Use online CSS and JS

This commit is contained in:
2020-11-12 10:16:50 +01:00
parent e4f5e82281
commit a0ee8de1d5
8 changed files with 57 additions and 1465 deletions

View File

@@ -3,17 +3,13 @@
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2020-11-10 mar. 12:53 -->
<!-- 2020-11-12 jeu. 10:16 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<title>Encoder - Test Bench</title>
<meta name="generator" content="Org mode" />
<meta name="author" content="Dehaeze Thomas" />
<link rel="stylesheet" type="text/css" href="./css/htmlize.css"/>
<link rel="stylesheet" type="text/css" href="./css/readtheorg.css"/>
<link rel="stylesheet" type="text/css" href="./css/custom.css"/>
<script type="text/javascript" src="./js/jquery.min.js"></script>
<script type="text/javascript" src="./js/bootstrap.min.js"></script>
<script type="text/javascript" src="./js/readtheorg.js"></script>
<link rel="stylesheet" type="text/css" href="https://research.tdehaeze.xyz/css/style.css"/>
<script type="text/javascript" src="https://research.tdehaeze.xyz/js/script.js"></script>
</head>
<body>
<div id="org-div-home-and-up">
@@ -26,19 +22,19 @@
<h2>Table of Contents</h2>
<div id="text-table-of-contents">
<ul>
<li><a href="#org5ac16f2">1. Experimental Setup</a></li>
<li><a href="#org7441659">2. Noise Spectral Density of the Encoder</a>
<li><a href="#org1c5bda2">1. Experimental Setup</a></li>
<li><a href="#orgdc41a88">2. Noise Spectral Density of the Encoder</a>
<ul>
<li><a href="#orgfface02">2.1. Load Data</a></li>
<li><a href="#orgeab98b2">2.2. Time Domain Results</a></li>
<li><a href="#org9d7a1b2">2.3. Frequency Domain Noise</a></li>
<li><a href="#org9693b2a">2.1. Load Data</a></li>
<li><a href="#orgb24809d">2.2. Time Domain Results</a></li>
<li><a href="#org2228685">2.3. Frequency Domain Noise</a></li>
</ul>
</li>
<li><a href="#orga15f5e0">3. Dynamics from Actuator to Encoder</a>
<li><a href="#orge121b74">3. Dynamics from Actuator to Encoder</a>
<ul>
<li><a href="#org371d2a2">3.1. Load Data</a></li>
<li><a href="#orgb2df3c8">3.2. Excitation and Measured Signals</a></li>
<li><a href="#orgfb97858">3.3. Identification</a></li>
<li><a href="#orgae3dfc0">3.1. Load Data</a></li>
<li><a href="#org83ba060">3.2. Excitation and Measured Signals</a></li>
<li><a href="#orge31f70d">3.3. Identification</a></li>
</ul>
</li>
</ul>
@@ -53,23 +49,23 @@ In this document, we wish to study the use of an encoder in parallel with an Amp
The document is divided into the following Sections:
</p>
<ul class="org-ul">
<li>Section <a href="#org973b24d">1</a>: the test-bench used is described</li>
<li>Section <a href="#org7331cce">2</a>: the noise spectral density of the encoder is estimated</li>
<li>Section <a href="#org9fb1af3">3</a>: the dynamics from the amplified piezoelectric actuator to the encoder measured displacement is identified</li>
<li>Section <a href="#orgae74897">1</a>: the test-bench used is described</li>
<li>Section <a href="#org2f2ab76">2</a>: the noise spectral density of the encoder is estimated</li>
<li>Section <a href="#org3ffacc7">3</a>: the dynamics from the amplified piezoelectric actuator to the encoder measured displacement is identified</li>
</ul>
<div id="outline-container-org5ac16f2" class="outline-2">
<h2 id="org5ac16f2"><span class="section-number-2">1</span> Experimental Setup</h2>
<div id="outline-container-org1c5bda2" class="outline-2">
<h2 id="org1c5bda2"><span class="section-number-2">1</span> Experimental Setup</h2>
<div class="outline-text-2" id="text-1">
<p>
<a id="org973b24d"></a>
<a id="orgae74897"></a>
</p>
<p>
The experimental Setup is schematically represented in Figure <a href="#org2529a80">1</a>.
The experimental Setup is schematically represented in Figure <a href="#orgb6cceaa">1</a>.
</p>
<div class="note" id="org3cc7332">
<div class="note" id="org72fff46">
<p>
Here are the equipment used in the test bench:
</p>
@@ -89,21 +85,21 @@ The displacement of the mass (relative to the mechanical frame) is measured both
</p>
<div id="org2529a80" class="figure">
<div id="orgb6cceaa" class="figure">
<p><img src="figs/exp_setup_schematic.png" alt="exp_setup_schematic.png" />
</p>
<p><span class="figure-number">Figure 1: </span>Schematic of the Experiment</p>
</div>
<div id="orgdf4e259" class="figure">
<div id="orge5d61dd" class="figure">
<p><img src="figs/IMG_20201023_153905.jpg" alt="IMG_20201023_153905.jpg" />
</p>
<p><span class="figure-number">Figure 2: </span>Side View of the encoder</p>
</div>
<div id="orga98f1bf" class="figure">
<div id="orgad29df1" class="figure">
<p><img src="figs/IMG_20201023_153914.jpg" alt="IMG_20201023_153914.jpg" />
</p>
<p><span class="figure-number">Figure 3: </span>Front View of the encoder</p>
@@ -111,11 +107,11 @@ The displacement of the mass (relative to the mechanical frame) is measured both
</div>
</div>
<div id="outline-container-org7441659" class="outline-2">
<h2 id="org7441659"><span class="section-number-2">2</span> Noise Spectral Density of the Encoder</h2>
<div id="outline-container-orgdc41a88" class="outline-2">
<h2 id="orgdc41a88"><span class="section-number-2">2</span> Noise Spectral Density of the Encoder</h2>
<div class="outline-text-2" id="text-2">
<p>
<a id="org7331cce"></a>
<a id="org2f2ab76"></a>
</p>
<p>
The goal in this section is the estimate the noise of both the encoder and the intereferometer.
@@ -127,8 +123,8 @@ Ideally, a mechanical part would clamp the two together, we here suppose that th
</p>
</div>
<div id="outline-container-orgfface02" class="outline-3">
<h3 id="orgfface02"><span class="section-number-3">2.1</span> Load Data</h3>
<div id="outline-container-org9693b2a" class="outline-3">
<h3 id="org9693b2a"><span class="section-number-3">2.1</span> Load Data</h3>
<div class="outline-text-3" id="text-2-1">
<p>
The measurement data are loaded and the offset are removed using the <code>detrend</code> command.
@@ -147,22 +143,22 @@ encoder = detrend(encoder, 0);
</div>
</div>
<div id="outline-container-orgeab98b2" class="outline-3">
<h3 id="orgeab98b2"><span class="section-number-3">2.2</span> Time Domain Results</h3>
<div id="outline-container-orgb24809d" class="outline-3">
<h3 id="orgb24809d"><span class="section-number-3">2.2</span> Time Domain Results</h3>
<div class="outline-text-3" id="text-2-2">
<p>
The measurement of both the encoder and interferometer are shown in Figure <a href="#orgc0bfd00">4</a>.
The measurement of both the encoder and interferometer are shown in Figure <a href="#org481639f">4</a>.
</p>
<div id="orgc0bfd00" class="figure">
<div id="org481639f" class="figure">
<p><img src="figs/huddle_test_time_domain.png" alt="huddle_test_time_domain.png" />
</p>
<p><span class="figure-number">Figure 4: </span>Huddle test - Time domain signals</p>
</div>
<p>
The raw signals are filtered with a Low Pass filter (defined below) such that we can see the low frequency motion (Figure <a href="#org2bb066f">5</a>).
The raw signals are filtered with a Low Pass filter (defined below) such that we can see the low frequency motion (Figure <a href="#orgaea06bd">5</a>).
</p>
<div class="org-src-container">
<pre class="src src-matlab">G_lpf = 1<span class="org-type">/</span>(1 <span class="org-type">+</span> s<span class="org-type">/</span>2<span class="org-type">/</span><span class="org-constant">pi</span><span class="org-type">/</span>10);
@@ -170,7 +166,7 @@ The raw signals are filtered with a Low Pass filter (defined below) such that we
</div>
<div id="org2bb066f" class="figure">
<div id="orgaea06bd" class="figure">
<p><img src="figs/huddle_test_time_domain_filtered.png" alt="huddle_test_time_domain_filtered.png" />
</p>
<p><span class="figure-number">Figure 5: </span>Huddle test - Time domain signals filtered with a LPF at 10Hz</p>
@@ -178,8 +174,8 @@ The raw signals are filtered with a Low Pass filter (defined below) such that we
</div>
</div>
<div id="outline-container-org9d7a1b2" class="outline-3">
<h3 id="org9d7a1b2"><span class="section-number-3">2.3</span> Frequency Domain Noise</h3>
<div id="outline-container-org2228685" class="outline-3">
<h3 id="org2228685"><span class="section-number-3">2.3</span> Frequency Domain Noise</h3>
<div class="outline-text-3" id="text-2-3">
<p>
The noise of the measurement (supposing there is no motion) is now translated in the frequency domain by computed the Amplitude Spectral Density.
@@ -195,7 +191,7 @@ win = hann(ceil(10<span class="org-type">/</span>Ts));
</div>
<p>
The comparison of the ASD of the encoder and interferometer are shown in Figure <a href="#org7272303">6</a>.
The comparison of the ASD of the encoder and interferometer are shown in Figure <a href="#org38217d2">6</a>.
</p>
<p>
@@ -203,7 +199,7 @@ It is clear that although the encoder exhibit higher frequency noise, is it more
</p>
<div id="org7272303" class="figure">
<div id="org38217d2" class="figure">
<p><img src="figs/huddle_test_asd.png" alt="huddle_test_asd.png" />
</p>
<p><span class="figure-number">Figure 6: </span>Amplitude Spectral Density of the signals during the Huddle test</p>
@@ -212,19 +208,19 @@ It is clear that although the encoder exhibit higher frequency noise, is it more
</div>
</div>
<div id="outline-container-orga15f5e0" class="outline-2">
<h2 id="orga15f5e0"><span class="section-number-2">3</span> Dynamics from Actuator to Encoder</h2>
<div id="outline-container-orge121b74" class="outline-2">
<h2 id="orge121b74"><span class="section-number-2">3</span> Dynamics from Actuator to Encoder</h2>
<div class="outline-text-2" id="text-3">
<p>
<a id="org9fb1af3"></a>
<a id="org3ffacc7"></a>
</p>
<p>
Now the dynamics from the force actuator to the measurement by the encoder is identified.
</p>
</div>
<div id="outline-container-org371d2a2" class="outline-3">
<h3 id="org371d2a2"><span class="section-number-3">3.1</span> Load Data</h3>
<div id="outline-container-orgae3dfc0" class="outline-3">
<h3 id="orgae3dfc0"><span class="section-number-3">3.1</span> Load Data</h3>
<div class="outline-text-3" id="text-3-1">
<p>
As usual, the measurement data are loaded.
@@ -257,18 +253,18 @@ u = detrend(u, 0);
</div>
</div>
<div id="outline-container-orgb2df3c8" class="outline-3">
<h3 id="orgb2df3c8"><span class="section-number-3">3.2</span> Excitation and Measured Signals</h3>
<div id="outline-container-org83ba060" class="outline-3">
<h3 id="org83ba060"><span class="section-number-3">3.2</span> Excitation and Measured Signals</h3>
<div class="outline-text-3" id="text-3-2">
<p>
The excitation signal is a white noise filtered by a low pass filter to not excite too much the high frequency modes.
</p>
<p>
The excitation signal is shown in Figure <a href="#org0fde08c">7</a>.
The excitation signal is shown in Figure <a href="#org93c938e">7</a>.
</p>
<div id="org0fde08c" class="figure">
<div id="org93c938e" class="figure">
<p><img src="figs/encoder_identification_excitation_time.png" alt="encoder_identification_excitation_time.png" />
</p>
</div>
@@ -277,15 +273,15 @@ The excitation signal is shown in Figure <a href="#org0fde08c">7</a>.
The measured motion by the interferometer and encoder is shown in Figure
</p>
<div id="orgefc6685" class="figure">
<div id="org85b6206" class="figure">
<p><img src="figs/encoder_identification_motion.png" alt="encoder_identification_motion.png" />
</p>
</div>
</div>
</div>
<div id="outline-container-orgfb97858" class="outline-3">
<h3 id="orgfb97858"><span class="section-number-3">3.3</span> Identification</h3>
<div id="outline-container-orge31f70d" class="outline-3">
<h3 id="orge31f70d"><span class="section-number-3">3.3</span> Identification</h3>
<div class="outline-text-3" id="text-3-3">
<p>
Now the dynamics from the voltage sent to the voltage amplitude driving the APA95ML to the measured displacement by both the encoder and interferometer are computed.
@@ -304,22 +300,22 @@ win = hann(ceil(10<span class="org-type">/</span>Ts));
</div>
<p>
The obtained coherence is shown in Figure <a href="#org1795d67">9</a>.
The obtained coherence is shown in Figure <a href="#org646a3b0">9</a>.
It is shown that the identification is good until 500Hz for the interferometer and until 1kHz for the encoder.
</p>
<div id="org1795d67" class="figure">
<div id="org646a3b0" class="figure">
<p><img src="figs/identification_dynamics_coherence.png" alt="identification_dynamics_coherence.png" />
</p>
</div>
<p>
The compared dynamics as measured by the intereferometer and encoder are shown in Figure <a href="#org4ea418f">10</a>.
The compared dynamics as measured by the intereferometer and encoder are shown in Figure <a href="#orgbf0b43f">10</a>.
</p>
<div id="org4ea418f" class="figure">
<div id="orgbf0b43f" class="figure">
<p><img src="figs/identification_dynamics_bode.png" alt="identification_dynamics_bode.png" />
</p>
</div>
@@ -334,7 +330,7 @@ The second resonance at around 900Hz most likely corresponds to the resonance of
</div>
<div id="postamble" class="status">
<p class="author">Author: Dehaeze Thomas</p>
<p class="date">Created: 2020-11-10 mar. 12:53</p>
<p class="date">Created: 2020-11-12 jeu. 10:16</p>
</div>
</body>
</html>