+++
title = "Position Sensors"
author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks
- [A review of nanometer resolution position sensors: operation and performance]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}})
 
- [Measurement technologies for precision positioning]({{< relref "gao15_measur_techn_precis_posit" >}})
 
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
 
- [Sensors]({{< relref "sensors" >}})
 
- [Collocated Control]({{< relref "collocated_control" >}})
 
- Tags
 
- [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Force Sensors]({{< relref "force_sensors" >}}), [Sensor Fusion]({{< relref "sensor_fusion" >}}), [Signal Conditioner]({{< relref "signal_conditioner" >}}), [Signal to Noise Ratio]({{< relref "signal_to_noise_ratio" >}})
 
Reviews of Relative Position Sensors
- Fleming, A. J., A review of nanometer resolution position sensors: operation and performance (Fleming 2013) ([Notes]({{< relref "fleming13_review_nanom_resol_posit_sensor" >}}))
 
| Technology | 
Frequency | 
Resolution | 
Range | 
T Range | 
| LVDT | 
DC-200 Hz | 
10 nm rms | 
1-10 mm | 
-50,100 °C | 
| Eddy current | 
5 kHz | 
0.1-100 nm rms | 
0.5-55 mm | 
-50,100 °C | 
| Capacitive | 
DC-100 kHz | 
0.05-50 nm rms | 
50 nm - 1 cm | 
-40,100 °C | 
| Interferometer | 
300 kHz | 
0.1 nm rms | 
10 cm | 
-250,100 °C | 
| Encoder | 
DC-1 MHz | 
1 nm rms | 
7-27 mm | 
0,40 °C | 
| Bragg Fibers | 
DC-150 Hz | 
0.3 nm rms | 
3.5 cm | 
-30,80 °C | 
| Sensor Type | 
Range | 
DNR | 
Resolution | 
Max. BW | 
Accuracy | 
| Metal foil | 
\(10-500 \mu m\) | 
230 ppm | 
23 nm | 
1-10 kHz | 
1% FSR | 
| Piezoresistive | 
\(1-500 \mu m\) | 
5 ppm | 
0.5 nm | 
>100 kHz | 
1% FSR | 
| Capacitive | 
\(10 \mu m\) to \(10 mm\) | 
24 ppm | 
2.4 nm | 
100 kHz | 
0.1% FSR | 
| Electrothermal | 
\(10 \mu m\) to \(1 mm\) | 
100 ppm | 
10 nm | 
10 kHz | 
1% FSR | 
| Eddy current | 
\(100 \mu m\) to \(80 mm\) | 
10 ppm | 
1 nm | 
40 kHz | 
0.1% FSR | 
| LVDT | 
\(0.5-500 mm\) | 
10 ppm | 
5 nm | 
1 kHz | 
0.25% FSR | 
| Interferometer | 
Meters | 
 | 
0.5 nm | 
>100kHz | 
1 ppm FSR | 
| Encoder | 
Meters | 
 | 
6 nm | 
>100kHz | 
5 ppm FSR | 
Capacitive Sensors and Eddy-Current sensors are compare here.
Capacitive Sensor
Description:
| Manufacturers | 
Links | 
Country | 
| Micro Sense | 
link | 
USA | 
| Micro-Epsilon | 
link | 
Germany | 
| PI | 
link | 
Germany | 
| Unipulse | 
link | 
Japan | 
| Lion-Precision | 
link | 
USA | 
| Fogale | 
link | 
USA | 
| Queensgate | 
link | 
UK | 
| Capacitec | 
link | 
USA | 
Inductive Sensor (Eddy Current)
| Manufacturers | 
Links | 
 | 
| Micro-Epsilon | 
link | 
Germany | 
| Lion Precision | 
link | 
USA | 
| Cedrat | 
link | 
France | 
| Kaman | 
link | 
USA | 
| Keyence | 
link | 
USA | 
Inductive Sensor (LVDT)
| Manufacturers | 
Links | 
Country | 
| Micro-Epsilon | 
link | 
Germany | 
| Keyence | 
link | 
USA | 
Interferometers
| Manufacturers | 
Links | 
Country | 
| Attocube | 
link | 
Germany | 
| Zygo | 
link | 
USA | 
| Smaract | 
link | 
Germany | 
| Qutools | 
link | 
Germany | 
| Renishaw | 
link | 
UK | 
| Sios | 
link | 
Germany | 
| Keysight | 
link | 
USA | 
  Table 3:
  Characteristics of Environmental Units
 | 
Temperature (\(\pm\ ^oC\)) | 
Pressure (\(\pm\ hPa\)) | 
Humidity \(\pm\% RH\) | 
Wavelength Accuracy (\(\pm\ \text{ppm}\)) | 
| Attocube | 
0.1 | 
1 | 
2 | 
0.5 | 
| Renishaw | 
0.2 | 
1 | 
6 | 
1 | 
| Picoscale | 
0.2 | 
2 | 
2 | 
1 | 
(Jang and Kim 2017)
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
Linear Encoders
| Manufacturers | 
Links | 
Country | 
| Heidenhain | 
link | 
Germany | 
| MicroE Systems | 
link | 
USA | 
| Renishaw | 
link | 
UK | 
Bibliography
Fleming, Andrew J. 2013. “A Review of Nanometer Resolution Position Sensors: Operation and Performance.” Sensors and Actuators a: Physical 190 (nil):106–26. https://doi.org/10.1016/j.sna.2012.10.016.
Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” International Journal of Precision Engineering and Manufacturing 18 (12):1881–90. https://doi.org/10.1007/s12541-017-0217-y.