Add text about module margin
This commit is contained in:
parent
5c01eca88c
commit
1065724fb5
BIN
figs/phase_gain_margin_model_plant.pdf
Normal file
BIN
figs/phase_gain_margin_model_plant.pdf
Normal file
Binary file not shown.
BIN
figs/phase_gain_margin_model_plant.png
Normal file
BIN
figs/phase_gain_margin_model_plant.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 76 KiB |
BIN
figs/phase_gain_margin_real_plant.pdf
Normal file
BIN
figs/phase_gain_margin_real_plant.pdf
Normal file
Binary file not shown.
BIN
figs/phase_gain_margin_real_plant.png
Normal file
BIN
figs/phase_gain_margin_real_plant.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 81 KiB |
692
index.html
692
index.html
File diff suppressed because it is too large
Load Diff
215
index.org
215
index.org
@ -39,7 +39,18 @@
|
||||
#+PROPERTY: header-args:latex+ :post pdf2svg(file=*this*, ext="png")
|
||||
:END:
|
||||
|
||||
* TODO Introduction :ignore:
|
||||
* Introduction :ignore:
|
||||
|
||||
This document is structured as follows:
|
||||
- As $\mathcal{H}_\infty$ Control is a /model based/ control technique, a short introduction to model based control is given in Section [[sec:model_based_control]]
|
||||
- Classical /open/ loop shaping method is presented in Section [[sec:open_loop_shaping]].
|
||||
It is also shown that $\mathcal{H}_\infty$ synthesis can be used for /open/ loop shaping.
|
||||
- $\mathcal{H}_\infty$
|
||||
Important concepts such as the $\mathcal{H}_\infty$ norm and the generalized plant are introduced.
|
||||
- A
|
||||
- Finally, an complete example of the
|
||||
is performed in Section [[sec:h_infinity_mixed_sensitivity]].
|
||||
|
||||
* Matlab Init :noexport:ignore:
|
||||
#+begin_src matlab :tangle no :exports none :results silent :noweb yes :var current_dir=(file-name-directory buffer-file-name)
|
||||
<<matlab-dir>>
|
||||
@ -53,7 +64,7 @@
|
||||
addpath('matlab')
|
||||
#+end_src
|
||||
|
||||
* Introduction to the Control Methodology - Model Based Control
|
||||
* Introduction to Model Based Control
|
||||
<<sec:model_based_control>>
|
||||
|
||||
** Model Based Control - Methodology
|
||||
@ -101,7 +112,12 @@ It consists of three steps:
|
||||
|
||||
In this document, we will mainly focus on steps 2 and 3.
|
||||
|
||||
** Some Background: From Classical Control to Robust Control
|
||||
Step 2 will be discussed in Section [[sec:modern_interpretation_specification]].
|
||||
There are two main methods for the controller synthesis (step 3):
|
||||
- /open/ loop shaping discussed in Section [[sec:open_loop_shaping]]
|
||||
- /closed/ loop shaping discussed in Sections [[sec:modern_interpretation_specification]] and [[sec:h_infinity_mixed_sensitivity]]
|
||||
|
||||
** From Classical Control to Robust Control
|
||||
<<sec:comp_classical_modern_robust_control>>
|
||||
|
||||
#+name: tab:comparison_control_methods
|
||||
@ -117,9 +133,8 @@ In this document, we will mainly focus on steps 2 and 3.
|
||||
| | Phase and Gain margins | | Weighting Functions |
|
||||
| | | | Disk margin |
|
||||
|-------------------------+------------------------------------+--------------------------------------+-------------------------------------------------------------------------|
|
||||
| *Control Architectures* | Proportional, Integral, Derivative | Full State Feedback | General Control Configuration |
|
||||
| | Leads, Lags | LQR, LQG | |
|
||||
| | | Kalman Filters | |
|
||||
| *Control Architectures* | Proportional, Integral, Derivative | Full State Feedback, LQR | General Control Configuration |
|
||||
| | Leads, Lags | Kalman Filters, LQG | Generalized Plant |
|
||||
|-------------------------+------------------------------------+--------------------------------------+-------------------------------------------------------------------------|
|
||||
| *Advantages* | Study Stability | Automatic Synthesis | Automatic Synthesis |
|
||||
| | Simple | MIMO | MIMO |
|
||||
@ -508,7 +523,7 @@ Let's take our example system and try to apply the Open-Loop shaping strategy to
|
||||
#+begin_exercice
|
||||
Using =SISOTOOL=, design a controller that fulfill the specifications.
|
||||
|
||||
#+begin_src matlab :eval no
|
||||
#+begin_src matlab :eval no :tangle no
|
||||
sisotool(G)
|
||||
#+end_src
|
||||
#+end_exercice
|
||||
@ -583,7 +598,7 @@ The Open Loop Shaping synthesis can be performed using the $\mathcal{H}_\infty$
|
||||
Even though we will not go into details, we will provide one example.
|
||||
|
||||
Using Matlab, the $\mathcal{H}_\infty$ Loop Shaping Synthesis can be performed using the =loopsyn= command:
|
||||
#+begin_src matlab :eval no
|
||||
#+begin_src matlab :eval no :tangle no
|
||||
K = loopsyn(G, Gd);
|
||||
#+end_src
|
||||
where:
|
||||
@ -852,7 +867,7 @@ It can indeed represent feedback as well as feedforward control architectures.
|
||||
| $u$ | Control signals |
|
||||
#+end_important
|
||||
|
||||
** The General Synthesis Problem Formulation
|
||||
** The $\mathcal{H}_\infty$ Synthesis applied on the Generalized plant
|
||||
<<sec:h_infinity_general_synthesis>>
|
||||
|
||||
Once the generalized plant is obtained, the $\mathcal{H}_\infty$ synthesis problem can be stated as follows:
|
||||
@ -897,7 +912,7 @@ Note that the closed-loop transfer function from $w$ to $z$ is:
|
||||
\end{equation}
|
||||
|
||||
Using Matlab, the $\mathcal{H}_\infty$ Synthesis applied on a Generalized plant can be applied using the =hinfsyn= command ([[https://www.mathworks.com/help/robust/ref/hinfsyn.html][documentation]]):
|
||||
#+begin_src matlab :eval no
|
||||
#+begin_src matlab :eval no :tangoe no
|
||||
K = hinfsyn(P, nmeas, ncont);
|
||||
#+end_src
|
||||
where:
|
||||
@ -997,27 +1012,27 @@ Using Matlab, the generalized plant can be defined as follows:
|
||||
|
||||
** Introduction
|
||||
|
||||
As shown in Section [[sec:open_loop_shaping]], the loop gain $L(s) = G(s) K(s)$ is a useful and easy tool for the design of controllers by hand.
|
||||
As shown in Section [[sec:open_loop_shaping]], the loop gain $L(s) = G(s) K(s)$ is a useful and easy tool for the manual design of controllers.
|
||||
|
||||
It is very easy to shape as it depends linearly on $K(s)$.
|
||||
Moreover, it gives information on important quantities such as the stability margins and the control bandwidth.
|
||||
$L(s)$ is very easy to shape as it depends linearly on $K(s)$.
|
||||
Moreover, important quantities such as the stability margins and the control bandwidth can be estimated from the shape/phase of $L(s)$.
|
||||
|
||||
However, the loop gain $L(s)$ does *not* directly give the performances of the closed-loop system.
|
||||
The closed loop system behavior is determined by the *closed-loop transfer functions*.
|
||||
The closed loop system behavior is indeed determined by the *closed-loop* transfer functions.
|
||||
|
||||
If we consider the feedback system shown in Figure [[fig:gang_of_four_feedback]], we can link to the following specifications to closed-loop transfer functions
|
||||
- *Reference tracking* (Overshoot, Static error, Settling time, ...)
|
||||
- From $r$ to $\epsilon$
|
||||
- *Disturbances rejection*
|
||||
- From $d$ to $y$
|
||||
- *Measurement noise filtering*
|
||||
- From $n$ to $y$
|
||||
- *Small command amplitude*
|
||||
- From $n, r, d$ to $u$
|
||||
- *Stability*
|
||||
- All closed-loop transfer functions must be stable
|
||||
- *Robustness* (stability margins)
|
||||
- Module margin (see Section [[sec:module_margin]])
|
||||
If we consider the feedback system shown in Figure [[fig:gang_of_four_feedback]], we can link to the following specifications to closed-loop transfer functions.
|
||||
This is summarized in Table [[tab:spec_closed_loop_tf]].
|
||||
|
||||
#+name: tab:spec_closed_loop_tf
|
||||
#+caption: Typical Specification and associated closed-loop transfer function
|
||||
| Specification | Closed-Loop Transfer Function |
|
||||
|--------------------------------+-----------------------------------------------|
|
||||
| Reference Tracking | From $r$ to $\epsilon$ |
|
||||
| Disturbance Rejection | From $d$ to $y$ |
|
||||
| Measurement Noise Filtering | From $n$ to $y$ |
|
||||
| Small Command Amplitude | From $n,r,d$ to $u$ |
|
||||
| Stability | All closed-loop transfer function |
|
||||
| Robustness (stability margins) | Module margin (see Section [[sec:module_margin]]) |
|
||||
|
||||
#+begin_src latex :file gang_of_four_feedback.pdf
|
||||
\begin{tikzpicture}
|
||||
@ -1202,12 +1217,152 @@ Similarly, to reduce the effect of measurement noise $n$ on the output $y$, we w
|
||||
** Robustness: Module Margin
|
||||
<<sec:module_margin>>
|
||||
|
||||
- [ ] Definition of Module margin
|
||||
- [ ] Why it represents robustness
|
||||
- [ ] Example
|
||||
Let's start by an example demonstrating why the phase and gain margins might not be good indicators of robustness.
|
||||
|
||||
#+begin_exampl
|
||||
Let's consider the following plant:
|
||||
#+begin_src matlab
|
||||
w0 = 2*pi*100;
|
||||
xi = 0.1;
|
||||
k = 1e7;
|
||||
|
||||
Gt = 1/k*(s/w0/4 + 1)/(s^2/w0^2 + 2*xi*s/w0 + 1);
|
||||
#+end_src
|
||||
|
||||
Let's say we have designed a controller that gives the loop gain shown in Figure [[fig:phase_gain_margin_model_plant]] where the following characteristics can be determined:
|
||||
- bandwidth of $\approx 10\, \text{Hz}$
|
||||
- infinite gain margin (the phase of the loop-gain never reaches -180 degrees
|
||||
- more than 90 degrees of phase margin
|
||||
|
||||
This might indicate very good robustness properties of the closed-loop system.
|
||||
|
||||
#+begin_src matlab
|
||||
Kt = 1.2e6*(s + w0)/s;
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gt*Kt, freqs, 'Hz'))), 'DisplayName', '$L(s)$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gt*Kt, freqs, 'Hz')))));
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
yticks(-360:90:360); ylim([-200, 0]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/phase_gain_margin_model_plant.pdf', 'width', 'wide', 'height', 'normal');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:phase_gain_margin_model_plant
|
||||
#+caption: Bode plot of the obtained Loop Gain $L(s)$
|
||||
#+RESULTS:
|
||||
[[file:figs/phase_gain_margin_model_plant.png]]
|
||||
|
||||
|
||||
Now let's suppose the "real" plant =Gr= as a slightly lower damping factor:
|
||||
#+begin_src matlab
|
||||
xi = 0.03;
|
||||
Gr = 1/k*(s/w0/4 + 1)/(s^2/w0^2 + 2*xi*s/w0 + 1);
|
||||
#+end_src
|
||||
|
||||
The obtained loop gain is in Figure [[fig:phase_gain_margin_real_plant]].
|
||||
It is shown that at a frequency little bit above 100Hz, the phase of the loop gain reaches -180 degrees while its magnitude is more than one which indicated unstability.
|
||||
|
||||
It is confirmed by checking the stability of the closed loop system:
|
||||
#+begin_src matlab :results value replace
|
||||
isstable(feedback(Gp,K))
|
||||
#+end_src
|
||||
|
||||
#+RESULTS:
|
||||
: 0
|
||||
|
||||
#+begin_src matlab :exports none
|
||||
freqs = logspace(0, 3, 1000);
|
||||
|
||||
figure;
|
||||
tiledlayout(3, 1, 'TileSpacing', 'None', 'Padding', 'None');
|
||||
|
||||
ax1 = nexttile([2,1]);
|
||||
hold on;
|
||||
plot(freqs, abs(squeeze(freqresp(Gt*Kt, freqs, 'Hz'))), 'DisplayName', '$L(s)$');
|
||||
plot(freqs, abs(squeeze(freqresp(Gr*Kt, freqs, 'Hz'))), 'DisplayName', '$L_r(s)$');
|
||||
hold off;
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'log');
|
||||
ylabel('Magnitude'); set(gca, 'XTickLabel',[]);
|
||||
hold off;
|
||||
legend('location', 'northeast');
|
||||
|
||||
ax2 = nexttile;
|
||||
hold on;
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gt*Kt, freqs, 'Hz')))));
|
||||
plot(freqs, 180/pi*unwrap(angle(squeeze(freqresp(Gr*Kt, freqs, 'Hz')))));
|
||||
set(gca, 'XScale', 'log'); set(gca, 'YScale', 'lin');
|
||||
yticks(-360:90:360); ylim([-200, 0]);
|
||||
xlabel('Frequency [Hz]'); ylabel('Phase [deg]');
|
||||
hold off;
|
||||
|
||||
linkaxes([ax1,ax2],'x');
|
||||
xlim([freqs(1), freqs(end)]);
|
||||
#+end_src
|
||||
|
||||
#+begin_src matlab :tangle no :exports results :results file replace
|
||||
exportFig('figs/phase_gain_margin_real_plant.pdf', 'width', 'wide', 'height', 'normal');
|
||||
#+end_src
|
||||
|
||||
#+name: fig:phase_gain_margin_real_plant
|
||||
#+caption: Bode plots of $L(s)$ (loop gain corresponding the nominal plant) and $L_r(s)$ (loop gain corresponding to the real plant)
|
||||
#+RESULTS:
|
||||
[[file:figs/phase_gain_margin_real_plant.png]]
|
||||
|
||||
Therefore, even a small change of the plant parameter makes the system unstable even though both the gain margin and the phase margin for the nominal plant are excellent.
|
||||
|
||||
This is due to the fact that the gain and phase margin are indicators to the robustness of the system to a *pure* change or gain or a *pure* change of phase but not a combination of both.
|
||||
#+end_exampl
|
||||
|
||||
#+begin_seealso
|
||||
To learn more about module (or disk) margin, you can check out [[https://www.youtube.com/watch?v=XazdN6eZF80][this]] video.
|
||||
#+end_seealso
|
||||
|
||||
- [ ] Example why the module margin might be a good alternative
|
||||
- [ ] Stability => L does not does at the left of point -1
|
||||
- [ ] => ...
|
||||
|
||||
|
||||
#+begin_definition
|
||||
The *module margin* $\Delta M$ is defined as the *minimum distance* between the point $-1$ and $L(j\omega) = G(j\omega) K(j\omega)$ in the complex plane.
|
||||
#+end_definition
|
||||
|
||||
The module margin can be visually determined on the Nyquist plot ($L(j\omega)$ from $\omega = -\infty$ to $\infty$ in the complex plane).
|
||||
|
||||
- [ ] Example of Nyquist plot and module margin
|
||||
- [ ] Express the module margin as a function of $\|S\|_\infty$
|
||||
|
||||
\[ M_S < 2 \Rightarrow \text{GM} > 2 \text{ and } \text{PM} > 29^o \]
|
||||
|
||||
#+begin_important
|
||||
Large peak value of $S$ indicate robustness problems.
|
||||
|
||||
The wanted robustness of the closed-loop system can there be specified by setting a maximum value on $\|S\|_\infty$.
|
||||
#+end_important
|
||||
|
||||
** How to *Shape* transfer function? Using of Weighting Functions!
|
||||
<<sec:weighting_functions>>
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user