Update Content - 2021-05-02

This commit is contained in:
2021-05-02 20:37:00 +02:00
parent 699e8a7905
commit f975b4bd90
77 changed files with 1212 additions and 666 deletions

View File

@@ -15,5 +15,3 @@ Tags
| [Dewesoft](https://dewesoft.com/) | Slovenia |
| [Oros](https://www.oros.com/) | France |
| [National Instruments](https://www.ni.com/fr-fr/shop/pc-based-measurement-and-control-system.html) | USA |
<./biblio/references.bib>

View File

@@ -4,20 +4,17 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Sensor Fusion]({{< relref "sensor_fusion" >}})
Tags
: [Complementary Filters]({{< relref "complementary_filters" >}})
([Beijen et al. 2019](#orgaff80f9))
([Beijen et al. 2019](#orgc359149))
([Beijen 2018](#org585205d)) (section 6.3.1)
([Beijen 2018](#org35f402d)) (section 6.3.1)
## Bibliography {#bibliography}
<a id="org35f402d"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.
<a id="org585205d"></a>Beijen, MA. 2018. “Disturbance Feedforward Control for Vibration Isolation Systems: Analysis, Design, and Implementation.” Technische Universiteit Eindhoven.
<a id="orgaff80f9"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” _Mechatronics_ 61:10616. <https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005>.
<a id="orgc359149"></a>Beijen, Michiel A., Marcel F. Heertjes, Hans Butler, and Maarten Steinbuch. 2019. “Mixed Feedback and Feedforward Control Design for Multi-Axis Vibration Isolation Systems.” _Mechatronics_ 61:10616. <https://doi.org/https://doi.org/10.1016/j.mechatronics.2019.06.005>.

View File

@@ -4,13 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Collocated Control]({{< relref "collocated_control" >}})
- [Comparison and classification of high-precision actuators based on stiffness influencing vibration isolation]({{< relref "ito16_compar_class_high_precis_actuat" >}})
- [Voice Coil Actuators]({{< relref "voice_coil_actuators" >}})
- [Piezoelectric Actuators]({{< relref "piezoelectric_actuators" >}})
Tags
:
@@ -24,18 +17,19 @@ Links to specific actuators:
For vibration isolation:
- In ([Ito and Schitter 2016](#org7d0bcd5)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
- In ([Ito and Schitter 2016](#org4bbf168)), the effect of the actuator stiffness on the attainable vibration isolation is studied ([Notes]({{< relref "ito16_compar_class_high_precis_actuat" >}}))
## Brush-less DC Motor {#brush-less-dc-motor}
- ([Yedamale 2003](#org87858d4))
- ([Yedamale 2003](#org1638958))
<https://www.electricaltechnology.org/2016/05/bldc-brushless-dc-motor-construction-working-principle.html>
## Bibliography {#bibliography}
<a id="org7d0bcd5"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):116978. <https://doi.org/10.1109/tmech.2015.2478658>.
<a id="org4bbf168"></a>Ito, Shingo, and Georg Schitter. 2016. “Comparison and Classification of High-Precision Actuators Based on Stiffness Influencing Vibration Isolation.” _IEEE/ASME Transactions on Mechatronics_ 21 (2):116978. <https://doi.org/10.1109/tmech.2015.2478658>.
<a id="org87858d4"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:315.
<a id="org1638958"></a>Yedamale, Padmaraja. 2003. “Brushless Dc (BLDC) Motor Fundamentals.” _Microchip Technology Inc_ 20:315.

View File

@@ -12,7 +12,7 @@ Tags
<https://dewesoft.com/daq/types-of-adc-converters>
- Delta Sigma ([Baker 2011](#org9db2758))
- Delta Sigma ([Baker 2011](#orgf10fad8))
- Successive Approximation
@@ -31,9 +31,9 @@ Let's suppose that the ADC is ideal and the only noise comes from the quantizati
Interestingly, the noise amplitude is uniformly distributed.
The quantization noise can take a value between \\(\pm q/2\\), and the probability density function is constant in this range (i.e., its a uniform distribution).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org79dc805)).
Since the integral of the probability density function is equal to one, its value will be \\(1/q\\) for \\(-q/2 < e < q/2\\) (Fig. [1](#org0a7db3b)).
<a id="org79dc805"></a>
<a id="org0a7db3b"></a>
{{< figure src="/ox-hugo/probability_density_function_adc.png" caption="Figure 1: Probability density function \\(p(e)\\) of the ADC error \\(e\\)" >}}
@@ -85,6 +85,7 @@ The quantization is:
{{< youtube b9lxtOJj3yU >}}
## Bibliography {#bibliography}
<a id="org9db2758"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.
<a id="orgf10fad8"></a>Baker, Bonnie. 2011. “How Delta-Sigma Adcs Work, Part.” _Analog Applications_ 7.

View File

@@ -28,5 +28,3 @@ Tags
| [Capacitec](https://www.capacitec.com/Displacement-Sensing-Systems) | USA |
| [MTIinstruments](https://www.mtiinstruments.com/products/non-contact-measurement/capacitance-sensors/) | USA |
| [Althen](https://www.althensensors.com/sensors/linear-position-sensors/capacitive-position-sensors/) | Netherlands |
<./biblio/references.bib>

View File

@@ -17,19 +17,19 @@ This can be typically used to interface with piezoelectric sensors.
## Basic Circuit {#basic-circuit}
Two basic circuits of charge amplifiers are shown in Figure [1](#org4fccf5a) (taken from ([Fleming 2010](#org17ae69b))) and Figure [2](#orgad97f51) (taken from ([Schmidt, Schitter, and Rankers 2014](#orge90efed)))
Two basic circuits of charge amplifiers are shown in Figure [1](#org45de288) (taken from ([Fleming 2010](#org2341229))) and Figure [2](#org8955723) (taken from ([Schmidt, Schitter, and Rankers 2014](#orgf9a1421)))
<a id="org4fccf5a"></a>
<a id="org45de288"></a>
{{< figure src="/ox-hugo/charge_amplifier_circuit.png" caption="Figure 1: Electrical model of a piezoelectric force sensor is shown in gray. The op-amp charge amplifier is shown on the right. The output voltage \\(V\_s\\) equal to \\(-q/C\_s\\)" >}}
<a id="orgad97f51"></a>
<a id="org8955723"></a>
{{< figure src="/ox-hugo/charge_amplifier_circuit_bis.png" caption="Figure 2: A piezoelectric accelerometer with a charge amplifier as signal conditioning element" >}}
The input impedance of the charge amplifier is very small (unlike when using a voltage amplifier).
The gain of the charge amplified (Figure [1](#org4fccf5a)) is equal to:
The gain of the charge amplified (Figure [1](#org45de288)) is equal to:
\\[ \frac{V\_s}{q} = \frac{-1}{C\_s} \\]
@@ -47,8 +47,9 @@ The gain of the charge amplified (Figure [1](#org4fccf5a)) is equal to:
| [L-Card](https://en.lcard.ru/products/accesories/le-41) | Rusia |
## Bibliography {#bibliography}
<a id="org17ae69b"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.
<a id="org2341229"></a>Fleming, A.J. 2010. “Nanopositioning System with Force Feedback for High-Performance Tracking and Vibration Control.” _IEEE/ASME Transactions on Mechatronics_ 15 (3):43347. <https://doi.org/10.1109/tmech.2009.2028422>.
<a id="orge90efed"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.
<a id="orgf9a1421"></a>Schmidt, R Munnig, Georg Schitter, and Adrian Rankers. 2014. _The Design of High Performance Mechatronics - 2nd Revised Edition_. Ios Press.

View File

@@ -10,9 +10,10 @@ Tags
## Complementary Filters Synthesis {#complementary-filters-synthesis}
The shaping of complementary filters can be done using the \\(\mathcal{H}\_\infty\\) synthesis ([Dehaeze, Vermat, and Christophe 2019](#orgc79060a)).
The shaping of complementary filters can be done using the \\(\mathcal{H}\_\infty\\) synthesis ([Dehaeze, Vermat, and Christophe 2019](#org0c35169)).
## Bibliography {#bibliography}
<a id="orgc79060a"></a>Dehaeze, Thomas, Mohit Vermat, and Collette Christophe. 2019. “Complementary Filters Shaping Using \\(mathcalH\_Infty\\) Synthesis.” In _7th International Conference on Control, Mechatronics and Automation (ICCMA)_, 45964. <https://doi.org/10.1109/ICCMA46720.2019.8988642>.
<a id="org0c35169"></a>Dehaeze, Thomas, Mohit Vermat, and Collette Christophe. 2019. “Complementary Filters Shaping Using \\(mathcalH\_Infty\\) Synthesis.” In _7th International Conference on Control, Mechatronics and Automation (ICCMA)_, 45964. <https://doi.org/10.1109/ICCMA46720.2019.8988642>.

View File

@@ -4,12 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
- [Sensors and control of a space-based six-axis vibration isolation system]({{< relref "hauge04_sensor_contr_space_based_six" >}})
Tags
:
@@ -19,12 +13,13 @@ Tags
## Special Properties {#special-properties}
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#org4014064)))
Cubic Stewart Platforms can be decoupled provided that (from ([Chen and McInroy 2000](#org0969434)))
> 1. The payload mass-inertia matrix is diagonal
> 2. If a mutually orthogonal geometry has been selected, the payload's center of mass must coincide with the center of the cube formed by the orthogonal struts.
## Bibliography {#bibliography}
<a id="org4014064"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org0969434"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.

View File

@@ -6,5 +6,3 @@ draft = false
Tags
: [Electronics]({{< relref "electronics" >}})
<./biblio/references.bib>

View File

@@ -6,5 +6,3 @@ draft = false
Tags
: [Active Damping]({{< relref "active_damping" >}})
<./biblio/references.bib>

View File

@@ -18,5 +18,3 @@ There are two main types of encoders: optical encoders, and magnetic encoders.
| [MicroE Systems](https://www.celeramotion.com/microe/products/linear-encoders/) | USA |
| [Renishaw](https://www.renishaw.com/en/browse-encoder-range--6440) | UK |
| [Celera Motion](https://www.celeramotion.com/microe/) | USA |
<./biblio/references.bib>

View File

@@ -4,18 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Identification and decoupling control of flexure jointed hexapods]({{< relref "chen00_ident_decoup_contr_flexur_joint_hexap" >}})
- [Dynamic modeling and experimental analyses of stewart platform with flexible hinges]({{< relref "jiao18_dynam_model_exper_analy_stewar" >}})
- [A six-axis single-stage active vibration isolator based on stewart platform]({{< relref "preumont07_six_axis_singl_stage_activ" >}})
- [Investigation on active vibration isolation of a stewart platform with piezoelectric actuators]({{< relref "wang16_inves_activ_vibrat_isolat_stewar" >}})
- [Nanometre-cutting machine using a stewart-platform parallel mechanism]({{< relref "furutani04_nanom_cuttin_machin_using_stewar" >}})
- [Simultaneous, fault-tolerant vibration isolation and pointing control of flexure jointed hexapods]({{< relref "li01_simul_fault_vibrat_isolat_point" >}})
- [Dynamic modeling of flexure jointed hexapods for control purposes]({{< relref "mcinroy99_dynam" >}})
- [Dynamic modeling and decoupled control of a flexible stewart platform for vibration isolation]({{< relref "yang19_dynam_model_decoup_contr_flexib" >}})
- [Flexures]({{< relref "flexures" >}})
Tags
:
@@ -24,32 +12,33 @@ Tags
Books:
- ([Lobontiu 2002](#org74b9989))
- ([Henein 2003](#org1491e2e))
- ([Smith 2005](#orgcdbef5f))
- ([Soemers 2011](#org9626592))
- ([Cosandier 2017](#org9b28dc9))
- ([Lobontiu 2002](#orgf96bd1c))
- ([Henein 2003](#org77c1a30))
- ([Smith 2005](#orgdf03b02))
- ([Soemers 2011](#orgc441221))
- ([Cosandier 2017](#orgc637f07))
## Flexure Joints for Stewart Platforms: {#flexure-joints-for-stewart-platforms}
From ([Chen and McInroy 2000](#org4bbdddf)):
From ([Chen and McInroy 2000](#org26c43a0)):
> To avoid the extremely non-linear micro-dynamics of joint friction and backlash, these hexapods employ flexure joints.
> A flexure joint bends material to achieve motion, rather than sliding of rolling across two surfaces.
> This does eliminate friction and backlash, but adds spring dynamics and limits the workspace.
## Bibliography {#bibliography}
<a id="org4bbdddf"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org26c43a0"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org9b28dc9"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
<a id="orgc637f07"></a>Cosandier, Florent. 2017. _Flexure Mechanism Design_. Boca Raton, FL Lausanne, Switzerland: Distributed by CRC Press, 2017EOFL Press.
<a id="org1491e2e"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
<a id="org77c1a30"></a>Henein, Simon. 2003. _Conception Des Guidages Flexibles_. Lausanne, Suisse: Presses polytechniques et universitaires romandes.
<a id="org74b9989"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
<a id="orgf96bd1c"></a>Lobontiu, Nicolae. 2002. _Compliant Mechanisms: Design of Flexure Hinges_. CRC press.
<a id="orgcdbef5f"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
<a id="orgdf03b02"></a>Smith, Stuart T. 2005. _Foundations of Ultra-Precision Mechanism Design_. Vol. 2. CRC Press.
<a id="org9626592"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.
<a id="orgc441221"></a>Soemers, Herman. 2011. _Design Principles for Precision Mechanisms_. T-Pointprint.

View File

@@ -14,5 +14,3 @@ Tags
|--------------------------------------------------|---------|
| [Microplan](https://www.microplan-group.com/fr/) | France |
| [Zali](http://zali-precision.it/en/products/) | Italy |
<./biblio/references.bib>

View File

@@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Guidelines for the selection of weighting functions for h-infinity control]({{< relref "bibel92_guidel_h" >}})
Tags
:
@@ -19,5 +15,3 @@ From _Rosenbrock, H. H. (1974). Computer-Aided Control System Design, Academic P
> Solutions are constrained by so many requirements that it is virtually impossible to list them all.
> The designer finds himself threading a maze of such requirements, attempting to reconcile conflicting demands of cost, performance, easy maintenance, and so on.
> A good design usually has strong aesthetic appeal to those who are competent in the subject.
<./biblio/references.bib>

View File

@@ -10,10 +10,10 @@ Tags
## Review of Absolute (inertial) Position Sensors {#review-of-absolute--inertial--position-sensors}
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orgb31e055))
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orgcd873cb))
- Collette, C. et al., Review: inertial sensors for low-frequency seismic vibration measurement ([Collette, Janssens, Fernandez-Carmona, et al. 2012](#orge266e77))
- Collette, C. et al., Comparison of new absolute displacement sensors ([Collette, Janssens, Mokrani, et al. 2012](#orga0b31ea))
<a id="org392ac3e"></a>
<a id="orgaa8be44"></a>
{{< figure src="/ox-hugo/collette12_absolute_disp_sensors.png" caption="Figure 1: Dynamic range of several types of inertial sensors; Price versus resolution for several types of inertial sensors" >}}
@@ -35,7 +35,7 @@ Wireless Accelerometers
- <https://micromega-dynamics.com/products/recovib/miniature-vibration-recorder/>
<a id="org4561c6d"></a>
<a id="org47441e2"></a>
{{< figure src="/ox-hugo/inertial_sensors_characteristics_accelerometers.png" caption="Figure 2: Characteristics of commercially available accelerometers <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
@@ -52,13 +52,14 @@ Wireless Accelerometers
| [Guralp](https://www.guralp.com/products/surface) | UK |
| [Nanometric](https://www.nanometrics.ca/products/seismometers) | Canada |
<a id="orgd74071e"></a>
<a id="orga5e26ab"></a>
{{< figure src="/ox-hugo/inertial_sensors_characteristics_geophone.png" caption="Figure 3: Characteristics of commercially available geophones <sup id=\"642a18d86de4e062c6afb0f5f20501c4\"><a href=\"#collette11_review\" title=\"Collette, Artoos, Guinchard, Janssens, , Carmona Fernandez \&amp; Hauviller, Review of sensors for low frequency seismic vibration measurement, CERN, (2011).\">collette11_review</a></sup>" >}}
## Bibliography {#bibliography}
<a id="orgb31e055"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):12891300. <https://doi.org/10.1785/0120110223>.
<a id="orge266e77"></a>Collette, C., S. Janssens, P. Fernandez-Carmona, K. Artoos, M. Guinchard, C. Hauviller, and A. Preumont. 2012. “Review: Inertial Sensors for Low-Frequency Seismic Vibration Measurement.” _Bulletin of the Seismological Society of America_ 102 (4):12891300. <https://doi.org/10.1785/0120110223>.
<a id="orgcd873cb"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.
<a id="orga0b31ea"></a>Collette, C, S Janssens, B Mokrani, L Fueyo-Roza, K Artoos, M Esposito, P Fernandez-Carmona, M Guinchard, and R Leuxe. 2012. “Comparison of New Absolute Displacement Sensors.” In _International Conference on Noise and Vibration Engineering (ISMA)_.

View File

@@ -17,5 +17,3 @@ And instrumented hammer consist of a regular hammer with a force sensor fixed at
| [PCB](https://www.pcb.com/sensors-for-test-measurement/impact-hammers-electrodynamic-shakers/impact-hammers) | USA |
| [DJB](https://www.djbinstruments.com/products/instrumentation/impact-hammers) | UK |
| [Dewesoft](https://dewesoft.com/fr/products/interfaces-and-sensors/accelerometers-and-modal-hammers) | Slovenia |
<./biblio/references.bib>

View File

@@ -24,7 +24,7 @@ Tags
## Effect of Refractive Index - Environmental Units {#effect-of-refractive-index-environmental-units}
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org68c8bbb))).
The measured distance is proportional to the refractive index of the air that depends on several quantities as shown in Table [1](#table--tab:index-air) (Taken from ([Thurner et al. 2015](#org1b86993))).
<a id="table--tab:index-air"></a>
<div class="table-caption">
@@ -59,16 +59,16 @@ Typical characteristics of commercial environmental units are shown in Table [2]
## Interferometer Precision {#interferometer-precision}
Figure [1](#org960bbd9) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#orgd724d07))).
Figure [1](#org3490ef0) shows the expected precision as a function of the measured distance due to change of refractive index of the air (taken from ([Jang and Kim 2017](#org3b0a481))).
<a id="org960bbd9"></a>
<a id="org3490ef0"></a>
{{< figure src="/ox-hugo/position_sensor_interferometer_precision.png" caption="Figure 1: Expected precision of interferometer as a function of measured distance" >}}
## Sources of uncertainty {#sources-of-uncertainty}
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#orgeacbea1)).
Sources of error in laser interferometry are well described in ([Ducourtieux 2018](#org588696d)).
It includes:
@@ -78,18 +78,19 @@ It includes:
- Pressure: \\(K\_P \approx 0.27 ppm hPa^{-1}\\)
- Humidity: \\(K\_{HR} \approx 0.01 ppm \% RH^{-1}\\)
- These errors can partially be compensated using an environmental unit.
- Air turbulence (Figure [2](#orgd403994))
- Air turbulence (Figure [2](#orgceb0667))
- Non linearity
<a id="orgd403994"></a>
<a id="orgceb0667"></a>
{{< figure src="/ox-hugo/interferometers_air_turbulence.png" caption="Figure 2: Effect of air turbulences on measurement stability" >}}
## Bibliography {#bibliography}
<a id="orgeacbea1"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
<a id="org588696d"></a>Ducourtieux, Sebastien. 2018. “Toward High Precision Position Control Using Laser Interferometry: Main Sources of Error.” <https://doi.org/10.13140/rg.2.2.21044.35205>.
<a id="orgd724d07"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):188190. <https://doi.org/10.1007/s12541-017-0217-y>.
<a id="org3b0a481"></a>Jang, Yoon-Soo, and Seung-Woo Kim. 2017. “Compensation of the Refractive Index of Air in Laser Interferometer for Distance Measurement: A Review.” _International Journal of Precision Engineering and Manufacturing_ 18 (12):188190. <https://doi.org/10.1007/s12541-017-0217-y>.
<a id="org68c8bbb"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:305163.
<a id="org1b86993"></a>Thurner, Klaus, Francesca Paola Quacquarelli, Pierre-François Braun, Claudio Dal Savio, and Khaled Karrai. 2015. “Fiber-Based Distance Sensing Interferometry.” _Applied Optics_ 54 (10). Optical Society of America:305163.

View File

@@ -32,7 +32,7 @@ Tags
>
> The primary disadvantage of FIR filters is that they often require a much higher filter order than IIR filters to achieve a given level of performance. Correspondingly, the delay of these filters is often much greater than for an equal performance IIR filter.
From ([Shaw and Srinivasan 1990](#org9a58282))
From ([Shaw and Srinivasan 1990](#orge62ce0f))
> The FIR are capable of realizing filters with linear phase shift characteristics and furthermore are less susceptible to signal input and filter coefficient quantization effects.
> However, their computational demands are excessively large because of the large number of multiplications and additions to be performed at each sampling interval.
@@ -49,6 +49,7 @@ From <https://dsp.stackexchange.com/a/30999>
> - Feed-forward control. FIR filters are useful for producing filters that approximate arbitrary frequency responses, hence they can be used to shape a reference signal. A typical example is to use an FIR filter with the inverse frequency response of the plant -- trying to counteract the dynamics of the plant in order to get a desired output. Phase/time-delay is not interfering with the stability or performance since the computation can be done offline. FIR filters can often produce higher performance than IIR filters, especially where there are non-minimum phase zeros.
## Bibliography {#bibliography}
<a id="org9a58282"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):2338. <https://doi.org/10.1016/0888-3270(90)>90038-m.
<a id="orge62ce0f"></a>Shaw, F.R., and K. Srinivasan. 1990. “Bandwidth Enhancement of Position Measurements Using Measured Acceleration.” _Mechanical Systems and Signal Processing_ 4 (1):2338. <https://doi.org/10.1016/0888-3270(90)>90038-m.

View File

@@ -10,7 +10,7 @@ Tags
## Actuated Mass Spring Damper System {#actuated-mass-spring-damper-system}
Let's consider Figure [1](#orgeec8f0f) where:
Let's consider Figure [1](#orga358a0b) where:
- \\(m\\) is the mass in [kg]
- \\(ḱ\\) is the spring stiffness in [N/m]
@@ -20,7 +20,7 @@ Let's consider Figure [1](#orgeec8f0f) where:
- \\(w\\) is ground motion
- \\(x\\) is the absolute mass motion
<a id="orgeec8f0f"></a>
<a id="orga358a0b"></a>
{{< figure src="/ox-hugo/mass_spring_damper_system.png" caption="Figure 1: Mass Spring Damper System" >}}
@@ -54,5 +54,3 @@ with:
\begin{equation}
\frac{x}{F\_d}(s) = \frac{1/k}{\frac{s^2}{\omega\_0^2} + 2 \xi \frac{s}{\omega\_0} + 1}
\end{equation}
<./biblio/references.bib>

View File

@@ -4,10 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Simulink]({{< relref "simulink" >}})
Tags
: [Simulink]({{< relref "simulink" >}})
@@ -16,11 +12,11 @@ Tags
Books:
- ([Higham 2017](#org9e841d2))
- ([Attaway 2018](#org1d7c8f3))
- ([OverFlow 2018](#orgdf04055))
- ([Johnson 2010](#org329fa4a))
- ([Hahn and Valentine 2016](#org7d00587))
- ([Higham 2017](#org68f863c))
- ([Attaway 2018](#org3441bfb))
- ([OverFlow 2018](#org8e0ff2b))
- ([Johnson 2010](#org019531d))
- ([Hahn and Valentine 2016](#orgbeacac3))
## Useful Commands {#useful-commands}
@@ -56,12 +52,12 @@ Books:
### Do not show legend for one plot {#do-not-show-legend-for-one-plot}
```matlab
figure;
hold on;
plot(x, y1, 'DisplayName, 'lengendname');
plot(x, y2, 'HandleVisibility', 'off');
hold off;
legend('Location', 'northeast');
figure;
hold on;
plot(x, y1, 'DisplayName, 'lengendname');
plot(x, y2, 'HandleVisibility', 'off');
hold off;
legend('Location', 'northeast');
```
@@ -70,7 +66,7 @@ legend('Location', 'northeast');
If a single user is using the Matlab installation on the machine:
```bash
sudo chown -R $LOGNAME: /usr/local/MATLAB/R2017b
sudo chown -R $LOGNAME: /usr/local/MATLAB/R2017b
```
Then, Toolboxes can be installed by the user without any problem.
@@ -109,14 +105,15 @@ Nice functions:
| `echo` | Display statements during function execution |
## Bibliography {#bibliography}
<a id="org1d7c8f3"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
<a id="org3441bfb"></a>Attaway, Stormy. 2018. _MATLAB : a Practical Introduction to Programming and Problem Solving_. Amsterdam: Butterworth-Heinemann.
<a id="org7d00587"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
<a id="orgbeacac3"></a>Hahn, Brian, and Daniel T Valentine. 2016. _Essential MATLAB for Engineers and Scientists_. Academic Press.
<a id="org9e841d2"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
<a id="org68f863c"></a>Higham, Desmond. 2017. _MATLAB Guide_. Philadelphia: Society for Industrial and Applied Mathematics.
<a id="org329fa4a"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
<a id="org019531d"></a>Johnson, Richard K. 2010. _The Elements of MATLAB Style_. Cambridge University Press.
<a id="orgdf04055"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.
<a id="org8e0ff2b"></a>OverFlow, Stack. 2018. _MATLAB Notes for Professionals_. GoalKicker.com.

View File

@@ -4,11 +4,5 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Fundamental principles of engineering nanometrology]({{< relref "leach14_fundam_princ_engin_nanom" >}})
Tags
:
<./biblio/references.bib>

View File

@@ -4,14 +4,5 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Modal testing: theory, practice and application]({{< relref "ewins00_modal" >}})
- [Force Sensors]({{< relref "force_sensors" >}})
- [Instrumented Hammer]({{< relref "instrumented_hammer" >}})
- [System Identification]({{< relref "system_identification" >}})
Tags
: [Inertial Sensors]({{< relref "inertial_sensors" >}}), [Shaker]({{< relref "shaker" >}})
<./biblio/references.bib>

View File

@@ -6,5 +6,3 @@ draft = false
Tags
:
<./biblio/references.bib>

View File

@@ -7,9 +7,10 @@ draft = false
Tags
: [Norms]({{< relref "norms" >}})
A very nice book about Multivariable Control is ([Skogestad and Postlethwaite 2007](#org8b835f5))
A very nice book about Multivariable Control is ([Skogestad and Postlethwaite 2007](#org2f5ed44))
## Bibliography {#bibliography}
<a id="org8b835f5"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
<a id="org2f5ed44"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.

View File

@@ -11,9 +11,9 @@ Tags
Resources:
- ([Skogestad and Postlethwaite 2007](#orgf64cea0))
- ([Toivonen 2002](#org3ddabae))
- ([Zhang 2011](#orge43be7a))
- ([Skogestad and Postlethwaite 2007](#org4c8b20e))
- ([Toivonen 2002](#org81db503))
- ([Zhang 2011](#orgc4d2be1))
## Definition {#definition}
@@ -176,17 +176,18 @@ In terms of signals, the \\(\mathcal{H}\_\infty\\) norm can be interpreted as fo
The \\(\mathcal{H}\_2\\) is very useful when combined to [Dynamic Error Budgeting]({{< relref "dynamic_error_budgeting" >}}).
As explained in ([Monkhorst 2004](#org45aca82)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
As explained in ([Monkhorst 2004](#orgc401feb)), the \\(\mathcal{H}\_2\\) norm has a stochastic interpretation:
> The squared \\(\mathcal{H}\_2\\) norm can be interpreted as the output variance of a system with zero mean white noise input.
## Bibliography {#bibliography}
<a id="org45aca82"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
<a id="orgc401feb"></a>Monkhorst, Wouter. 2004. “Dynamic Error Budgeting, a Design Approach.” Delft University.
<a id="orgf64cea0"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
<a id="org4c8b20e"></a>Skogestad, Sigurd, and Ian Postlethwaite. 2007. _Multivariable Feedback Control: Analysis and Design_. John Wiley.
<a id="org3ddabae"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
<a id="org81db503"></a>Toivonen, Hannu T. 2002. “Robust Control Methods.” Abo Akademi University.
<a id="orge43be7a"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.
<a id="orgc4d2be1"></a>Zhang, Weidong. 2011. _Quantitative Process Control Theory_. CRC Press.

View File

@@ -11,5 +11,3 @@ Tags
## Defaults of Operational Amplifiers {#defaults-of-operational-amplifiers}
{{< youtube nF104EvI0HM >}}
<./biblio/references.bib>

View File

@@ -16,5 +16,3 @@ Tags
| [PI](https://www.physikinstrumente.com/en/) | USA |
| [Attocube](https://www.attocube.com/en/products/nanopositioners) | Germany |
| [Newport](https://www.newport.com/c/manual-positioning) | |
<./biblio/references.bib>

View File

@@ -9,9 +9,10 @@ Tags
Tutorial about Power Spectral Density is accessible [here](https://research.tdehaeze.xyz/spectral-analysis/).
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org23bcfe9)).
A good article about how to use the `pwelch` function with Matlab ([Schmid 2012](#org6fb2cbe)).
## Bibliography {#bibliography}
<a id="org23bcfe9"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlabs Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.
<a id="org6fb2cbe"></a>Schmid, Hanspeter. 2012. “How to Use the FFT and Matlabs Pwelch Function for Signal and Noise Simulations and Measurements.” _Institute of Microelectronics_.

View File

@@ -4,12 +4,5 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Basics of precision engineering - 1st edition]({{< relref "leach18_basic_precis_engin_edition" >}})
- [Design for precision: current status and trends]({{< relref "schellekens98_desig_precis" >}})
Tags
:
<./biblio/references.bib>

View File

@@ -12,13 +12,13 @@ Tags
Measuring the noise level of inertial sensors is not easy as the seismic motion is usually much larger than the sensor's noise level.
A technique to estimate the sensor noise in such case is proposed in ([Barzilai, VanZandt, and Kenny 1998](#org7fe766e)) and well explained in ([Poel 2010](#org964c18e)) (Section 6.1.3).
A technique to estimate the sensor noise in such case is proposed in ([Barzilai, VanZandt, and Kenny 1998](#org4702c9a)) and well explained in ([Poel 2010](#orgeaef46f)) (Section 6.1.3).
The idea is to mount two inertial sensors closely together such that they should measure the same quantity.
This is represented in Figure [1](#org53e9426) where two identical sensors are measuring the same motion \\(x(t)\\).
This is represented in Figure [1](#org030f5c0) where two identical sensors are measuring the same motion \\(x(t)\\).
<a id="org53e9426"></a>
<a id="org030f5c0"></a>
{{< figure src="/ox-hugo/huddle_test_setup.png" caption="Figure 1: Schematic representation of the setup for measuring the noise of inertial sensors." >}}
@@ -49,23 +49,23 @@ where:
The Matlab function `mscohere` can be used to compute the coherence:
```matlab
%% Parameters
Fs = 1e4; % Sampling Frequency [Hz]
win = hanning(ceil(10*Fs)); % 10 seconds Hanning Windows
%% Parameters
Fs = 1e4; % Sampling Frequency [Hz]
win = hanning(ceil(10*Fs)); % 10 seconds Hanning Windows
%% Coherence between x and y
[pxy, f] = mscohere(x, y, win, [], [], Fs); % Coherence, frequency vector in [Hz]
%% Coherence between x and y
[pxy, f] = mscohere(x, y, win, [], [], Fs); % Coherence, frequency vector in [Hz]
```
Alternatively, it can be manually computed using the `cpsd` and `pwelch` commands:
```matlab
%% Manual Computation of the Coherence
[pxy, f] = cpsd(x, y, win, [], [], Fs); % Cross Spectral Density between x and y
[pxx, ~] = pwelch(x, win, [], [], Fs); % Power Spectral Density of x
[pyy, ~] = pwelch(y, win, [], [], Fs); % Power Spectral Density of y
%% Manual Computation of the Coherence
[pxy, f] = cpsd(x, y, win, [], [], Fs); % Cross Spectral Density between x and y
[pxx, ~] = pwelch(x, win, [], [], Fs); % Power Spectral Density of x
[pyy, ~] = pwelch(y, win, [], [], Fs); % Power Spectral Density of y
pxy_manual = abs(pxy).^2./abs(pxx)./abs(pyy);
pxy_manual = abs(pxy).^2./abs(pxx)./abs(pyy);
```
</div>
@@ -76,7 +76,7 @@ Now suppose that:
- sensor noises are modelled as input noises \\(n\_1(t)\\) and \\(n\_2(s)\\)
- sensor noises are uncorrelated and each are uncorrelated with \\(x(t)\\)
Then, the system can be represented by the block diagram in Figure [2](#org0e1cf4a), and we can write:
Then, the system can be represented by the block diagram in Figure [2](#orgec7c79b), and we can write:
\begin{align}
P\_{y\_1y\_1}(\omega) &= |H\_1(\omega)|^2 ( P\_{x}(\omega) + P\_{n\_1}(\omega) ) \\\\\\
@@ -90,7 +90,7 @@ And the CSD between \\(y\_1(t)\\) and \\(y\_2(t)\\) is:
\gamma^2\_{y\_1y\_2}(\omega) = \frac{|C\_{y\_1y\_2}(j\omega)|^2}{P\_{y\_1}(\omega) P\_{y\_2}(\omega)}
\end{equation}
<a id="org0e1cf4a"></a>
<a id="orgec7c79b"></a>
{{< figure src="/ox-hugo/huddle_test_block_diagram.png" caption="Figure 2: Huddle test block diagram" >}}
@@ -113,8 +113,9 @@ If we assume the two sensor dynamics to be the same \\(H\_1(s) \approx H\_2(s)\\
</div>
## Bibliography {#bibliography}
<a id="org7fe766e"></a>Barzilai, Aaron, Tom VanZandt, and Tom Kenny. 1998. “Technique for Measurement of the Noise of a Sensor in the Presence of Large Background Signals.” _Review of Scientific Instruments_ 69 (7):276772. <https://doi.org/10.1063/1.1149013>.
<a id="org4702c9a"></a>Barzilai, Aaron, Tom VanZandt, and Tom Kenny. 1998. “Technique for Measurement of the Noise of a Sensor in the Presence of Large Background Signals.” _Review of Scientific Instruments_ 69 (7):276772. <https://doi.org/10.1063/1.1149013>.
<a id="org964c18e"></a>Poel, Gerrit Wijnand van der. 2010. “An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment.” University of Twente. <https://doi.org/10.3990/1.9789036530163>.
<a id="orgeaef46f"></a>Poel, Gerrit Wijnand van der. 2010. “An Exploration of Active Hard Mount Vibration Isolation for Precision Equipment.” University of Twente. <https://doi.org/10.3990/1.9789036530163>.

View File

@@ -12,5 +12,3 @@ Notes about sensors:
- [Force Sensors]({{< relref "force_sensors" >}})
- [Position Sensors]({{< relref "position_sensors" >}})
- [Inertial Sensors]({{< relref "inertial_sensors" >}})
<./biblio/references.bib>

View File

@@ -4,11 +4,6 @@ author = ["Thomas Dehaeze"]
draft = false
+++
Backlinks:
- [Position Sensors]({{< relref "position_sensors" >}})
- [Force Sensors]({{< relref "force_sensors" >}})
Tags
: [Sensors]({{< relref "sensors" >}}), [Electronics]({{< relref "electronics" >}})
@@ -33,5 +28,3 @@ Depending on the electrical quantity that is meaningful for the measurement, dif
- Current to Voltage ([Transimpedance Amplifiers]({{< relref "transimpedance_amplifiers" >}}))
- Charge to Voltage ([Charge Amplifiers]({{< relref "charge_amplifiers" >}}))
- Voltage to Voltage ([Voltage Amplifier]({{< relref "voltage_amplifier" >}}))
<./biblio/references.bib>

View File

@@ -36,5 +36,3 @@ Tips:
## Linearize portion of Simulink file {#linearize-portion-of-simulink-file}
<https://in.mathworks.com/help/slcontrol/ug/specify-model-portion-to-linearize.html>
<./biblio/references.bib>

View File

@@ -34,5 +34,3 @@ Comparison
| Encoder (quadrature) | 2 | 4 | 4 | 2 |
| Sampling Frequency | ? | ? | 1kHz (USB), 15kHz (Serial) | 2kHz |
| Price | waiting for quote | 1000 | 900 | 1300 |
<./biblio/references.bib>

View File

@@ -36,36 +36,37 @@ Tags
Papers by J.E. McInroy:
- ([OBrien et al. 1998](#org301ae65))
- ([McInroy, OBrien, and Neat 1999](#org43a0fe2))
- ([McInroy 1999](#org41ba097))
- ([McInroy and Hamann 2000](#org73060fc))
- ([Chen and McInroy 2000](#org2b98584))
- ([McInroy 2002](#org2d6222b))
- ([Li, Hamann, and McInroy 2001](#org6598adc))
- ([Lin and McInroy 2003](#orgfc1736f))
- ([Jafari and McInroy 2003](#org72de1d8))
- ([Chen and McInroy 2004](#org6bdfb26))
- ([OBrien et al. 1998](#org413fc20))
- ([McInroy, OBrien, and Neat 1999](#orgc5005e3))
- ([McInroy 1999](#orgb4c311e))
- ([McInroy and Hamann 2000](#org8285ab1))
- ([Chen and McInroy 2000](#org709b3d5))
- ([McInroy 2002](#org349aaf8))
- ([Li, Hamann, and McInroy 2001](#orgaa83268))
- ([Lin and McInroy 2003](#org055e9ff))
- ([Jafari and McInroy 2003](#org26e42d2))
- ([Chen and McInroy 2004](#orgd92590e))
## Bibliography {#bibliography}
<a id="org6bdfb26"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):41321. <https://doi.org/10.1109/tcst.2004.824339>.
<a id="orgd92590e"></a>Chen, Y., and J.E. McInroy. 2004. “Decoupled Control of Flexure-Jointed Hexapods Using Estimated Joint-Space Mass-Inertia Matrix.” _IEEE Transactions on Control Systems Technology_ 12 (3):41321. <https://doi.org/10.1109/tcst.2004.824339>.
<a id="org2b98584"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org709b3d5"></a>Chen, Yixin, and J.E. McInroy. 2000. “Identification and Decoupling Control of Flexure Jointed Hexapods.” In _Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)_, nil. <https://doi.org/10.1109/robot.2000.844878>.
<a id="org72de1d8"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595603. <https://doi.org/10.1109/tra.2003.814506>.
<a id="org26e42d2"></a>Jafari, F., and J.E. McInroy. 2003. “Orthogonal Gough-Stewart Platforms for Micromanipulation.” _IEEE Transactions on Robotics and Automation_ 19 (4). Institute of Electrical and Electronics Engineers (IEEE):595603. <https://doi.org/10.1109/tra.2003.814506>.
<a id="orgfc1736f"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):26772. <https://doi.org/10.1109/tcst.2003.809248>.
<a id="org055e9ff"></a>Lin, Haomin, and J.E. McInroy. 2003. “Adaptive Sinusoidal Disturbance Cancellation for Precise Pointing of Stewart Platforms.” _IEEE Transactions on Control Systems Technology_ 11 (2):26772. <https://doi.org/10.1109/tcst.2003.809248>.
<a id="org6598adc"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
<a id="orgaa83268"></a>Li, Xiaochun, Jerry C. Hamann, and John E. McInroy. 2001. “Simultaneous Vibration Isolation and Pointing Control of Flexure Jointed Hexapods.” In _Smart Structures and Materials 2001: Smart Structures and Integrated Systems_, nil. <https://doi.org/10.1117/12.436521>.
<a id="org41ba097"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
<a id="orgb4c311e"></a>McInroy, J.E. 1999. “Dynamic Modeling of Flexure Jointed Hexapods for Control Purposes.” In _Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)_, nil. <https://doi.org/10.1109/cca.1999.806694>.
<a id="org2d6222b"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):9599. <https://doi.org/10.1109/3516.990892>.
<a id="org349aaf8"></a>———. 2002. “Modeling and Design of Flexure Jointed Stewart Platforms for Control Purposes.” _IEEE/ASME Transactions on Mechatronics_ 7 (1):9599. <https://doi.org/10.1109/3516.990892>.
<a id="org73060fc"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):37281. <https://doi.org/10.1109/70.864229>.
<a id="org8285ab1"></a>McInroy, J.E., and J.C. Hamann. 2000. “Design and Control of Flexure Jointed Hexapods.” _IEEE Transactions on Robotics and Automation_ 16 (4):37281. <https://doi.org/10.1109/70.864229>.
<a id="org43a0fe2"></a>McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):9195. <https://doi.org/10.1109/3516.752089>.
<a id="orgc5005e3"></a>McInroy, J.E., J.F. OBrien, and G.W. Neat. 1999. “Precise, Fault-Tolerant Pointing Using a Stewart Platform.” _IEEE/ASME Transactions on Mechatronics_ 4 (1):9195. <https://doi.org/10.1109/3516.752089>.
<a id="org301ae65"></a>OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.
<a id="org413fc20"></a>OBrien, J.F., J.E. McInroy, D. Bodtke, M. Bruch, and J.C. Hamann. 1998. “Lessons Learned in Nonlinear Systems and Flexible Robots Through Experiments on a 6 Legged Platform.” In _Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207)_, nil. <https://doi.org/10.1109/acc.1998.703532>.

View File

@@ -78,13 +78,13 @@ Sed aliquam
Here is a list of links to:
- Figure [3](#org54379fd)
- Figure [3](#orgcbf9e46)
- Table [3](#table--tab:table-with-equations)
- Listing [1](#code-snippet--lst:matlab-figure)
- Specific line of code
- Equation \eqref{eq:numbered}
- Section
- Bibliographic Reference ([Stanisic and Legrand 2014](#orgfe85fe6)), and ([Schulte and Davison 2011](#orgdf0380b); [Dominik 2010](#orgb0733db); [Stanisic and Legrand 2014](#orgfe85fe6))
- Bibliographic Reference ([Stanisic and Legrand 2014](#org0ed95e1)), and ([Schulte and Davison 2011](#org7b9fb79); [Dominik 2010](#org4f5b6d0); [Stanisic and Legrand 2014](#org0ed95e1))
### Maths {#maths}
@@ -157,7 +157,7 @@ Some text.
## Headlines {#headlines}
<a id="orgcd5a9a0"></a>
<a id="org94d8c54"></a>
### Second level Headline with tags {#second-level-headline-with-tags}
@@ -304,7 +304,7 @@ Cras non mauris ex. Morbi ut eros eu tellus egestas dapibus et et est. Aenean so
xlabel('Time [s]'); ylabel('Voltage [V]');
```
<a id="org485b9a9"></a>
<a id="org75ab154"></a>
{{< figure src="figs/matlab_fig_example.png" caption="Figure 1: Matlab Figure" >}}
@@ -375,7 +375,7 @@ Moreover, we can link to specific bode blocks (Listing [1](#code-snippet--lst:ma
Code to produce a nice contour plot
</div>
<a id="org405a280"></a>
<a id="orgfcd383d"></a>
{{< figure src="figs/matlab_logo.png" caption="Figure 2: Obtained Contour Plot" >}}
@@ -450,7 +450,7 @@ Numbering can be continued by using `+n` option as shown below.
### Normal Image {#normal-image}
Figure [3](#org54379fd) shows the results of the Tikz code of listing [4](#code-snippet--lst:tikz-test).
Figure [3](#orgcbf9e46) shows the results of the Tikz code of listing [4](#code-snippet--lst:tikz-test).
<a id="code-snippet--lst:tikz-test"></a>
```latex
@@ -477,10 +477,10 @@ Figure [3](#org54379fd) shows the results of the Tikz code of listing [4](#code-
<div class="src-block-caption">
<span class="src-block-number"><a href="#code-snippet--lst:tikz-test">Code Snippet 4</a></span>:
Tikz code that is used to generate Figure <a href="#org54379fd">3</a>
Tikz code that is used to generate Figure <a href="#orgcbf9e46">3</a>
</div>
<a id="org54379fd"></a>
<a id="orgcbf9e46"></a>
{{< figure src="figs/general_control_names.png" caption="Figure 3: General Control Configuration" >}}
@@ -493,7 +493,7 @@ Figure [3](#org54379fd) shows the results of the Tikz code of listing [4](#code-
### Wrap Image {#wrap-image}
<a id="orgc7b3c56"></a>
<a id="orge97a9ba"></a>
{{< figure src="figs/general_control_names.png" caption="Figure 4: General Control Configuration" >}}
@@ -509,7 +509,7 @@ Fusce blandit mauris dui, sed lobortis sapien tincidunt ac. Maecenas vitae moles
[[file:figs/general_control_names.png]]
```
<a id="org674d2a1"></a>
<a id="org669836c"></a>
{{< figure src="figs/general_control_names.png" caption="Figure 5: General Control Configuration" >}}
@@ -518,7 +518,7 @@ Fusce blandit mauris dui, sed lobortis sapien tincidunt ac. Maecenas vitae moles
### Sub Images {#sub-images}
Link to subfigure [2](#orga5ea12b).
Link to subfigure [2](#org0dc182a).
```md
#+name: fig:subfigure
@@ -536,7 +536,7 @@ Link to subfigure [2](#orga5ea12b).
| ![](figs/general_control_names.png) | ![](figs/general_control_names.png) |
|--------------------------------------------|--------------------------------------------|
| <a id="orga5ea12b"></a> sub figure caption | <a id="org2c6cb70"></a> sub figure caption |
| <a id="org0dc182a"></a> sub figure caption | <a id="org5fce826"></a> sub figure caption |
## Tables {#tables}
@@ -647,11 +647,11 @@ It is approximately **12,742 km**
## Bibliography {#bibliography}
<a id="orgb0733db"></a>Dominik, Carsten. 2010. _The Org Mode 7 Reference Manual-Organize Your Life with GNU Emacs_. Network Theory Ltd.
<a id="org4f5b6d0"></a>Dominik, Carsten. 2010. _The Org Mode 7 Reference Manual-Organize Your Life with GNU Emacs_. Network Theory Ltd.
<a id="orgdf0380b"></a>Schulte, Eric, and Dan Davison. 2011. “Active Documents with Org-Mode.” _Computing in Science & Engineering_ 13 (3). IEEE Computer Society:6673.
<a id="org7b9fb79"></a>Schulte, Eric, and Dan Davison. 2011. “Active Documents with Org-Mode.” _Computing in Science & Engineering_ 13 (3). IEEE Computer Society:6673.
<a id="orgfe85fe6"></a>Stanisic, Luka, and Arnaud Legrand. 2014. “Effective Reproducible Research with Org-Mode and Git.” In _European Conference on Parallel Processing_, 47586. Springer.
<a id="org0ed95e1"></a>Stanisic, Luka, and Arnaud Legrand. 2014. “Effective Reproducible Research with Org-Mode and Git.” In _European Conference on Parallel Processing_, 47586. Springer.
[^fn:1]: A long foot note. Lorem ipsum dolor sit amet, consectetur adipiscing elit. With a reference to Figure [3](#org54379fd).
[^fn:1]: A long foot note. Lorem ipsum dolor sit amet, consectetur adipiscing elit. With a reference to Figure [3](#orgcbf9e46).
[^fn:2]: An other footnote.

View File

@@ -19,5 +19,3 @@ Mechatronics:
Matlab:
- [Mathworks](https://www.mathworks.com/training-schedule/)
<./biblio/references.bib>

View File

@@ -13,5 +13,3 @@ Tags
A Transconductance Amplifier converts the control voltage into current with a current source characteristic.
Such a converter is called a voltage-to-current converter, also named a voltage-controlled current source or _transconductance_ amplifier.
<./biblio/references.bib>