Update Content - 2021-05-02

This commit is contained in:
2021-05-02 20:37:00 +02:00
parent 699e8a7905
commit f975b4bd90
77 changed files with 1212 additions and 666 deletions

View File

@@ -12,7 +12,7 @@ Tags
<https://dewesoft.com/daq/types-of-adc-converters>
- Delta Sigma ([Baker 2011](#org9db2758))
- Delta Sigma ([Baker 2011](#orgf10fad8))
- Successive Approximation
@@ -31,9 +31,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
Interestingly, the noise amplitude is uniformly distributed.
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., its a uniform distribution).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org79dc805)).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org0a7db3b)).
<a id="org79dc805"></a>
<a id="org0a7db3b"></a>
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
@@ -85,6 +85,7 @@ The quantization is:
{{< youtube b9lxtOJj3yU >}}
## Bibliography {#bibliography}
<a id="org9db2758"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
<a id="orgf10fad8"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.