928 lines
32 KiB
HTML
928 lines
32 KiB
HTML
<?xml version="1.0" encoding="utf-8"?>
|
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
|
|
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
|
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
|
<head>
|
|
<!-- 2020-11-04 mer. 20:38 -->
|
|
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
|
|
<title>Encoder - Test Bench</title>
|
|
<meta name="generator" content="Org mode" />
|
|
<meta name="author" content="Dehaeze Thomas" />
|
|
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
|
|
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
|
|
<link rel="stylesheet" type="text/css" href="./css/zenburn.css"/>
|
|
<script type="text/javascript" src="./js/jquery.min.js"></script>
|
|
<script type="text/javascript" src="./js/bootstrap.min.js"></script>
|
|
<script type="text/javascript" src="./js/jquery.stickytableheaders.min.js"></script>
|
|
<script type="text/javascript" src="./js/readtheorg.js"></script>
|
|
<script>MathJax = {
|
|
tex: {
|
|
tags: 'ams',
|
|
macros: {bm: ["\\boldsymbol{#1}",1],}
|
|
}
|
|
};
|
|
</script>
|
|
<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
|
|
</head>
|
|
<body>
|
|
<div id="org-div-home-and-up">
|
|
<a accesskey="h" href="../index.html"> UP </a>
|
|
|
|
|
<a accesskey="H" href="../index.html"> HOME </a>
|
|
</div><div id="content">
|
|
<h1 class="title">Encoder - Test Bench</h1>
|
|
<div id="table-of-contents">
|
|
<h2>Table of Contents</h2>
|
|
<div id="text-table-of-contents">
|
|
<ul>
|
|
<li><a href="#org2b2f049">1. Experimental Setup</a></li>
|
|
<li><a href="#org9ae614e">2. Huddle Test</a>
|
|
<ul>
|
|
<li><a href="#orgc034802">2.1. Load Data</a></li>
|
|
<li><a href="#orgd8ae4ae">2.2. Time Domain Results</a></li>
|
|
<li><a href="#org864c60c">2.3. Frequency Domain Noise</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org96539c5">3. Comparison Interferometer / Encoder</a>
|
|
<ul>
|
|
<li><a href="#orgc6453b2">3.1. Load Data</a></li>
|
|
<li><a href="#orgc362641">3.2. Time Domain Results</a></li>
|
|
<li><a href="#orgb50503c">3.3. Difference between Encoder and Interferometer as a function of time</a></li>
|
|
<li><a href="#org5ec03aa">3.4. Difference between Encoder and Interferometer as a function of position</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org6b73303">4. Identification</a>
|
|
<ul>
|
|
<li><a href="#orga15e9e2">4.1. Load Data</a></li>
|
|
<li><a href="#org6974653">4.2. Identification</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org5be1a0f">5. Change of Stiffness due to Sensors stack being open/closed circuit</a>
|
|
<ul>
|
|
<li><a href="#org00fc76c">5.1. Load Data</a></li>
|
|
<li><a href="#org757917f">5.2. Transfer Functions</a></li>
|
|
</ul>
|
|
</li>
|
|
<li><a href="#org8dab16f">6. Generated Number of Charge / Voltage</a>
|
|
<ul>
|
|
<li><a href="#org28149b5">6.1. Steps</a></li>
|
|
<li><a href="#org900387e">6.2. Add Parallel Resistor</a></li>
|
|
<li><a href="#org7cfe5a8">6.3. Sinus</a></li>
|
|
</ul>
|
|
</li>
|
|
</ul>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org2b2f049" class="outline-2">
|
|
<h2 id="org2b2f049"><span class="section-number-2">1</span> Experimental Setup</h2>
|
|
<div class="outline-text-2" id="text-1">
|
|
<p>
|
|
The experimental Setup is schematically represented in Figure <a href="#orgff06236">1</a>.
|
|
</p>
|
|
|
|
<p>
|
|
The mass can be vertically moved using the amplified piezoelectric actuator.
|
|
The displacement of the mass (relative to the mechanical frame) is measured both by the interferometer and by the encoder.
|
|
</p>
|
|
|
|
|
|
<div id="orgff06236" class="figure">
|
|
<p><img src="figs/exp_setup_schematic.png" alt="exp_setup_schematic.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 1: </span>Schematic of the Experiment</p>
|
|
</div>
|
|
|
|
|
|
<div id="orgc6b5ad5" class="figure">
|
|
<p><img src="figs/IMG_20201023_153905.jpg" alt="IMG_20201023_153905.jpg" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 2: </span>Side View of the encoder</p>
|
|
</div>
|
|
|
|
|
|
<div id="orgcf538be" class="figure">
|
|
<p><img src="figs/IMG_20201023_153914.jpg" alt="IMG_20201023_153914.jpg" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 3: </span>Front View of the encoder</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org9ae614e" class="outline-2">
|
|
<h2 id="org9ae614e"><span class="section-number-2">2</span> Huddle Test</h2>
|
|
<div class="outline-text-2" id="text-2">
|
|
<p>
|
|
The goal in this section is the estimate the noise of both the encoder and the intereferometer.
|
|
</p>
|
|
|
|
<p>
|
|
Nothing is then to the actuator such that the relative motion between the mass and the frame is as small as possible.
|
|
Ideally, a mechanical part would clamp the two together, we here suppose that the APA is still enough to clamp the two together.
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-orgc034802" class="outline-3">
|
|
<h3 id="orgc034802"><span class="section-number-3">2.1</span> Load Data</h3>
|
|
<div class="outline-text-3" id="text-2-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/int_enc_huddle_test.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'t'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">interferometer = detrend(interferometer, 0);
|
|
encoder = detrend(encoder, 0);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgd8ae4ae" class="outline-3">
|
|
<h3 id="orgd8ae4ae"><span class="section-number-3">2.2</span> Time Domain Results</h3>
|
|
<div class="outline-text-3" id="text-2-2">
|
|
|
|
<div id="orgff47510" class="figure">
|
|
<p><img src="figs/huddle_test_time_domain.png" alt="huddle_test_time_domain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 4: </span>Huddle test - Time domain signals</p>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">G_lpf = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org21436f3" class="figure">
|
|
<p><img src="figs/huddle_test_time_domain_filtered.png" alt="huddle_test_time_domain_filtered.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 5: </span>Huddle test - Time domain signals filtered with a LPF at 10Hz</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org864c60c" class="outline-3">
|
|
<h3 id="org864c60c"><span class="section-number-3">2.3</span> Frequency Domain Noise</h3>
|
|
<div class="outline-text-3" id="text-2-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4;
|
|
win = hann(ceil(10<span class="org-type">/</span>Ts));
|
|
|
|
[p_i, f] = pwelch(interferometer, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
[p_e, <span class="org-type">~</span>] = pwelch(encoder, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org63bcf43" class="figure">
|
|
<p><img src="figs/huddle_test_asd.png" alt="huddle_test_asd.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 6: </span>Amplitude Spectral Density of the signals during the Huddle test</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org96539c5" class="outline-2">
|
|
<h2 id="org96539c5"><span class="section-number-2">3</span> Comparison Interferometer / Encoder</h2>
|
|
<div class="outline-text-2" id="text-3">
|
|
<p>
|
|
The goal here is to make sure that the interferometer and encoder measurements are coherent.
|
|
We may see non-linearity in the interferometric measurement.
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-orgc6453b2" class="outline-3">
|
|
<h3 id="orgc6453b2"><span class="section-number-3">3.1</span> Load Data</h3>
|
|
<div class="outline-text-3" id="text-3-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/int_enc_comp.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'t'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">interferometer = detrend(interferometer, 0);
|
|
encoder = detrend(encoder, 0);
|
|
u = detrend(u, 0);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgc362641" class="outline-3">
|
|
<h3 id="orgc362641"><span class="section-number-3">3.2</span> Time Domain Results</h3>
|
|
<div class="outline-text-3" id="text-3-2">
|
|
|
|
<div id="orgfd33423" class="figure">
|
|
<p><img src="figs/int_enc_one_cycle.png" alt="int_enc_one_cycle.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 7: </span>One cycle measurement</p>
|
|
</div>
|
|
|
|
|
|
<div id="orgf82fd3e" class="figure">
|
|
<p><img src="figs/int_enc_one_cycle_error.png" alt="int_enc_one_cycle_error.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 8: </span>Difference between the Encoder and the interferometer during one cycle</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-orgb50503c" class="outline-3">
|
|
<h3 id="orgb50503c"><span class="section-number-3">3.3</span> Difference between Encoder and Interferometer as a function of time</h3>
|
|
<div class="outline-text-3" id="text-3-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4;
|
|
d_i_mean = reshape(interferometer, [2<span class="org-type">/</span>Ts floor(Ts<span class="org-type">/</span>2<span class="org-type">*</span>length(interferometer))]);
|
|
d_e_mean = reshape(encoder, [2<span class="org-type">/</span>Ts floor(Ts<span class="org-type">/</span>2<span class="org-type">*</span>length(encoder))]);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">w0 = 2<span class="org-type">*</span><span class="org-constant">pi</span><span class="org-type">*</span>5; <span class="org-comment">% [rad/s]</span>
|
|
xi = 0.7;
|
|
|
|
G_lpf = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> 2<span class="org-type">*</span>xi<span class="org-type">/</span>w0<span class="org-type">*</span>s <span class="org-type">+</span> s<span class="org-type">^</span>2<span class="org-type">/</span>w0<span class="org-type">^</span>2);
|
|
|
|
d_err_mean = reshape(lsim(G_lpf, encoder <span class="org-type">-</span> interferometer, t), [2<span class="org-type">/</span>Ts floor(Ts<span class="org-type">/</span>2<span class="org-type">*</span>length(encoder))]);
|
|
d_err_mean = d_err_mean <span class="org-type">-</span> mean(d_err_mean);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org6eb78a0" class="figure">
|
|
<p><img src="figs/int_enc_error_mean_time.png" alt="int_enc_error_mean_time.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 9: </span>Difference between the two measurement in the time domain, averaged for all the cycles</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org5ec03aa" class="outline-3">
|
|
<h3 id="org5ec03aa"><span class="section-number-3">3.4</span> Difference between Encoder and Interferometer as a function of position</h3>
|
|
<div class="outline-text-3" id="text-3-4">
|
|
<p>
|
|
Compute the mean of the interferometer measurement corresponding to each of the encoder measurement.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">[e_sorted, <span class="org-type">~</span>, e_ind] = unique(encoder);
|
|
|
|
i_mean = zeros(length(e_sorted), 1);
|
|
<span class="org-keyword">for</span> <span class="org-variable-name"><span class="org-constant">i</span></span> = <span class="org-constant">1:length(e_sorted)</span>
|
|
i_mean(<span class="org-constant">i</span>) = mean(interferometer(e_ind <span class="org-type">==</span> <span class="org-constant">i</span>));
|
|
<span class="org-keyword">end</span>
|
|
|
|
i_mean_error = (i_mean <span class="org-type">-</span> e_sorted);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org2aecb58" class="figure">
|
|
<p><img src="figs/int_enc_error_mean_position.png" alt="int_enc_error_mean_position.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 10: </span>Difference between the two measurement as a function of the measured position by the encoder, averaged for all the cycles</p>
|
|
</div>
|
|
|
|
<p>
|
|
The period of the non-linearity seems to be \(1.53 \mu m\) which corresponds to the wavelength of the Laser.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">win_length = 1530; <span class="org-comment">% length of the windows (corresponds to 1.53 um)</span>
|
|
num_avg = floor(length(e_sorted)<span class="org-type">/</span>win_length); <span class="org-comment">% number of averaging</span>
|
|
|
|
i_init = ceil((length(e_sorted) <span class="org-type">-</span> win_length<span class="org-type">*</span>num_avg)<span class="org-type">/</span>2); <span class="org-comment">% does not start at the extremity</span>
|
|
|
|
e_sorted_mean_over_period = mean(reshape(i_mean_error(i_init<span class="org-type">:</span>i_init<span class="org-type">+</span>win_length<span class="org-type">*</span>num_avg<span class="org-type">-</span>1), [win_length num_avg]), 2);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgd0cea4e" class="figure">
|
|
<p><img src="figs/int_non_linearity_period_wavelength.png" alt="int_non_linearity_period_wavelength.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 11: </span>Non-Linearity of the Interferometer over the period of the wavelength</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org6b73303" class="outline-2">
|
|
<h2 id="org6b73303"><span class="section-number-2">4</span> Identification</h2>
|
|
<div class="outline-text-2" id="text-4">
|
|
</div>
|
|
<div id="outline-container-orga15e9e2" class="outline-3">
|
|
<h3 id="orga15e9e2"><span class="section-number-3">4.1</span> Load Data</h3>
|
|
<div class="outline-text-3" id="text-4-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'mat/int_enc_id_noise_bis.mat'</span>, <span class="org-string">'interferometer'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'t'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">interferometer = detrend(interferometer, 0);
|
|
encoder = detrend(encoder, 0);
|
|
u = detrend(u, 0);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org6974653" class="outline-3">
|
|
<h3 id="org6974653"><span class="section-number-3">4.2</span> Identification</h3>
|
|
<div class="outline-text-3" id="text-4-2">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
|
|
win = hann(ceil(10<span class="org-type">/</span>Ts));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">[tf_i_est, f] = tfestimate(u, interferometer, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
[co_i_est, <span class="org-type">~</span>] = mscohere(u, interferometer, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
|
|
[tf_e_est, <span class="org-type">~</span>] = tfestimate(u, encoder, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
[co_e_est, <span class="org-type">~</span>] = mscohere(u, encoder, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org37fcd05" class="figure">
|
|
<p><img src="figs/identification_dynamics_coherence.png" alt="identification_dynamics_coherence.png" />
|
|
</p>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="orge65c21c" class="figure">
|
|
<p><img src="figs/identification_dynamics_bode.png" alt="identification_dynamics_bode.png" />
|
|
</p>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org5be1a0f" class="outline-2">
|
|
<h2 id="org5be1a0f"><span class="section-number-2">5</span> Change of Stiffness due to Sensors stack being open/closed circuit</h2>
|
|
<div class="outline-text-2" id="text-5">
|
|
</div>
|
|
<div id="outline-container-org00fc76c" class="outline-3">
|
|
<h3 id="org00fc76c"><span class="section-number-3">5.1</span> Load Data</h3>
|
|
<div class="outline-text-3" id="text-5-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">oc = load(<span class="org-string">'./mat/identification_open_circuit.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>);
|
|
sc = load(<span class="org-string">'./mat/identification_short_circuit.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>);
|
|
</pre>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org757917f" class="outline-3">
|
|
<h3 id="org757917f"><span class="section-number-3">5.2</span> Transfer Functions</h3>
|
|
<div class="outline-text-3" id="text-5-2">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Ts = 1e<span class="org-type">-</span>4; <span class="org-comment">% Sampling Time [s]</span>
|
|
win = hann(ceil(10<span class="org-type">/</span>Ts));
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">[tf_oc_est, f] = tfestimate(oc.u, oc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
[co_oc_est, <span class="org-type">~</span>] = mscohere( oc.u, oc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
|
|
[tf_sc_est, <span class="org-type">~</span>] = tfestimate(sc.u, sc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
[co_sc_est, <span class="org-type">~</span>] = mscohere( sc.u, sc.encoder, win, [], [], 1<span class="org-type">/</span>Ts);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgcba7c3a" class="figure">
|
|
<p><img src="figs/stiffness_force_sensor_coherence.png" alt="stiffness_force_sensor_coherence.png" />
|
|
</p>
|
|
</div>
|
|
|
|
|
|
|
|
<div id="orgfdef3b4" class="figure">
|
|
<p><img src="figs/stiffness_force_sensor_bode.png" alt="stiffness_force_sensor_bode.png" />
|
|
</p>
|
|
</div>
|
|
|
|
|
|
<div id="org655038d" class="figure">
|
|
<p><img src="figs/stiffness_force_sensor_bode_zoom.png" alt="stiffness_force_sensor_bode_zoom.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 16: </span>Zoom on the change of resonance</p>
|
|
</div>
|
|
|
|
<div class="important" id="orga5e301b">
|
|
<p>
|
|
The change of resonance frequency / stiffness is very small and is not important here.
|
|
</p>
|
|
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org8dab16f" class="outline-2">
|
|
<h2 id="org8dab16f"><span class="section-number-2">6</span> Generated Number of Charge / Voltage</h2>
|
|
<div class="outline-text-2" id="text-6">
|
|
<p>
|
|
Two stacks are used as actuator (in parallel) and one stack is used as sensor.
|
|
</p>
|
|
|
|
<p>
|
|
The amplifier gain is 20V/V (Cedrat LA75B).
|
|
</p>
|
|
</div>
|
|
|
|
<div id="outline-container-org28149b5" class="outline-3">
|
|
<h3 id="org28149b5"><span class="section-number-3">6.1</span> Steps</h3>
|
|
<div class="outline-text-3" id="text-6-1">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'./mat/force_sensor_steps.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
|
tiledlayout(2, 1, <span class="org-string">'TileSpacing'</span>, <span class="org-string">'None'</span>, <span class="org-string">'Padding'</span>, <span class="org-string">'None'</span>);
|
|
nexttile;
|
|
plot(t, v);
|
|
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Measured voltage [V]'</span>);
|
|
nexttile;
|
|
plot(t, u);
|
|
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Actuator Voltage [V]'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="org0c7c950" class="figure">
|
|
<p><img src="figs/force_sen_steps_time_domain.png" alt="force_sen_steps_time_domain.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 17: </span>Time domain signal during the 3 actuator voltage steps</p>
|
|
</div>
|
|
|
|
<p>
|
|
Three steps are performed at the following time intervals:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">t_s = [ 2.5, 23;
|
|
23.8, 35;
|
|
35.8, 50];
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Fit function:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">f = @(b,x) b(1)<span class="org-type">.*</span>exp(b(2)<span class="org-type">.*</span>x) <span class="org-type">+</span> b(3);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We are interested by the <code>b(2)</code> term, which is the time constant of the exponential.
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">tau = zeros(size(t_s, 1),1);
|
|
V0 = zeros(size(t_s, 1),1);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name">t_i</span> = <span class="org-constant">1:size(t_s, 1)</span>
|
|
t_cur = t(t_s(t_i, 1) <span class="org-type"><</span> t <span class="org-type">&</span> t <span class="org-type"><</span> t_s(t_i, 2));
|
|
t_cur = t_cur <span class="org-type">-</span> t_cur(1);
|
|
y_cur = v(t_s(t_i, 1) <span class="org-type"><</span> t <span class="org-type">&</span> t <span class="org-type"><</span> t_s(t_i, 2));
|
|
|
|
nrmrsd = @(b) norm(y_cur <span class="org-type">-</span> f(b,t_cur)); <span class="org-comment">% Residual Norm Cost Function</span>
|
|
B0 = [0.5, <span class="org-type">-</span>0.15, 2.2]; <span class="org-comment">% Choose Appropriate Initial Estimates</span>
|
|
[B,rnrm] = fminsearch(nrmrsd, B0); <span class="org-comment">% Estimate Parameters ‘B’</span>
|
|
|
|
tau(t_i) = 1<span class="org-type">/</span>B(2);
|
|
V0(t_i) = B(3);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
</colgroup>
|
|
<thead>
|
|
<tr>
|
|
<th scope="col" class="org-right">\(tau\) [s]</th>
|
|
<th scope="col" class="org-right">\(V_0\) [V]</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-right">6.47</td>
|
|
<td class="org-right">2.26</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">6.76</td>
|
|
<td class="org-right">2.26</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">6.49</td>
|
|
<td class="org-right">2.25</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
<p>
|
|
With the capacitance being \(C = 4.4 \mu F\), the internal impedance of the Speedgoat ADC can be computed as follows:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Cp = 4.4e<span class="org-type">-</span>6; <span class="org-comment">% [F]</span>
|
|
Rin = abs(mean(tau))<span class="org-type">/</span>Cp;
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
1494100.0
|
|
</pre>
|
|
|
|
|
|
<p>
|
|
The input impedance of the Speedgoat’s ADC should then be close to \(1.5\,M\Omega\) (specified at \(1\,M\Omega\)).
|
|
</p>
|
|
|
|
<div class="important" id="org60ccf75">
|
|
<p>
|
|
How can we explain the voltage offset?
|
|
</p>
|
|
|
|
</div>
|
|
|
|
<p>
|
|
As shown in Figure <a href="#org39e1694">18</a> (taken from (<a href="#citeproc_bib_item_1">Reza and Andrew 2006</a>)), an input voltage offset is due to the input bias current \(i_n\).
|
|
</p>
|
|
|
|
|
|
<div id="org39e1694" class="figure">
|
|
<p><img src="figs/piezo_sensor_model_instrumentation.png" alt="piezo_sensor_model_instrumentation.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 18: </span>Model of a piezoelectric transducer (left) and instrumentation amplifier (right)</p>
|
|
</div>
|
|
|
|
<p>
|
|
The estimated input bias current is then:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">in = mean(V0)<span class="org-type">/</span>Rin;
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
1.5119e-06
|
|
</pre>
|
|
|
|
|
|
<p>
|
|
An additional resistor in parallel with \(R_{in}\) would have two effects:
|
|
</p>
|
|
<ul class="org-ul">
|
|
<li>reduce the input voltage offset
|
|
\[ V_{off} = \frac{R_a R_{in}}{R_a + R_{in}} i_n \]</li>
|
|
<li>increase the high pass corner frequency \(f_c\)
|
|
\[ C_p \frac{R_{in}R_a}{R_{in} + R_a} = \tau_c = \frac{1}{f_c} \]
|
|
\[ R_a = \frac{R_i}{f_c C_p R_i - 1} \]</li>
|
|
</ul>
|
|
|
|
|
|
<p>
|
|
If we allow the high pass corner frequency to be equals to 3Hz:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">fc = 3;
|
|
Ra = Rin<span class="org-type">/</span>(fc<span class="org-type">*</span>Cp<span class="org-type">*</span>Rin <span class="org-type">-</span> 1);
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
79804
|
|
</pre>
|
|
|
|
|
|
<p>
|
|
With this parallel resistance value, the voltage offset would be:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">V_offset = Ra<span class="org-type">*</span>Rin<span class="org-type">/</span>(Ra <span class="org-type">+</span> Rin) <span class="org-type">*</span> in;
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
0.11454
|
|
</pre>
|
|
|
|
|
|
<p>
|
|
Which is much more acceptable.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org900387e" class="outline-3">
|
|
<h3 id="org900387e"><span class="section-number-3">6.2</span> Add Parallel Resistor</h3>
|
|
<div class="outline-text-3" id="text-6-2">
|
|
<p>
|
|
A resistor of \(\approx 100\,k\Omega\) is added in parallel with the force sensor and the same kin.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'./mat/force_sensor_steps_R_82k7.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-type">figure</span>;
|
|
tiledlayout(2, 1, <span class="org-string">'TileSpacing'</span>, <span class="org-string">'None'</span>, <span class="org-string">'Padding'</span>, <span class="org-string">'None'</span>);
|
|
nexttile;
|
|
plot(t, v);
|
|
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Measured voltage [V]'</span>);
|
|
nexttile;
|
|
plot(t, u);
|
|
xlabel(<span class="org-string">'Time [s]'</span>); ylabel(<span class="org-string">'Actuator Voltage [V]'</span>);
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orgaee44e2" class="figure">
|
|
<p><img src="figs/force_sen_steps_time_domain_par_R.png" alt="force_sen_steps_time_domain_par_R.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 19: </span>Time domain signal during the actuator voltage steps</p>
|
|
</div>
|
|
|
|
<p>
|
|
Three steps are performed at the following time intervals:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">t_s = [1.9, 6;
|
|
8.5, 13;
|
|
15.5, 21;
|
|
22.6, 26;
|
|
30.0, 36;
|
|
37.5, 41;
|
|
46.2, 49.5]
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
Fit function:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">f = @(b,x) b(1)<span class="org-type">.*</span>exp(b(2)<span class="org-type">.*</span>x) <span class="org-type">+</span> b(3);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
We are interested by the <code>b(2)</code> term, which is the time constant of the exponential.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">tau = zeros(size(t_s, 1),1);
|
|
V0 = zeros(size(t_s, 1),1);
|
|
</pre>
|
|
</div>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab"><span class="org-keyword">for</span> <span class="org-variable-name">t_i</span> = <span class="org-constant">1:size(t_s, 1)</span>
|
|
t_cur = t(t_s(t_i, 1) <span class="org-type"><</span> t <span class="org-type">&</span> t <span class="org-type"><</span> t_s(t_i, 2));
|
|
t_cur = t_cur <span class="org-type">-</span> t_cur(1);
|
|
y_cur = v(t_s(t_i, 1) <span class="org-type"><</span> t <span class="org-type">&</span> t <span class="org-type"><</span> t_s(t_i, 2));
|
|
|
|
nrmrsd = @(b) norm(y_cur <span class="org-type">-</span> f(b,t_cur)); <span class="org-comment">% Residual Norm Cost Function</span>
|
|
B0 = [0.5, <span class="org-type">-</span>0.2, 0.2]; <span class="org-comment">% Choose Appropriate Initial Estimates</span>
|
|
[B,rnrm] = fminsearch(nrmrsd, B0); <span class="org-comment">% Estimate Parameters ‘B’</span>
|
|
|
|
tau(t_i) = 1<span class="org-type">/</span>B(2);
|
|
V0(t_i) = B(3);
|
|
<span class="org-keyword">end</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
And indeed, we obtain a much smaller offset voltage and a much faster time constant.
|
|
</p>
|
|
|
|
<table border="2" cellspacing="0" cellpadding="6" rules="groups" frame="hsides">
|
|
|
|
|
|
<colgroup>
|
|
<col class="org-right" />
|
|
|
|
<col class="org-right" />
|
|
</colgroup>
|
|
<thead>
|
|
<tr>
|
|
<th scope="col" class="org-right">\(tau\) [s]</th>
|
|
<th scope="col" class="org-right">\(V_0\) [V]</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td class="org-right">0.43</td>
|
|
<td class="org-right">0.15</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">0.45</td>
|
|
<td class="org-right">0.16</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">0.43</td>
|
|
<td class="org-right">0.15</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">0.43</td>
|
|
<td class="org-right">0.15</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">0.45</td>
|
|
<td class="org-right">0.15</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">0.46</td>
|
|
<td class="org-right">0.16</td>
|
|
</tr>
|
|
|
|
<tr>
|
|
<td class="org-right">0.48</td>
|
|
<td class="org-right">0.16</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
|
|
<p>
|
|
Knowing the capacitance value, we can estimate the value of the added resistor (neglecting the input impedance of \(\approx 1\,M\Omega\)):
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Cp = 4.4e<span class="org-type">-</span>6; <span class="org-comment">% [F]</span>
|
|
Rin = abs(mean(tau))<span class="org-type">/</span>Cp;
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
101200.0
|
|
</pre>
|
|
|
|
|
|
<p>
|
|
And we can verify that the bias current estimation stays the same:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">in = mean(V0)<span class="org-type">/</span>Rin;
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
1.5305e-06
|
|
</pre>
|
|
|
|
|
|
<p>
|
|
This validates the model of the ADC and the effectiveness of the added resistor.
|
|
</p>
|
|
</div>
|
|
</div>
|
|
|
|
<div id="outline-container-org7cfe5a8" class="outline-3">
|
|
<h3 id="org7cfe5a8"><span class="section-number-3">6.3</span> Sinus</h3>
|
|
<div class="outline-text-3" id="text-6-3">
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">load(<span class="org-string">'./mat/force_sensor_sin.mat'</span>, <span class="org-string">'t'</span>, <span class="org-string">'encoder'</span>, <span class="org-string">'u'</span>, <span class="org-string">'v'</span>);
|
|
|
|
u = u(t<span class="org-type">></span>25);
|
|
v = v(t<span class="org-type">></span>25);
|
|
encoder = encoder(t<span class="org-type">></span>25) <span class="org-type">-</span> mean(encoder(t<span class="org-type">></span>25));
|
|
t = t(t<span class="org-type">></span>25);
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
The driving voltage is a sinus at 0.5Hz centered on 3V and with an amplitude of 3V (Figure <a href="#orga42b4f8">20</a>).
|
|
</p>
|
|
|
|
|
|
<div id="orga42b4f8" class="figure">
|
|
<p><img src="figs/force_sensor_sin_u.png" alt="force_sensor_sin_u.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 20: </span>Driving Voltage</p>
|
|
</div>
|
|
|
|
<p>
|
|
The full stroke as measured by the encoder is:
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">max(encoder)<span class="org-type">-</span>min(encoder)
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
5.005e-05
|
|
</pre>
|
|
|
|
|
|
<p>
|
|
Its signal is shown in Figure <a href="#orgcda82ea">21</a>.
|
|
</p>
|
|
|
|
|
|
<div id="orgcda82ea" class="figure">
|
|
<p><img src="figs/force_sensor_sin_encoder.png" alt="force_sensor_sin_encoder.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 21: </span>Encoder measurement</p>
|
|
</div>
|
|
|
|
<p>
|
|
The generated voltage by the stack is shown in Figure
|
|
</p>
|
|
|
|
|
|
<div id="orgdd5fd9b" class="figure">
|
|
<p><img src="figs/force_sensor_sin_stack.png" alt="force_sensor_sin_stack.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 22: </span>Voltage measured on the stack used as a sensor</p>
|
|
</div>
|
|
|
|
<p>
|
|
The capacitance of the stack is
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">Cp = 4.4e<span class="org-type">-</span>6; <span class="org-comment">% [F]</span>
|
|
</pre>
|
|
</div>
|
|
|
|
<p>
|
|
The corresponding generated charge is then shown in Figure <a href="#org15cf433">23</a>.
|
|
</p>
|
|
|
|
<div id="org15cf433" class="figure">
|
|
<p><img src="figs/force_sensor_sin_charge.png" alt="force_sensor_sin_charge.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 23: </span>Generated Charge</p>
|
|
</div>
|
|
|
|
|
|
<p>
|
|
The relation between the generated voltage and the measured displacement is almost linear as shown in Figure <a href="#orge276186">24</a>.
|
|
</p>
|
|
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">b1 = encoder<span class="org-type">\</span>(v<span class="org-type">-</span>mean(v));
|
|
</pre>
|
|
</div>
|
|
|
|
|
|
<div id="orge276186" class="figure">
|
|
<p><img src="figs/force_sensor_linear_relation.png" alt="force_sensor_linear_relation.png" />
|
|
</p>
|
|
<p><span class="figure-number">Figure 24: </span>Almost linear relation between the relative displacement and the generated voltage</p>
|
|
</div>
|
|
|
|
<p>
|
|
With a 16bits ADC, the resolution will then be equals to (in [nm]):
|
|
</p>
|
|
<div class="org-src-container">
|
|
<pre class="src src-matlab">abs((20<span class="org-type">/</span>2<span class="org-type">^</span>16)<span class="org-type">/</span>(b1<span class="org-type">/</span>1e9))
|
|
</pre>
|
|
</div>
|
|
|
|
<pre class="example">
|
|
3.9838
|
|
</pre>
|
|
|
|
|
|
<style>.csl-entry{text-indent: -1.5em; margin-left: 1.5em;}</style><h2 class='citeproc-org-bib-h2'>Bibliography</h2>
|
|
<div class="csl-bib-body">
|
|
<div class="csl-entry"><a name="citeproc_bib_item_1"></a>Reza, Moheimani, and Fleming Andrew. 2006. <i>Piezoelectric Transducers for Vibration Control and Damping</i>. London: Springer.</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div id="postamble" class="status">
|
|
<p class="author">Author: Dehaeze Thomas</p>
|
|
<p class="date">Created: 2020-11-04 mer. 20:38</p>
|
|
</div>
|
|
</body>
|
|
</html>
|