
|
||||
| $u$ | Actuator force | | [N] |
|
||||
| $r$ | Wanted position of the mass (the reference) | | [m] |
|
||||
| $\epsilon = r - y$ | Position error | | [m] |
|
||||
| $K$ | Feedback controller | to be designed | [N/m] |
|
||||
|
||||
#+begin_exercice
|
||||
Derive the following open-loop transfer functions:
|
||||
\begin{align}
|
||||
G(s) &= \frac{y}{u} \\
|
||||
G_d(s) &= \frac{y}{d}
|
||||
\end{align}
|
||||
|
||||
*Hint:* You can follow this generic procedure:
|
||||
1. List all applied forces ot the mass: Actuator force, Stiffness force (Hooke's law), ...
|
||||
2. Apply the Newton's Second Law on the payload
|
||||
\[ m \ddot{y} = \Sigma F \]
|
||||
3. Transform the differential equations into the Laplace domain:
|
||||
\[ \frac{d\ \cdot}{dt} \Leftrightarrow \cdot \times s \]
|
||||
4. Write $y(s)$ as a function of $u(s)$ and $w(s)$
|
||||
#+end_exercice
|
||||
|
||||
Having obtained $G(s)$ and $G_d(s)$, we can transform the system shown in Figure [[fig:mech_sys_1dof_inertial_contr]] into a classical feedback form as shown in Figure [[fig:open_loop_shaping]].
|
||||
|
||||
#+begin_src latex :file classical_feedback_test_system.pdf
|
||||
\begin{tikzpicture}
|
||||
\node[addb={+}{}{}{}{-}] (addfb) at (0, 0){};
|
||||
\node[block, right=0.8 of addfb] (K){$K(s)$};
|
||||
\node[block, right=0.8 of K] (G){$G(s)$};
|
||||
\node[addb={+}{}{}{}{}, right=0.8 of G] (addd){};
|
||||
\node[block, above=0.5 of addd] (Gd){$G_d(s)$};
|
||||
|
||||
\draw[<-] (addfb.west) -- ++(-0.8, 0) node[above right]{$r$};
|
||||
\draw[->] (addfb.east) -- (K.west) node[above left]{$\epsilon$};
|
||||
\draw[->] (K.east) -- (G.west) node[above left]{$u$};
|
||||
\draw[->] (G.east) -- (addd.west);
|
||||
\draw[<-] (Gd.north) -- ++(0, 0.8) node[below right]{$d$};
|
||||
\draw[->] (Gd.south) -- (addd.north);
|
||||
\draw[->] (addd.east) -- ++(1.2, 0);
|
||||
\draw[->] ($(addd.east) + (0.6, 0)$) node[branch]{} node[above]{$y$} -- ++(0, -1.0) -| (addfb.south);
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:classical_feedback_test_system
|
||||
#+caption: Block diagram corresponding to the example system
|
||||
#+RESULTS:
|
||||
[[file:figs/classical_feedback_test_system.png]]
|
||||
|
||||
#+begin_src matlab
|
||||
k = 1e6; % Stiffness [N/m]
|
||||
c = 4e2; % Damping [N/(m/s)]
|
||||
m = 16; % Mass [kg]
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
G = 1/(m*s^2 + c*s + k);
|
||||
Gd = (c*s + k)/(m*s^2 + c*s + k);
|
||||
#+end_src
|
||||
|
||||
* Classical Open Loop Shaping
|
||||
** Introduction ot Open Loop Shaping
|
||||
Usually, the controller $K(s)$ is designed such that the loop gain $L(s)$ has desirable shape.
|
||||
This technique is called *Open Loop Shaping*.
|
||||
|
||||
*************** TODO Explain why the Loop gain si an important "value"
|
||||
For instance example all the specifications can usually be explained in terms of the open loop gain.
|
||||
*************** END
|
||||
|
||||
|
||||
#+begin_src latex :file open_loop_shaping.pdf
|
||||
\begin{tikzpicture}
|
||||
\node[addb={+}{}{}{}{-}] (addsub) at (0, 0){};
|
||||
|
||||
\node[block, right=0.8 of addsub] (K) {$K(s)$};
|
||||
\node[below] at (K.south) {Controller};
|
||||
\node[block, right=0.8 of K] (G) {$G(s)$};
|
||||
\node[below] at (G.south) {Plant};
|
||||
|
||||
\draw[<-] (addsub.west) -- ++(-0.8, 0) node[above right]{$r$};
|
||||
|
||||
\draw[->] (addsub) -- (K.west) node[above left]{$\epsilon$};
|
||||
\draw[->] (K.east) -- (G.west) node[above left]{$u$};
|
||||
\draw[->] (G.east) -- ++(0.8, 0) node[above left]{$y$};
|
||||
\draw[] ($(G.east) + (0.5, 0)$) -- ++(0, -1.4);
|
||||
\draw[->] ($(G.east) + (0.5, -1.4)$) -| (addsub.south);
|
||||
|
||||
\draw [decoration={brace, raise=5pt}, decorate] (K.north west) -- node[above=6pt]{$L(s)$} (G.north east);
|
||||
\end{tikzpicture}
|
||||
#+end_src
|
||||
|
||||
#+name: fig:open_loop_shaping
|
||||
#+caption: Classical Feedback Architecture
|
||||
#+RESULTS:
|
||||
[[file:figs/open_loop_shaping.png]]
|
||||
|
||||
This is usually done manually has the loop gain $L(s)$ depends linearly of $K(s)$:
|
||||
\begin{equation}
|
||||
L(s) = G(s) K(s)
|
||||
\end{equation}
|
||||
- where $L(s)$ is called the *Loop Gain Transfer Function*
|
||||
|
||||
$K(s)$ then consists of a combination of leads, lags, notches, etc. such that its product with $G(s)$ has wanted shape.
|
||||
|
||||
** Example of Open Loop Shaping
|
||||
|
||||
|
||||
#+begin_src matlab
|
||||
k = 1e-6;
|
||||
m = 10;
|
||||
c = 10;
|
||||
|
||||
G =
|
||||
#+end_src
|
||||
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G, freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G, freqs, 'Hz')))));
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
yticks(-360:90:360); ylim([-270, 90]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/bode_plot_example_afm.pdf', 'width', 'wide', 'height', 'normal');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:bode_plot_example_afm
|
||||
#+caption: Bode plot of the plant $G(s)$
|
||||
#+RESULTS:
|
||||
[[file:figs/bode_plot_example_afm.png]]
|
||||
|
||||
Specifications:
|
||||
- *Performance*: Bandwidth of approximately 50Hz
|
||||
- *Noise Attenuation*: Roll-off of -40dB/decade past 250Hz
|
||||
- *Robustness*: Gain margin > 5dB and Phase margin > 40 deg
|
||||
|
||||
#+begin_exercice
|
||||
Using =SISOTOOL=, design a controller that fulfill the specifications.
|
||||
|
||||
#+begin_src matlab :eval no
|
||||
sisotool(G)
|
||||
#+end_src
|
||||
#+end_exercice
|
||||
|
||||
In order to have the wanted Roll-off, two integrators are used, a lead is also added to have sufficient phase margin.
|
||||
|
||||
The obtained controller is shown below, and the bode plot of the Loop Gain is shown in Figure [[fig:loop_gain_manual_afm]].
|
||||
#+begin_src matlab
|
||||
K = 6e4 * ... % Gain
|
||||
1/(s^2) * ... % Double Integrator
|
||||
(1 + s/111)/(1 + s/888); % Lead
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G*K, freqs, 'Hz'))));
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-5, 1e1])
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*K, freqs, 'Hz')))));
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
yticks(-360:90:360); ylim([-360, 0]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/loop_gain_manual_afm.pdf', 'width', 'wide', 'height', 'tall');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:loop_gain_manual_afm
|
||||
#+caption: Bode Plot of the obtained Loop Gain $L(s) = G(s) K(s)$
|
||||
#+RESULTS:
|
||||
[[file:figs/loop_gain_manual_afm.png]]
|
||||
|
||||
And we can verify that we have the wanted stability margins:
|
||||
#+begin_src matlab :results output replace
|
||||
[Gm, Pm, ~, Wc] = margin(G*K)
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports results :results value table replace :tangle no :post addhdr(*this*)
|
||||
data2orgtable([Gm; Pm; Wc/2/pi], {'Gain Margin [dB]', 'Phase Margin [deg]', 'Crossover [Hz]'}, {'Value'}, ' %.1f ');
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
| | Value |
|
||||
|--------------------+-------|
|
||||
| Gain Margin [dB] | 7.2 |
|
||||
| Phase Margin [deg] | 48.1 |
|
||||
| Crossover [Hz] | 50.7 |
|
||||
|
||||
** $\mathcal{H}_\infty$ Loop Shaping Synthesis
|
||||
The Open Loop Shaping synthesis can be performed using the $\mathcal{H}_\infty$ Synthesis.
|
||||
|
||||
Even though we will not go into details, we will provide one example.
|
||||
|
||||
Using Matlab, the $\mathcal{H}_\infty$ synthesis of a controller based on the wanted open loop shape can be performed using the =loopsyn= command:
|
||||
#+begin_src matlab :eval no
|
||||
K = loopsyn(G, Gd);
|
||||
#+end_src
|
||||
where:
|
||||
- =G= is the (LTI) plant
|
||||
- =Gd= is the wanted loop shape
|
||||
- =K= is the synthesize controller
|
||||
|
||||
#+begin_seealso
|
||||
Matlab documentation of =loopsyn= ([[https://www.mathworks.com/help/robust/ref/loopsyn.html][link]]).
|
||||
#+end_seealso
|
||||
|
||||
** Example of the $\mathcal{H}_\infty$ Loop Shaping Synthesis
|
||||
|
||||
Let's re-use the previous plant.
|
||||
|
||||
Translate the specification into the wanted shape of the open loop gain.
|
||||
|
||||
#+begin_src matlab
|
||||
G = tf(16,[1 0.16 16]);
|
||||
|
||||
Gd = 3.7e4*1/s*(1 + s/2/pi/20)/(1 + s/2/pi/220)*1/(s + s/2/pi/500);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
bodeFig({Gd}, struct('phase', true))
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
[K,CL,GAM,INFO] = loopsyn(G, Gd);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab
|
||||
bodeFig({K})
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(1, 4, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(G*K, freqs, 'Hz'))));
|
||||
plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz'))), 'k--');
|
||||
plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz')))*GAM, 'k-.');
|
||||
plot(freqs, abs(squeeze(freqresp(Gd, freqs, 'Hz')))/GAM, 'k-.');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
ylim([1e-5, 1e1])
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(G*K, freqs, 'Hz')))));
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
yticks(-360:90:360); ylim([-360, 0]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
|
||||
* The $\mathcal{H}_\infty$ Norm
|
||||
|
||||
#+begin_definition
|
||||
|